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Abstract. In this paper, we proposed a system of generalized extended nonlinear variational inequality problem

(SGENVI) involving three different trivariate mappings and six different nonlinear mappings. We also proposed

three steps relaxed parallel projection algorithm for convergence analysis of the approximate solvability of the

SGENVI problem. Further, we propose relaxed parallel projection algorithm, which converges to common element

of solution set of the SGENVI, and the fixed point set of three nonexpansive mappings.
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1. Introduction

Variational inequality theory has appeared as an effective and powerful tool to study and in-

vestigate a wide class of problems arising in pure and applied sciences. Verma [16] introduced

a system of nonlinear strongly monotone variational inequalities and studied its approximate
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solvability. Chang et al. [5] introduced a new system of nonlinear relaxed cocoercive varia-

tional inequalities and studied the approximation solvability of this system based on a system

of projection methods. Shang et al. [13] studied a system of variational inequalities involving

three different relaxed cocoercive mappings and studied iterative methods for finding common

element of the set of the common fixed points of three different quasi-nonexpansive mappings

and the set of solutions of the variational inequalities with three different cocoercive mappings.

Cho et al. [6] introduced a system of general nonlinear variational inequalities with three d-

ifferent relaxed cocoercive mapping and three different nonlinear mappings and studied the

approximate solvability using iterative schemes based on the projection methods.

However, these studies were based on sequential iterative methods, which are only suitable

for implementing on the traditional single-processor computers. To satisfy practical require-

ments of modern multiprocessor systems, iterative methods having parallel characteristics need

to be developed for the system of variational inequalities. Lions [11] has studied parallel al-

gorithms for solution of parabolic variational inequalities. Bertsekas and Tsitsiklis [2, 3] de-

veloped parallel algorithms by using the metric projection. Recently, Yang et al. [18] studied

parallel projection algorithm for a system of nonlinear variational inequalities.

Inspired and motivated by research works in this field, we introduce and study a system

of variational inequalities involving three sets of three different nonlinear operators. Using the

parallel projection technique, we suggest and analyze a parallel iterative method for solving this

system. We also study a general three-step method for the projection methods, which can be

applied to the approximation solvability of the system of variational inequalities and common

fixed point of three different nonexpansive mappings.

2. Preliminaries

Let Ti : H×H×H→ H and gi,hi : K→ H be nonlinear mappings for i = 1,2,3. Consider a

system of generalized extended nonlinear variational inequality problem (SGENVI) as follows
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: Find x∗,y∗,z∗ ∈ H such that, for all ρ,η ,σ > 0,

(1)

〈ρT1(y∗,z∗,x∗)+g1(x∗)−h1(y∗),h1(x)−g1(x∗)〉 ≥ 0 , ∀ h1(x) ∈ K ,

〈ηT2(z∗,x∗,y∗)+g2(y∗)−h2(z∗),h2(x)−g2(y∗)〉 ≥ 0 , ∀ h2(x) ∈ K ,

〈σT3(x∗,y∗,z∗)+g3(z∗)−h3(x∗),h3(x)−g3(z∗)〉 ≥ 0 , ∀ h3(x) ∈ K .

Here ρ,η ,σ are constants and play an important part in the studies of the convergence analysis.

If gi = hi for i = 1,2,3, then the SGENVI problem (1) is equivalent to finding x∗,y∗,z∗ ∈ H

such that, for all ρ,η ,σ > 0,

(2)

〈ρT1(y∗,z∗,x∗)+g1(x∗)−g1(y∗),g1(x)−g1(x∗)〉 ≥ 0 , ∀ g1(x) ∈ K ,

〈ηT2(z∗,x∗,y∗)+g2(y∗)−g2(z∗),g2(x)−g2(y∗)〉 ≥ 0 , ∀ g2(x) ∈ K ,

〈σT3(x∗,y∗,z∗)+g3(z∗)−g3(x∗),g3(x)−g3(z∗)〉 ≥ 0 , ∀ g3(x) ∈ K ,

where ρ,η ,σ > 0 are constants. System (2) is studied by Cho et al. [6].

If gi = hi = identity operator for i = 1,2,3, then the SGENVI problem (1) is equivalent to

finding x∗,y∗,z∗ ∈ H such that, for all ρ,η ,σ > 0,

(3)

〈ρT1(y∗,z∗,x∗)+ x∗− y∗,x− x∗〉 ≥ 0 , ∀ x ∈ K ,

〈ηT2(z∗,x∗,y∗)+ y∗− z∗,x− y∗〉 ≥ 0 , ∀ x ∈ K ,

〈σT3(x∗,y∗,z∗)+ z∗− x∗,x− z∗〉 ≥ 0 , ∀ x ∈ K ,

where ρ,η ,σ > 0 are constants. System (3) is studied by Shang et al. [13].

