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1. INTRODUCTION

Vector spaces are the subject of linear algebra and are well characterized by their dimen-

sion, which, roughly speaking, specifies the number of independent directions in the space.

Infinite-dimensional vector spaces arise naturally in mathematical analysis, as function spaces,

whose vectors are functions. These vector spaces are generally endowed with additional struc-

ture, which may be a topology, allowing the consideration of issues of proximity and continuity.

Among these topologies, those that are defined by a norm or inner product are more commonly

used, as having a notion of distance between two vectors. This is particularly the case of Ba-

nach spaces and Hilbert spaces, which are fundamental in mathematical analysis. Historically,

the first ideas leading to vector spaces can be traced back as far as the 17th century’s analytic
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geometry, matrices, systems of linear equations, and Euclidean vectors. The modern, more ab-

stract treatment, first formulated by Giuseppe Peano in 1888, encompasses more general objects

than Euclidean space, but much of the theory can be seen as an extension of classical geometric

ideas like lines, planes and their higher-dimensional analogs. Today, vector spaces are applied

throughout mathematics, science and engineering. They are the appropriate linear-algebraic

notion to deal with systems of linear equations. They offer a framework for Fourier expansion,

which is employed in image compression routines, and they provide an environment that can

be used for solution techniques for partial differential equations. Furthermore, vector spaces

furnish an abstract, coordinate-free way of dealing with geometrical and physical objects such

as tensors. This in turn allows the examination of local properties of manifolds by linearization

techniques. Vector spaces may be generalized in several ways, leading to more advanced no-

tions in geometry and abstract algebra. In classical set theory, the membership of elements in

a set is assessed in binary terms according to a bivalent condition an element either belongs or

does not belong to the set. By contrast, fuzzy set theory permits the gradual assessment of the

membership of elements in a set; this is described with the aid of a membership function valued

in the real unit interval [0,1]. Fuzzy sets generalize classical sets, since the indicator functions

(aka characteristic functions) of classical sets are special cases of the membership functions of

fuzzy sets, if the latter only take values 0 or 1. In mathematics, fuzzy sets (aka uncertain sets) are

somewhat like sets whose elements have degrees of membership. Fuzzy sets were introduced

independently by Lotfi A. Zadeh [24]. Intuitionistic fuzzy sets are sets whose elements have

degrees of membership and non-membership. Intuitionistic fuzzy sets have been introduced by

Krassimir Atanassov (1983) as an extension of Lotfi Zadeh’s notion of fuzzy set, which itself

extends the classical notion of a set. The triangular norm (T -norm) and the triangular conorm

(C-conorm) originated from the studies of probabilistic metric spaces [5, 23] in which triangu-

lar inequalities were extended using the theory of T -norm and C-conorm. The author by using

norms, investigated some properties of fuzzy algebraic structures [6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22]. In this paper, we define intuitionistic fuzzy vector subspaces with

respect to norms (a t-norm T and a t-conorm C). Next we show relainship between them and
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vector subspaces. Late, we characterize them under some conditions. Finally, we investigate

them under increasing map and decreasing map.

2. PRELIMINARIES

This section contains some basic definitions and preliminary results which will be needed in

the sequal.

Definition 2.1. (See [4]) A vector space or a linear space consists of the following:

(1) a field F of scalars.

(2) a set V of objects called vectors.

(3) a rule (or operation) called vector addition; which associates with each pair of vectors α,β ∈

V ;α +β ∈V, called the sum of α and β in such a way that

(a) addition is commutative α +β = β +α,

(b) addition is associative α +(β + γ) = (α +β )+ γ,

(c) there is a unique vector 0 in V , called the zero vector, such that α +0 = for all α ∈V,

(d) for each vector α in V there is a unique vector(−α) in V such that α +(−α) = 0,

(e) a rule (or operation), called scalar multiplication, which associates with each scalar c in F

and a vector α in V , a vector c•α in V , called the product of c and α , in such a way that 1•α =

α, (c1 •c2)•α = c1 • (c2 •α), c• (α +β ) = c•α +c•β , (c1 +c2)•α = (c1 •α)+(c2 •α)

for α,β ∈V and c,c1,c2 ∈ F. It is important to note as the definition states that a vector space is

a composite object consisting of a field, a set of vectors and two operations with certain special

properties. The same set of vectors may be part of a number of distinct vectors. We simply by

default of notation just say V a vector space over the field F and call elements of V as vectors

only as matter of convenience for the vectors in V.