We now discuss some more special cases of the SGENVI problem (1).

Special cases :

(1) If T3,g3,h3 are zero operators, g1,g2,h1,h2 are identity operators and T1 = T2 = T is

a bivariate operator from H×H → H, then the SGENVI problem (1) is equivalent to

system of nonlinear variational inequality problem, studied by Chang et al. [5] and

Verma [16].

(2) If T3,g3,h3 are zero operators, g1,g2,h1,h2 are identity operators and T1,T2 are bivariate

operators from H×H → H, then the SGENVI problem (1) is equivalent to system of

nonlinear variational inequality involving two different operators, studied by Huang et

al. [9] .
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(3) If T3,g3,h3 are zero operators, g1,g2,h1,h2 are identity operators and T1,T2 are univari-

ate operator from H → H, then the SGENVI problem (1) is equivalent to system of

variational inequality problem, studied by Ceng et al.[4]

(4) If T3,g3,h3 are zero operators, g1,g2,h1,h2 are identity operators and T1 = T2 = T is a

univariate operator from H→H, then the SGENVI problem (1) is equivalent to system

of variational inequality problem, studied by Verma [14, 17].

(5) If T3,g3,h3 are zero operators, g1 = g2 = identity operator and T1,T2 are bivariate opera-

tors from H×H→H, then the SGENVI problem (1) is equivalent to system of general

variational inequality problem, studied by Noor et al. [12].

(6) If T2,T3,g2,g3,h2,h3 are zero operators, g1 = h1 = identity operator and T1 is a bivariate

operator from H×H → H, then the SGENVI problem (1) is equivalent to variational

inequality problem studied by Verma [15].

Let us recall the following result, which is frequently used to study the solvability of varia-

tional inequality problem :

Lemma 1. [10] For an element z ∈ H, we have x ∈ K and 〈x− z,y− x〉 ≥ 0 for all y ∈ K if and

only if x = PK(z).

Using Lemma 1 we can see, that the SGENVI problem (1) is equivalent to the following

projection problem : Find x∗,y∗,z∗ ∈ H such that

(4)

g1(x∗) = PK [h1(y∗)−ρ (T1(y∗,z∗,x∗))] , ρ > 0 ,

g2(y∗) = PK [h2(z∗)−η (T2(z∗,x∗,y∗))] , η > 0 ,

g3(z∗) = PK [h3(x∗)−σ (T3(x∗,y∗,z∗))] , σ > 0 .

3. Algorithm

In this section, we consider the general three-step parallel algorithms, which can be applied

to the convergence analysis using projection methods in the context of the approximation solv-

ability of the SGENVI problems. We can rewrite relation (4) in the following way : Find
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x∗,y∗,z∗ ∈ H such that

(5)

x∗ = x∗−g1(x∗)+PK [h1(y∗)−ρ (T1(y∗,z∗,x∗))] , ρ > 0 ,

y∗ = y∗−g2(y∗)+PK [h2(z∗)−η (T2(z∗,x∗,y∗))] , η > 0 ,

z∗ = z∗−g3(z∗)+PK [h3(x∗)−σ (T3(x∗,y∗,z∗))] , σ > 0 .

Using the formulation (5), we now suggest following general iteration method for approxima-

tion solvability of system of generalized extended variational inequalities (1):

Algorithm 1. For any x0,y0,z0 ∈H, compute the sequences {xn}, {yn} and {zn} by the iterative

process

(6)

zn+1 = (1− γn)zn + γn {zn−g3(zn)+PK [h3(xn)−σ (T3(xn,yn,zn))]} ,

yn+1 = (1−βn)yn +βn {yn−g2(yn)+PK [h2(zn)−η (T2(zn,xn,yn))]} ,

xn+1 = (1−αn)xn +αn {xn−g1(xn)+PK [h1(yn)−ρ (T1(yn,zn,xn))]} ,

where {αn} ,{βn} and {γn} are sequences in [0,1] for all n≥ 0.

If gi = hi for i = 1,2,3, then the Algorithm 1 reduces to the following

Algorithm 2. For any x0,y0,z0 ∈H, compute the sequences {xn}, {yn} and {zn} by the iterative

process

(7)

zn+1 = (1− γn)zn + γn {zn−g3(zn)+PK [g3(xn)−σ (T3(xn,yn,zn))]} ,

yn+1 = (1−βn)yn +βn {yn−g2(yn)+PK [g2(zn)−η (T2(zn,xn,yn))]} ,

xn+1 = (1−αn)xn +αn {xn−g1(xn)+PK [g1(yn)−ρ (T1(yn,zn,xn))]} ,

where {αn} ,{βn} and {γn} are sequences in [0,1] for all n≥ 0.

If gi = hi =identity operator, for i = 1,2,3, then the Algorithm 1 reduces to the following

Algorithm 3. For any x0,y0,z0 ∈H, compute the sequences {xn}, {yn} and {zn} by the iterative

process

(8)

zn+1 = (1− γn)zn + γnPK [xn−σ (T3(xn,yn,zn))] ,

yn+1 = (1−βn)yn +βnPK [zn−η (T2(zn,xn,yn))] ,

xn+1 = (1−αn)xn +αnPK [yn−ρ (T1(yn,zn,xn))] ,
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where {αn} ,{βn} and {γn} are sequences in [0,1] for all n≥ 0.

One of the attractive features of above Algorithms is, its suitability for implementing on com-

puter having three different processor. Assume that xn, yn and zn are given in Algorithm 1, in

order to get the new iterative points, we can set one processor of computer to compute xn+1, set

second processor to compute yn+1 and set the other processor to compute zn+1. In other words,

xn+1, yn+1 and zn+1 are solved in parallel. Algorithm 1 is called parallel projection method. The

sequential iterative methods introduced in [5, 6, 13, 16] are only suitable for implementing on

the traditional single-processor computer. That is, assume that xn, yn and zn are given, in order

to get the new iterative points, we need to solve xn+1, yn+1 and zn+1 in sequence. Therefore, in

order to satisfy practical requirements of modern multiprocessor systems, the parallel iterative

methods are more attractive with respect to the sequential iterative methods. We refer the inter-

ested reader to the papers [1, 2, 3, 7, 8] and references therein for more examples and ideas of

the parallel iterative methods.

We now recall some definitions:

Definition 2. A mapping T : H→ H is said to be :

(i) strongly monotone, if for each x ∈ H, there exists a constant ν > 0 such that

〈T (x)−T (y),x− y〉 ≥ ν ‖x− y‖2

holds, for all y ∈ H;

(ii) φ−cocoercive, if for each x ∈ H, there exists a constant φ > 0 such that

〈T (x)−T (y),x− y〉 ≥ φ ‖T (x)−T (y)‖2

holds, for all y ∈ H;

(iii) relaxed φ−cocoercive, if for each x ∈ H, there exists a constant φ > 0 such that

〈T (x)−T (y),x− y〉 ≥ −φ ‖T (x)−T (y)‖2

holds, for all y ∈ H;
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(iv) relaxed (φ ,ψ)−cocoercive, if for each x ∈ H, there exists constants φ > 0 and ψ > 0

such that

〈T (x)−T (y),x− y〉 ≥ −φ ‖T (x)−T (y)‖2 +ψ ‖x− y‖2

holds, for all y ∈ H;

(v) µ−Lipschitz continuous, if for each x,y ∈ H, there exists a constant µ > 0 such that

‖T (x)−T (y)‖ ≤ µ ‖x− y‖ ,

(vi) nonexpansive, if for each x,y ∈ H,

‖T (x)−T (y)‖ ≤ ‖x− y‖ .

A mapping T : H×H×H→ H is said to be

(vii) relaxed (φ ,ψ)−cocoercive in the first variable, if for each x,x′ ∈ H, there exists con-

stants φ > 0 and ψ > 0 such that

〈
T (x,y,z)−T (x′,y′,z′),x− x′

〉
≥−φ

∥∥T (x,y,z)−T (x′,y′,z′)
∥∥2

+ψ
∥∥x− x′

∥∥2

holds, for all y,y′,z,z′ ∈ H;

(viii) µ−Lipschitz continuous in the first variable, if for each x,x′ ∈H, there exists a constant

µ > 0 such that

∥∥T (x,y,z)−T (x′,y′,z′)
∥∥≤ µ

∥∥x− x′
∥∥ ,

for all y,y′,z,z′ ∈ H.

We now recall a lemma useful to prove the next result :

Lemma 3. [19] Let {an} be a non negative sequence satisfying an+1 ≤ (1− cn)an + bn , with

cn ∈ [0,1], ∑
∞
n=0 cn = ∞, bn = o(cn). Then limn→∞ an = 0.