Throughout this section, F is any field of characteristic zero.

Example 2.2. Let V = R×R×R. Then V is a vector space over R or Q but V is not a vector

space over the complex field C.
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Definition 2.3. (See [4]) Let V be a vector space over the field F. A vector subspace of V is a

subset W of V which is itself a vector space over F with the operations of vector addition and

scalar multiplication on V.

We have the following nice characterization theorem for subspaces.

Theorem 2.4. (See [4]) Let W be a non-empty subset of a vector V over the field F. Then W is

a vector subspace of V if and only if for each pair α,β ∈W and each scalar c ∈ F the vector

cα +β ∈W.

Example 2.5. Let Mn×n = {(ai j) | ai j ∈Q} be the vector space over Q. Let Dn×n = {(aii) | aii ∈

Q} be the set of all diagonal matrices with entries from Q. Then Dn×n is a vector subspace of

Mn×n.

Definition 2.6. (See [4]) Let V and W be two vector spaces over the field of F. A map f : V →W

is called a linear transformation if f (ax+ y) = a f (x)+ f (y) for all x,y ∈V and a ∈ F.

Definition 2.7. (See [3]) Let X a non-empty sets. A fuzzy subset µ of X is a function µ : X →

[0,1]. Denote by [0,1]X , the set of all fuzzy subset of X .

Definition 2.8. (See [2]) For sets X ,Y and Z, f = ( f1, f2) : X → Y × Z is called a complex

mapping if f1 : X → Y and f2 : X → Z are mappings.

Definition 2.9. (See [2]) Let X be a nonempty set. A complex mapping A = (µA,νA) : X →

[0,1]× [0,1] is called an intuitionistic fuzzy set (in short, IFS) in X if µA + νA ≤ 1 where

the mappings µA : X → [0,1] and νA : X → [0,1] denote the degree of membership (namely

µA(x)) and the degree of non-membership (namely νA(x)) for each x ∈ X to A, respectively. In

particular 0∼ and 1∼ denote the intuitionistic fuzzy empty set and intuitionistic fuzzy whole set

in X defined by 0∼(x) = (0,1) and 1∼(x) = (1,0), respectively.

We will denote the set of all IFSs in X as IFS(X).

Definition 2.10. (See [2]) Let X be a nonempty set and let A = (µA,νA) and B = (µB,νB) be

IFSs in X . Then

(1) A⊆ B iff µA ≤ µB and νA ≥ νB.

(2) A = B iff A⊆ B and B⊆ A.



NORMS OVER INTUITIONISTIC FUZZY VECTOR SPACES 5

Definition 2.11. (See [3]) A t-norm T is a function T : [0,1]× [0,1]→ [0,1] having the following

four properties:

(T1) T (x,1) = x (neutral element)

(T2) T (x,y)≤ T (x,z) if y≤ z (monotonicity)

(T3) T (x,y) = T (y,x) (commutativity)

(T4) T (x,T (y,z)) = T (T (x,y),z) (associativity),

for all x,y,z ∈ [0,1].

Recall that t-norm T is idempotent if for all x ∈ [0,1], we have that T (x,x) = x.

Corollary 2.12. Let T be a t-norm. Then for all x ∈ [0,1]

(1) T(x,0)=0.

(2) T (0,0) = 0.

Example 2.13. (1) Standard intersection t-norm Tm(x,y) = min{x,y}.

(2) Bounded sum t-norm Tb(x,y) = max{0,x+ y−1}.

(3) algebraic product t-norm Tp(x,y) = xy.

(4) Drastic t-norm

TD(x,y) =


y if x = 1

x if y = 1

0 otherwise.

(5) Nilpotent minimum t-norm

TnM(x,y) =

 min{x,y} if x+ y > 1

0 otherwise.

(6) Hamacher product t-norm

TH0(x,y) =

 0 if x = y = 0
xy

x+y−xy otherwise.

The drastic t-norm is the pointwise smallest t-norm and the minimum is the pointwise largest

t-norm: TD(x,y)≤ T (x,y)≤ Tmin(x,y) for all x,y ∈ [0,1].
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Definition 2.14. (See [3]) A t-conorm C is a function C : [0,1]× [0,1] → [0,1] having the

following four properties:

(C1) C(x,0) = x

(C2) C(x,y)≤C(x,z) if y≤ z

(C3) C(x,y) =C(y,x)

(C4) C(x,C(y,z)) =C(C(x,y),z) ,

for all x,y,z ∈ [0,1].