4. Main results
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Theorem 4. Let K be a closed convex subset of a real Hilbert space H. Let Ti : H ×H ×

H → H be a relaxed (φi,ψi)-cocoercive and µi-Lipschitz continuous in the first variable, gi :

K → H be a relaxed (ζi,ωi)-cocoercive and τi-Lipschitz continuous mapping, hi : K → H be

a relaxed (δi,λi)-cocoercive and νi-Lipschitz continuous mapping. Suppose that x∗,y∗,z∗ ∈ H

are solutions of the SGENVI problem (1) and {αn}, {βn}, {γn} are sequences in [0,1]. Assume

that the following conditions are satisfies:

(i) θ3, θ6, θ9 < 1 ,

(ii) Θ1n = αn(1−θ3)− γn(θ7 +θ8) ≥ 0, Θ2n = βn(1−θ6)−αn(θ1 +θ2) ≥ 0, and Θ3n =

γn(1−θ9)−βn(θ4 +θ5)≥ 0,

(iii) ∑
∞
n=0 Θ1n = ∞, ∑

∞
n=0 Θ2n = ∞ and ∑

∞
n=0 Θ3n = ∞,

where

θ1 =
√

1−2ρψ1 +2ρφ1µ2
1 +ρ2µ2

1 , θ2 =
√

1−2λ1 +2δ1ν2
1 +ν2

1 ,

θ3 =
√

1−2ω1 +2ζ1τ2
1 + τ2

1 , θ4 =
√

1−2ηψ2 +2ηφ2µ2
2 +η2µ2

2 ,

θ5 =
√

1−2λ2 +2δ2ν2
2 +ν2

2 , θ6 =
√

1−2ω2 +2ζ2τ2
2 + τ2

2 ,

θ7 =
√

1−2σψ3 +2σφ3µ2
3 +σ2µ2

3 , θ8 =
√

1−2λ3 +2δ3ν2
3 +ν2

3 ,

θ9 =
√

1−2ω3 +2ζ3τ2
3 + τ2

3 .

Then the sequences {xn}, {yn} and {zn} generated by Algorithm 1, converges strongly to x∗,y∗

and z∗, respectively.

Proof. Since x∗, y∗ and z∗ are solution to the SGENVI problem (1), we have from (5) that

z∗ = (1− γn)z∗+ γn {z∗−g3(z∗)+PK [h3(x∗)−σ (T3(x∗,y∗,z∗))]} ,

y∗ = (1−βn)y∗+βn {y∗−g2(y∗)+PK [h2(z∗)−η (T2(z∗,x∗,y∗))]} ,

x∗ = (1−αn)x∗+αn {x∗−g1(x∗)+PK [h1(y∗)−ρ (T1(y∗,z∗,x∗))]} .
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In view of (6), we obtain that

‖xn+1− x∗‖= ‖(1−αn)xn +αn {xn−g1(xn)+PK [h1(yn)−ρ (T1(yn,zn,xn))]}− x∗‖

= ‖(1−αn)xn +αn {xn−g1(xn)+PK [h1(yn)−ρ (T1(yn,zn,xn))]}

− [(1−αn)x∗+αn {x∗−g1(x∗)+PK [h1(y∗)−ρ (T1(y∗,z∗,x∗))]}]‖

≤ (1−αn)‖xn− x∗‖+αn ‖xn− x∗−{g1(xn)−g1(x∗)}‖

+αn ‖PK [h1(yn)−ρ (T1(yn,zn,xn))]−PK [h1(y∗)−ρ (T1(y∗,z∗,x∗))]‖

≤ (1−αn)‖xn− x∗‖+αn ‖xn− x∗−{g1(xn)−g1(x∗)}‖

+αn ‖h1(yn)−h1(y∗)−ρ {T1(yn,zn,xn)−T1(y∗,z∗,x∗)}‖

≤ (1−αn)‖xn− x∗‖+αn ‖xn− x∗−{g1(xn)−g1(x∗)}‖

+αn ‖yn− y∗−{h1(yn)−h1(y∗)}‖

+αn ‖yn− y∗−ρ {T1(yn,zn,xn)−T1(y∗,z∗,x∗)}‖(9)

By the assumption that T1 is relaxed (φ1,ψ1)-cocoercive and µ1-Lipschitz continuous in the first

variable, we obtain

‖yn− y∗−ρ {T1(yn,zn,xn)−T1(y∗,z∗,x∗)}‖2

= ‖yn− y∗‖2−2ρ 〈T1(yn,zn,xn)−T1(y∗,z∗,x∗),yn− y∗〉

+ρ
2 ‖T1(yn,zn,xn)−T1(y∗,z∗,x∗)‖2

≤ ‖yn− y∗‖2−2ρ

{
−φ1 ‖T1(yn,zn,xn)−T1(y∗,z∗,x∗)‖2 +ψ1 ‖yn− y∗‖2

}
+ρ

2
µ

2
1 ‖yn− y∗‖2

≤ ‖yn− y∗‖2 +2ρφ1µ
2
1 ‖yn− y∗‖2−2ρψ1 ‖yn− y∗‖2 +ρ

2
µ

2
1 ‖yn− y∗‖2

= (1−2ρψ1 +2ρφ1µ
2
1 +ρ

2
µ

2
1 )‖yn− y∗‖2

= θ
2
1 ‖yn− y∗‖2 ,(10)

where θ1 =
√

1−2ρψ1 +2ρφ1µ2
1 +ρ2µ2

1 .
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Also, since h1 is relaxed (δ1,λ1)-cocoercive and ν1-Lipschitz continuous, we have

‖yn− y∗− (h1(yn)−h1(y∗))‖2

= ‖yn− y∗‖2−2〈h1(yn)−h1(y∗),yn− y∗〉+‖h1(yn)−h1(y∗)‖2

≤ ‖yn− y∗‖2−2
{
−δ1 ‖h1(yn)−h1(y∗)‖2 +λ1 ‖yn− y∗‖2

}
+ν

2
1 ‖yn− y∗‖2

≤
(
1−2λ1 +2δ1ν

2
1 +ν

2
1
)
‖yn− y∗‖2

= θ
2
2 ‖yn− y∗‖2 ,(11)

where θ2 =
√

1−2λ1 +2δ1ν2
1 +ν2

1 .

Similarly, since g1 is relaxed (ζ1,ω1)-cocoercive and τ1-Lipschitz continuous, we have

‖xn− x∗−{g1(xn)−g1(x∗)}‖2

= ‖xn− x∗‖2−2〈g1(xn)−g1(x∗),xn− x∗〉+‖g1(xn)−g1(x∗)‖2

≤ ‖xn− x∗‖2−2
{
−ζ1 ‖g1(xn)−g1(x∗)‖2 +ω1 ‖xn− x∗‖2

}
+ τ

2
1 ‖xn− x∗‖2

≤
(
1−2ω1 +2ζ1τ

2
1 + τ

2
1
)
‖xn− x∗‖2

= θ
2
3 ‖xn− x∗‖2 ,(12)

where θ3 =
√

1−2ω1 +2ζ1τ2
1 + τ2

1 .

Substituting (10), (11) and (12) into (9), we get

‖xn+1− x∗‖ ≤ (1−αn +αnθ3)‖xn− x∗‖+αn(θ1 +θ2)‖yn− y∗‖

= (1−αn(1−θ3))‖xn− x∗‖+αn(θ1 +θ2)‖yn− y∗‖ .(13)
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Again, using (6), we obtain

‖yn+1− y∗‖ ≤ ‖(1−βn)yn +βn {yn−g2(yn)+PK [h2(zn)−η (T2(zn,xn,yn))]}− y∗‖

= ‖(1−βn)yn +βn {yn−g2(yn)+PK [h2(zn)−η (T2(zn,xn,yn))]}

− [(1−βn)y∗+βn {y∗−g2(y∗)+PK [h2(z∗)−η (T2(z∗,x∗,y∗))]}]‖

≤ (1−βn)‖yn− y∗‖+βn ‖yn− y∗−{g2(yn)−g2(y∗)}‖

+βn ‖PK [h2(zn)−η (T2(zn,xn,yn))]−PK [h2(z∗)−η (T2(z∗,x∗,y∗))]‖

≤ (1−βn)‖yn− y∗‖+βn ‖yn− y∗−{g2(yn)−g2(y∗)}‖

+βn ‖h2(zn)−h2(z∗)−η {T2(zn,xn,yn)−T2(z∗,x∗,y∗)}‖

≤ (1−βn)‖yn− y∗‖+βn ‖yn− y∗−{g2(yn)−g2(y∗)}‖

+βn ‖zn− z∗−{h2(zn)−h2(z∗)}‖

+βn ‖zn− z∗−η {T2(zn,xn,yn)−T2(z∗,x∗,y∗)}‖ .(14)

By the assumption that T2 is relaxed (φ2,ψ2)-cocoercive and µ2-Lipschitz continuous in the first

variable, we obtain

(15) ‖zn− z∗−η {T2(zn,xn,yn)−T2(z∗,x∗,y∗)}‖ ≤ θ4 ‖zn− z∗‖ ,

where θ4 =
√

1−2ηψ2 +2ηφ2µ2
2 +η2µ2

2 .