Recall that t-conorm C is idempotent if for all x ∈ [0,1], we have that C(x,x) = x.

Corollary 2.15. Let C be a t-conorm. Then for all x ∈ [0,1]

(1) C(x,1) = 1.

(2) C(0,0) = 0.

Example 2.16. (1) Standard union t-conorm Cm(x,y) = max{x,y}.

(2) Bounded sum t-conorm Cb(x,y) = min{1,x+ y}.

(3) Algebraic sum t-conorm Cp(x,y) = x+ y− xy.

(4) Drastic t-conorm

CD(x,y) =


y if x = 0

x if y = 0

1 otherwise.

(5) Nilpotent maximum t-conorm:

CnM(x,y) =

 max{x,y} if x+ y < 1

1 otherwise.

(6) Einstein sum (compare the velocity-addition formula under special relativity) CH2(x,y) =
x+ y
1+ xy

. Note that all t-conorms are bounded by the maximum and the drastic t-conorm: Cmax(x,y)≤

C(x,y)≤CD(x,y) for any t-conorm C and all x,y ∈ [0,1].

Lemma 2.17. (See [1]) Let T be a t-norm. Then

T (T (x,y),T (w,z)) = T (T (x,w),T (y,z)),



NORMS OVER INTUITIONISTIC FUZZY VECTOR SPACES 7

for all x,y,w,z ∈ [0,1].

Lemma 2.18. (See [1]) Let C be a t-conorm. Then

C(C(x,y),C(w,z)) =C(C(x,w),C(y,z)),

for all x,y,w,z ∈ [0,1].

3. NORMS OVER INTUITIONISTIC FUZZY VECTOR SPASES

In what follows, V is a vector space on a field F, unless otherwise specified.

Definition 3.1. Let A=(µA,νA) be IFSs in V. Then A=(µA,νA) is said to be intuitionistic fuzzy

vector subspaces with respect to norms(a t-norm T and a t-conorm C) (in short, IFTC(V )) of

V if

(1) µA(x+ y)≥ T (µA(x),µA(y)),

(2) µA(−x)≥ µA(x),

(3) µA(ax)≥ µA(x),

(4) νA(x+ y)≤C(νA(x),νA(y)),

(5) νA(−x)≤ νA(x),

(6) νA(ax)≤ νA(x),

for all x,y ∈V and a ∈ F.

Corollary 3.2. Let A = (µA,νA) ∈ IFTC(V ). Then A(−x) = µ(x) for all x ∈V.

Proof. Let x ∈V. Then

µA(−x)≥ µA(x) = µA(−(−x))≥ µA(−x)

and so µA(−x) = µA(x).

Also

νA(−x)≤ νA(x) = νA(−(−x))≤ νA(−x)

and so νA(−x) = νA(x).

Thus A(−x) = (µA(−x),νA(−x)) = (µA(x),νA(x)) = A(x). �
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Example 3.3. Let V = R×R be a vectorspace over a field F = R. Define µA : R×R→ [0,1]

as

µA(x,y) =

 0.75 (x,y) ∈ {(0,y) | y ∈ R}

0.25 otherwise

and

νA : R×R→ [0,1] as

νA(x,y) =

 0.15 (x,y) ∈ {(x,0) | x ∈ R}

0.55 otherwise.

Let T (a,b) = Tp(a,b) = ab and C(a,b) = Cp(a,b) = a+ b− ab for all a,b ∈ [0,1]. Then

A = (µA,νA) ∈ IFTC(V ).

Theorem 3.4. Let V be a subspace over field F and W be a subspace of V and µA,νA : W →

{0,1} be the characteristic functions. Then A = (µA,νA) ∈ IFTC(V ).

Proof. Let x,y ∈V and we investigate the following conditions:

(1) If x,y ∈W , then x+ y ∈W and we have

µA(x+ y) = 1≥ 1 = T (1,1) = T (µA(x),µA(y))

and

νA(x+ y) = 1≤ 1 =C(1,1) =C(νA(x),νA(y)).

(2) If x 6∈W and y ∈W, then x+ y 6∈W and then

µA(x+ y) = 0≥ 0 = T (0,1) = T (µA(x),µA(y))

and

νA(x+ y) = 0≤ 0 =C(0,νA(y)) =C(νA(x),νA(y)).

(3) Finally, if x,y 6∈W , then

µA(x+ y)≥ 0 = T (0,0) = T (µA(x),µA(y))

and

νA(x+ y) = 0≤ 0 =C(0,0) =C(νA(x),νA(y)).
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Thus from (1)-(3) we have that

µA(x+ y)≥ T (µA(x),µA(y))

and

νA(x+ y)≤C(νA(x),νA(y)).

Also we have that the following conditions:

(1) If x ∈W, then −x ∈W and then

µA(−x) = 1≥ 1 = µA(x)

and

νA(−x) = 0≤ 0 = νA(x).

(2) If x 6∈W, then −x 6∈W and then

µA(−x) = 0≥ 0 = µA(x)

and

νA(−x) = 0≤ 0 = νA(x).

Thus from (1)-(2) we have that

µA(−x)≥ µA(x)

and

νA(−x)≤ νA(x).

Now let a ∈ F :

(1) If x ∈W , then ax ∈W and so

µA(ax) = 1≥ 1 = µA(x)

and

νA(ax) = 1≤ 1 = νA(x).

(2) If x 6∈W , then ax 6∈W so

µA(ax) = 0≥ 0 = µA(x)
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and

νA(ax) = 0≤ 0 = νA(x).

Then from (1) and (2) we obtain

µA(ax)≥ µA(x)

and

νA(ax)≤ νA(x).

Therefore from the above conditions we get that A = (µA,νA) ∈ IFTC(V ). �

Theorem 3.5. Let A = (µA,νA) ∈ IFTC(V ). Then

W = {x | x ∈V : A(x) = (µA(x),νA(x)) = (1,0) = 1∼(x)}

is either empty or is a vector subspace of V.

Proof. Let x,y ∈W and a ∈ F. Then

(1)

µA(ax+ y)≥ T (µA(ax),µA(y))≥ T (µA(x),µA(y)) = T (1,1) = 1

and then µA(ax+ y) = 1. Also

(2)

νA(ax+ y)≤C(νA(ax),νA(y))≤C(νA(x),νA(y)) =C(0,0) = 0

and then νA(ax+ y) = 0. Then from (1) and (2) we get that

A(ax+ y) = (µA(ax+ y),νA(ax+ y)) = (1,0) = 1∼(x)

which means that ax+ y ∈W.

Now from Theorem 2.4 we get W is a vector subspace of V. �

Theorem 3.6. Let A = (µA,νA) ∈ IFTC(V ) such that T and C be idempotent t-norm and t-

conorm, resprctively. Then

W = {x | x ∈V : A(x) = A(0)}

is either empty or is a vector subspace of V.
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Proof. Let x,y ∈W and a ∈ F. Now

µA(ax+ y)≥ T (µA(ax),µA(y))≥ T (µA(x),µA(y))

= T (µA(0),µA(0)) = µA(0)≥ µA(ax+ y) (by Theorem 3.6)

and thus µA(ax+ y) = µ(0).

Also

νA(ax+ y)≤C(νA(ax),νA(y))≤C(νA(x),νA(y))

=C(νA(0),νA(0)) = νA(0)≤ νA(ax+ y) (by Theorem 3.6)

and so νA(ax+ y) = νA(0). Thus A(ax+ y) = (µA(ax+ y),νA(ax+ y)) = (0,0) = A(0). Now

Theorem 2.4 gives us that W is a vector subspace of V. �

Theorem 3.7. If A = (µA,νA) ∈ IFTC(V ) such that T and C be idempotent t-norm and t-

conorm, resprctively. Then A(0)⊇ A(x) for all x ∈V.

Proof. As A = (µA,νA) ∈ IFTC(V ) so

µA(0) = µA(x− x) = µA(x+(−x))

≥ T (µA(x),µA(−x))≥ T (µA(x),µA(x)) = µA(x).

Thus µA(0)≥ µA(x).

Also

νA(0) = νA(x− x) = νA(x+(−x))

≤C(νA(x),νA(−x))≤C(νA(x),νA(x)) = νA(x).

Thus νA(0)≤ νA(x).