Since h2 is relaxed (δ2,λ2)-cocoercive and ν2-Lipschitz continuous, we have

(16) ‖zn− z∗−{h2(zn)−h2(z∗)}‖ ≤ θ5 ‖zn− z∗‖ ,

where θ5 =
√

1−2λ2 +2δ2ν2
2 +ν2

2 .

Similarly, since g2 is relaxed (ζ2,ω2)-cocoercive and τ2-Lipschitz continuous, we have

(17) ‖yn− y∗−{g2(yn)−g2(y∗)}‖ ≤ θ6 ‖yn− y∗‖ ,

where θ6 =
√

1−2ω2 +2ζ2τ2
2 + τ2

2 .
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Substituting (15), (16) and (17) into (14), we have

(18) ‖yn+1− y∗‖ ≤ (1−βn(1−θ6))‖yn− y∗‖+βn(θ4 +θ5)‖zn− z∗‖ .

Again, using (6), and the similar argument as above, we get that

(19) ‖zn+1− z∗‖ ≤ (1− γn(1−θ9))‖zn− z∗‖+ γn(θ7 +θ8)‖xn− x∗‖ ,

where

θ7 =
√

1−2σψ3 +2σφ3µ2
3 +σ2µ2

3 ,

θ8 =
√

1−2λ3 +2δ3ν2
3 +ν2

3 ,

θ9 =
√

1−2ω3 +2ζ3τ2
3 + τ2

3 .

From (13), (18) and (19), it follows that

‖xn+1− x∗‖+‖yn+1− y∗‖+‖zn+1− z∗‖

≤ [1−{αn(1−θ3)− γn(θ7 +θ8)}]‖xn− x∗‖

+[1−{βn(1−θ6)−αn(θ1 +θ2)}]‖yn− y∗‖

+[1−{γn(1−θ9)−βn(θ4 +θ5)}]‖zn− z∗‖

≤max{(1−Θ1n) ,(1−Θ2n) ,(1−Θ3n)} [‖xn− x∗‖+‖yn− y∗‖+‖zn− z∗‖] ,(20)

where

Θ1n = {αn(1−θ3)− γn(θ7 +θ8)} ,

Θ2n = {βn(1−θ6)−αn(θ1 +θ2)} ,

Θ3n = {γn(1−θ9)−βn(θ4 +θ5)} .

Now, define the norm ‖·‖1 on H×H×H by

‖(x,y,z)‖1 = ‖x‖+‖y‖+‖z‖ , ∀(x,y,z) ∈ H×H×H .
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Then (H×H×H,‖·‖1) is a Banach space. Hence, (20) implies that

‖(xn+1,yn+1,zn+1)− (x∗,y∗,z∗)‖1

≤max{(1−Θ1n) ,(1−Θ2n) ,(1−Θ3n)}‖(xn,yn,zn)− (x∗,y∗,z∗)‖1 .(21)

By assumption 0 ≤ αn,βn,γn ≤ 1 and Θ1,Θ2,Θ3 ≥ 0 such that ∑
∞
n=1 Θ1n = ∞, ∑

∞
n=1 Θ2n = ∞

and ∑
∞
n=1 Θ3n = ∞.

By Lemma 3, we get

lim
n→∞
‖(xn,yn,zn)− (x∗,y∗,z∗)‖1 = 0 .

Therefore, sequences {xn}, {yn}, {zn} converges to x∗, y∗ and z∗ respectively.

This completes the proof. �

From Theorem 4, we get the following results immediately :

Corollary 5. Let K be a closed convex subset of a real Hilbert space H. Let Ti : H×H×H→H

be a relaxed (φi,ψi)-cocoercive and µi-Lipschitz continuous in the first variable, gi : K→H be

a relaxed (ζi,ωi)-cocoercive and τi-Lipschitz continuous mapping. Suppose that x∗,y∗,z∗ ∈ H

are solutions of the problem (2) and {αn}, {βn}, {γn} are sequences in [0,1]. Assume that the

following conditions are satisfies:

(i) θ3, θ6, θ9 < 1 ,

(ii) Θ1n = αn(1−θ3)− γnθ7 ≥ 0, Θ2n = βn(1−θ6)−αnθ1 ≥ 0, and

Θ3n = γn(1−θ9)−βnθ4 ≥ 0,

(iii) ∑
∞
n=0 Θ1n = ∞, ∑

∞
n=0 Θ2n = ∞ and ∑

∞
n=0 Θ3n = ∞,

where

θ1 =
√

1−2ρψ1 +2ρφ1µ2
1 +ρ2µ2

1 , θ3 =
√

1−2ω1 +2ζ1τ2
1 + τ2

1 ,

θ4 =
√

1−2ηψ2 +2ηφ2µ2
2 +η2µ2

2 , θ6 =
√

1−2ω2 +2ζ2τ2
2 + τ2

2 ,

θ7 =
√

1−2σψ3 +2σφ3µ2
3 +σ2µ2

3 , θ9 =
√

1−2ω3 +2ζ3τ2
3 + τ2

3 .

Then the sequence {xn}, {yn} and {zn} generated by Algorithm 2, converges strongly to x∗,y∗

and z∗, respectively.
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Corollary 6. Let K be a closed convex subset of a real Hilbert space H. Let Ti : H×H×H→H

be a relaxed (φi,ψi)-cocoercive and µi-Lipschitz continuous in the first variable. Suppose that

x∗,y∗,z∗ ∈ H are solutions of the problem (3) and {αn}, {βn}, {γn} are sequences in [0,1].

Assume that the following conditions are satisfies:

(i) Θ1n = αn− γnθ7 ≥ 0, Θ2n = βn−αnθ1 ≥ 0, and Θ3n = γn−βnθ4 ≥ 0,

(ii) ∑
∞
n=0 Θ1n = ∞, ∑

∞
n=0 Θ2n = ∞ and ∑

∞
n=0 Θ3n = ∞,

where

θ1 =
√

1−2ρψ1 +2ρφ1µ2
1 +ρ2µ2

1 , θ4 =
√

1−2ηψ2 +2ηφ2µ2
2 +η2µ2

2 ,

θ7 =
√

1−2σψ3 +2σφ3µ2
3 +σ2µ2

3 .

Then the sequence {xn}, {yn} and {zn} generated by Algorithm 3, converges strongly to x∗,y∗

and z∗, respectively.

5. Algorithms for common elements

Now, we consider, based on the projection method, the approximation solvability of a system

of generalized extended nonlinear variational inequality problem with nine different mappings

which is also a common fixed point of three nonexpansive mappings in the framework of Hilbert

spaces.

We propose a general three-step model for the projection methods, which can be applied

to the convergence analysis of the approximation solvability of the SGENVI problem (1) and

common fixed point of three nonexpansive mappings.

Algorithm 4. For any x0,y0,z0 ∈K, compute the sequences {xn}, {yn} and {zn} by the iterative

process

(22)

zn+1 = (1− γn)zn + γnS3 {zn−g3(zn)+PK [h3(xn)−σ (T3(xn,yn,zn))]} ,

yn+1 = (1−βn)yn +βnS2 {yn−g2(yn)+PK [h2(zn)−η (T2(zn,xn,yn))]} ,

xn+1 = (1−αn)xn +αnS1 {xn−g1(xn)+PK [h1(yn)−ρ (T1(yn,zn,xn))]} ,
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where {αn}, {βn}, {γn} are sequences in [0,1] for all n ≥ 0 and S1,S2,S3 are nonexpansive

mappings.

If gi = hi for i = 1,2,3 then the Algorithm 4 reduces to the following

Algorithm 5. For any x0,y0,z0 ∈H, compute the sequences {xn}, {yn} and {zn} by the iterative

process

(23)

zn+1 = (1− γn)zn + γnS3 {zn−g3(zn)+PK [g3(xn)−σ (T3(xn,yn,zn))]} ,

yn+1 = (1−βn)yn +βnS2 {yn−g2(yn)+PK [g2(zn)−η (T2(zn,xn,yn))]} ,

xn+1 = (1−αn)xn +αnS1 {xn−g1(xn)+PK [g1(yn)−ρ (T1(yn,zn,xn))]} ,

where {αn} ,{βn}, {γn} are sequences in [0,1] for all n ≥ 0 and S1,S2,S3 are nonexpansive

mappings.