Then A(0) = (µA(0),νA(0))⊇ (µA(x),νA(x)) = A(x) for all x ∈V. �

Theorem 3.8. Let A = (µA,νA) ∈ IFTC(V ) such that T and C be idempotent t-norm and t-

conorm, resprctively. If A(x− y) = A(0), then A(x) = A(y) for all x,y ∈V.
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Proof. Let A = (µA,νA) ∈ IFTC(V ) and x,y ∈V. As A(x− y) = A(0) so

A(x− y) = (µA(x− y),νA(x− y)) = (µA(0),νA(0))

and then µA(x− y) = µA(0) and νA(x− y) = νA(0). Now

(1)

µA(x) = µA(x− y+ y)≥ T (µA(x− y),µA(y))≥ T (µA(0),µA(y))

≥ T (µA(y),µA(y)) = µA(y) = µA(y+ x− x) = µA(−(x− y)+ x)

≥ T (µA(−(x− y)),µA(x))≥ T (µA(x− y),µA(x)) = T (µA(0),µA(x))

≥ T (µA(x),µA(x)) = µA(x).

Therefore µA(x) = µA(y).

(2)

νA(x) = νA(x− y+ y)≤C(νA(x− y),νA(y))≤C(νA(0),νA(y))

≤C(νA(y),νA(y)) = νA(y) = νA(y+ x− x) = νA(−(x− y)+ x)

≤C(νA(−(x− y)),νA(x))≤C(νA(x− y),νA(x)) =C(νA(0),νA(x))

≤C(νA(x),νA(x)) = νA(x).

Therefore νA(x) = νA(y).

Then from (1) and (2) we get that A(x) = (µA(x),νA(x)) = (µA(y),νA(y)) = A(y). �

Theorem 3.9. Let T and C be idempotent t-norm and t-conorm, resprctively.

Then A = (µA,νA) ∈ IFTC(V ) If and only if

(1) µA(x− y)≥ T (µA(x),µA(y)),

(2) µA(ax)≥ µA(x),

(3) νA(x− y)≤C(νA(x),νA(y)),

(4) νA(ax)≤ νA(x),

for all x,y ∈V and a ∈ F.
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Proof. Let A = (µA,νA) ∈ IFTC(V ) and x,y ∈V. Then

µA(x− y) = µA(x+(−y))≥ T (µA(x),µA(−y))≥ T (µA(x),µA(y))

and

νA(x− y) = νA(x+(−y))≤C(νA(x),νA(−y))≤C(νA(x),νA(y)).

Conversely, if

(1) µA(x− y)≥ T (µA(x),µA(x)),

(2) µA(ax)≥ µA(x), then

µA(0) = µA(x− x)≥ T (µA(x),µA(x)) = µA(x).

Now

µA(−x) = µA(0− x)≥ T (µA(0),µA(x))≥ T (µA(x),µA(x)) = µA(x)

and

µA(x+ y) = µA(x− (−y))≥ T (µA(x),µA(−y))≥ T (µA(x),µA(y)).

Also if

(3) µ(x− y)≤C(µ(x),µ(x))

(4) µ(ax)≤ µ(x), then

νA(0) = νA(x− x)≤C(νA(x),νA(x)) = νA(x).

Thus

νA(−x) = νA(0− x)≤C(νA(0),νA(x))≤C(νA(x),νA(x)) = νA(x)

and

νA(x+ y) = νA(x− (−y))≤C(νA(x),νA(−y))≤C(νA(x),νA(y)).

Therefore A = (µA,νA) ∈ IFTC(V ). �

Theorem 3.10. Let A = (µA,νA) be IFSs in V. Let A(0) = 1∼(x) = (1,0) and

(1) µA(x− y)≥ T (µA(x),µA(y)),

(2) µA(ax)≥ µA(x),

(3) νA(x− y)≤C(νA(x),νA(y)),

(4) νA(ax)≤ νA(x),
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for all x,y ∈V and a ∈ F.

Then A = (µA,νA) ∈ IFTC(V ).

Proof. Since A(0) = 1∼(x) = (1,0) so A(0) = (µA(0),νA(0)) = (1,0) and then µA(0) = 1 and

νA(0) = 0. Now we get that

µA(−x) = µA(0− x)≥ T (µA(0),µA(x)) = T (1,µA(x)) = µA(x)

and

µA(x+ y) = µA(x− (−y))≥ T (µA(x),µA(−y))≥ T (µA(x),µA(y))

and

νA(−x) = νA(0− x)≤C(νA(0),νA(x)) =C(0,νA(x)) = νA(x)

and

νA(x+ y) = νA(x− (−y))≤C(νA(x),νA(−y))≤C(νA(x),νA(y)).

Therefore A = (µA,νA) ∈ IFTC(V ). �

Theorem 3.11. Let A = (µA,νA) ∈ IFTC(V ) and A(x−y) = 1∼(x) = (1,0). Then A(x) = A(y)

for all x,y ∈V.

Proof. As A(x− y) = 1∼(x) = (1,0) so A(x− y) = (µA(x− y),νA(x− y)) = (1,0) and then

µA(x− y) = 1 and νA(x− y) = 0 for all x,y ∈V. Then

µA(x) = µA(x− y+ y)≥ T (µA(x− y),µA(y))

= T (1,µA(y)) = µA(y) = µA(−y) (by Corollary 3.2)

= µA(x− x− y) = µA(x− y− x)≥ T (µA(x− y),µA(−x))

= T (1,µA(−x)) = µA(−x) = µA(x) (by Corollary 3.2)

and then µA(x) = µA(y).

Also

νA(x) = νA(x− y+ y)≤C(νA(x− y),νA(y))

= T (0,νA(y)) = νA(y) = νA(−y) (by Corollary 3.2)

= νA(x− x− y) = νA(x− y− x)≤C(νA(x− y),νA(−x))
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=C(0,νA(−x)) = νA(−x) = νA(x) (by Corollary 3.2)

therefore νA(x) = νA(y).

Then A(x) = (µA(x),νA(x)) = (µA(y),νA(y)) = A(y). �

Theorem 3.12. Let A = (µA,νA) ∈ IFTC(V ) and A(x)⊇ A(y) for some x,y ∈V. If T and C be

idempotent t-norm and t-conorm, resprctively, then A(x+ y) = A(y) for all x,y ∈V.

Proof. Let A = (µA,νA) ∈ IFTC(V ) and A(x) ⊇ A(y) which means that µA(x) ≥ µA(y) and

νA(x) ≤ νA(y) for all x,y ∈ V. Now by setting y = x+ y, then we have that µA(x) ≥ µA(x+ y)

and νA(x)≤ νA(x+ y). Then

µA(x+ y)≥ T (µA(x),µA(y))≥ T (µA(y),µA(y)) = µA(y)

= µA(x+ y− x)≥ T (µA(x+ y),µA(−x))≥ T (µA(x+ y),µA(x))

≥ T (µA(x+ y),µA(x+ y)) = µA(x+ y)

and so µA(x+ y) = µA(y).

Also

νA(x+ y)≤C(νA(x),νA(y))≤C(νA(y),νA(y)) = νA(y)

= νA(x+ y− x)≤C(νA(x+ y),νA(−x))≤C(νA(x+ y),νA(x))

≤C(νA(x+ y),νA(x+ y)) = νA(x+ y)

thus νA(x+ y) = νA(y). Therefore

A(x+ y) = (µA(x+ y),νA(x+ y)) = (µA(y),νA(y)) = A(y).

�

Theorem 3.13. Let A = (µA,νA) ∈ IFTC(V ) and A(x)⊆ A(y) for some x,y ∈V. If T and C be

idempotent t-norm and t-conorm, resprctively, then A(x+ y) = A(x) for all x,y ∈V.

Proof. It is trivial. �

Theorem 3.14. Let A = (µA,νA)∈ IFTC(V ) and T and C be idempotent t-norm and t-conorm,

resprctively. If A(x) 6= A(y), then A(x+y) = (T (µA(x),µA(y)),C(νA(x),νA(y))) for all x,y ∈V.
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Proof. As A(x) 6= A(y) so A(x)⊃ A(y) or A(x)⊂ A(y) for all x,y ∈V.

(1) If A(x)⊃A(y), then µA(x)> µA(y) and νA(x)< νA(y) and then µA(y)= T (µA(x),µA(y)) and

νA(y)=C(νA(x),νA(y)) for all x,y∈V. Now from Theorem 3.12 we have that µA(x+y)= µA(y)

and then µA(x+ y) = µA(y) = T (µ(x),µ(y)) and νA(x+ y) = νA(y) =C(µ(x),µ(y)). Thus

A(x+ y) = (µA(x+ y),νA(x+ y)) = (T (µA(x),µA(y)),C(νA(x),νA(y))).

(2) If A(x)⊂A(y), then µA(x)< µA(y) and νA(x)> νA(y) and then µA(x)= T (µA(x),µA(y)) and

νA(x)=C(νA(x),νA(y)) for all x,y∈V. Now from Theorem 3.13 we have that µA(x+y)= µA(x)

and then µA(x+ y) = µA(x) = T (µ(x),µ(y)) and νA(x+ y) = νA(x) =C(µ(x),µ(y)). Then

A(x+ y) = (µA(x+ y),νA(x+ y)) = (T (µA(x),µA(y)),C(νA(x),νA(y))).

�

Theorem 3.15. Let A = (µA,νA)∈ IFTC(V ) and T and C be idempotent t-norm and t-conorm,

resprctively. Then A(x− y) = A(y) if and only if A(x) = A(0) for all x,y ∈V.

Proof. Let A(x− y) = A(y) then from letting y = 0 we have that A(x) = A(0).

Conversely, suppose that A(x) =A(0) and from Theorem 3.6 we get that A(x) =A(0)⊇A(x−y)

and A(x) = A(0) ⊇ A(−y) and then we obtain that µA(x) = µA(0) ≥ µA(x− y) and µA(x) =

µA(0) ≥ µA(−y) and νA(x) = νA(0) ≤ νA(x− y) and νA(x) = νA(0) ≤ νA(−y) for all x,y ∈ V.

Now

µA(x− y) = µA(x+(−y))≥ T (µA(x),µA(−y)) = T (µA(0),µA(−y))

≥ T (µA(−y),µA(−y)) = µA(−y) = µA(x− y− x) = µA(x− y+(−x))

≥ T (µA(x− y),µA(−x))≥ T (µA(x− y),µA(x)) = T (µA(x− y),µA(0))

≥ T (µA(x− y),µA(x− y)) = µA(x− y)

and thus µA(x− y) = µA(−y) = µA(y).

Also

νA(x− y) = νA(x+(−y))≤C(νA(x),νA(−y)) =C(νA(0),νA(−y))

≤C(νA(−y),νA(−y)) = νA(−y) = νA(x− y− x) = νA(x− y+(−x))

≤C(νA(x− y),νA(−x))≤C(νA(x− y),νA(x)) =C(νA(x− y),νA(0))
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≤C(νA(x− y),νA(x− y)) = νA(x− y)

and thus νA(x− y) = νA(−y) and by Corollary 3.2 we have that νA(y) = νA(−y) = νA(x− y).

Therefore

A(x− y) = (µA(x− y),νA(x− y)) = (µA(y),νA(y)) = A(y).

�

Theorem 3.16. Let A = (µA,νA) ∈ IFTC(V ) and f : [0,µA(0)]→ [0,1] be an increasing map.

Define a fuzzy set µ
f

A : V → [0,1] by µ
f

A(x) = f (µA(x)). Let g : [0,νA(0)]→ [0,1] be a decreasing

map and define a fuzzy set ν
g
A : V → [0,1] by ν

g
A(x) = g(νA(x)).

Then A f ,g = (µ
f

A ,ν
g
A) ∈ IFTC(V ).

Proof. Let x,y ∈V and a ∈ F. Then

(1)

µ
f

A(x+ y) = f (µA(x+ y))≥ f (T (µA(x),µA(y)))

= T ( f (µA(x)), f (µA(y))) = T (µ f
A(x),µ

f
A(y)).

(2)

µ
f

A(−x) = f (µA(−x))≥ f (µA(x)) = µ
f

A(x).

(3)

µ
f

A(ax) = f (µA(ax))≥ f (µA(x)) = µ
f (x).

(4)

ν
g
A(x+ y) = g(νA(x+ y))≤ g(C(νA(x),νA(y)))

=C(g(νA(x)),g(νA(y))) =C(νg
A(x),ν

g
A(y)).

(5)

ν
g
A(−x) = g(νA(−x))≤ g(νA(x)) = ν

g
A(x).

(6)

ν
g
A(ax) = g(νA(ax))≤ g(νA(x)) = ν

g
A(x).

Then A f ,g = (µ
f

A ,ν
g
A) ∈ IFTC(V ). �
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