If gi = hi =identity operator, for i = 1,2,3 then the Algorithm 4 reduces to the following

Algorithm 6. For any x0,y0,z0 ∈H, compute the sequences {xn}, {yn} and {zn} by the iterative

process

(24)

zn+1 = (1− γn)zn + γnS3PK [xn−σ (T3(xn,yn,zn))] ,

yn+1 = (1−βn)yn +βnS2PK [zn−η (T2(zn,xn,yn))] ,

xn+1 = (1−αn)xn +αnS1PK [yn−ρ (T1(yn,zn,xn))] ,

where {αn} ,{βn}, {γn} are sequences in [0,1] for all n ≥ 0 and S1,S2,S3 are nonexpansive

mappings.

Theorem 7. Let K be a closed convex subset of a real Hilbert space H. For i = 1,2,3, let Ti, gi,

hi be as in Theorem 4 and Si : K→ K be a nonexpansive mapping. Suppose that x∗,y∗,z∗ ∈ H

are solutions of the SGENVI problem (1) also x∗,y∗,z∗ ∈ ∩3
i=1F(Si) and {αn}, {βn}, {γn} are

sequences in [0,1]. Assume that the conditions (i), (ii) and (iii) of Theorem 4 are satisfied. Then

the sequence {xn}, {yn} and {zn} generated by Algorithm 4, converges strongly to x∗,y∗ and z∗,

respectively.
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Proof. Since x∗, y∗ and z∗ are common elements of the set of solution to the SGENVI problem

(1) and the set of common fixed points of S1,S2 and S3, we have from (5) that

z∗ = S3 {z∗−g3(z∗)+PK [h3(x∗)−σ (T3(x∗,y∗,z∗))]} ,

y∗ = S2 {y∗−g2(y∗)+PK [h2(z∗)−η (T2(z∗,x∗,y∗))]} ,

x∗ = S3 {x∗−g1(x∗)+PK [h1(y∗)−ρ (T1(y∗,z∗,x∗))]} .

Therefore,

z∗ = (1− γn)z∗+ γnS3 {z∗−g3(z∗)+PK [h3(x∗)−σ (T3(x∗,y∗,z∗))]} ,

y∗ = (1−βn)y∗+βnS2 {y∗−g2(y∗)+PK [h2(z∗)−η (T2(z∗,x∗,y∗))]} ,

x∗ = (1−αn)x∗+αnS1 {x∗−g1(x∗)+PK [h1(y∗)−ρ (T1(y∗,z∗,x∗))]} .

Using (22), we obtain

‖xn+1− x∗‖= ‖(1−αn)xn +αnS1 {xn−g1(xn)+PK [h1(yn)−ρ (T1(yn,zn,xn))]}− x∗‖

= ‖(1−αn)xn +αn {xn−g1(xn)+PK [h1(yn)−ρ (T1(yn,zn,xn))]}

− [(1−αn)x∗+αnS1 {x∗−g1(x∗)+PK [h1(y∗)−ρ (T1(y∗,z∗,x∗))]}]‖

≤ (1−αn)‖xn− x∗‖+αn ‖S1 {xn−g1(xn)+PK [h1(yn)−ρ (T1(yn,zn,xn))]}

+ S1 {x∗−g1(x∗)+PK [h1(y∗)−ρ (T1(y∗,z∗,x∗))]}‖

≤ (1−αn)‖xn− x∗‖+αn ‖{xn−g1(xn)+PK [h1(yn)−ρ (T1(yn,zn,xn))]}

+ {x∗−g1(x∗)+PK [h1(y∗)−ρ (T1(y∗,z∗,x∗))]}‖

≤ (1−αn)‖xn− x∗‖+αn ‖xn− x∗−{g1(xn)−g1(x∗)}‖

+αn ‖PK [h1(yn)−ρ (T1(yn,zn,xn))]−PK [h1(y∗)−ρ (T1(y∗,z∗,x∗))]‖

≤ (1−αn)‖xn− x∗‖+αn ‖xn− x∗−{g1(xn)−g1(x∗)}‖

+αn ‖h1(yn)−h1(y∗)−ρ {T1(yn,zn,xn)−T1(y∗,z∗,x∗)}‖

≤ (1−αn)‖xn− x∗‖+αn ‖xn− x∗−{g1(xn)−g1(x∗)}‖

+αn ‖yn− y∗−{h1(yn)−h1(y∗)}‖

+αn ‖yn− y∗−ρ {T1(yn,zn,xn)−T1(y∗,z∗,x∗)}‖ .(25)
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Using (10), (11) and (12), we get from (25), that

‖xn+1− x∗‖ ≤ (1−αn(1−θ3))‖xn− x∗‖+αn(θ1 +θ2)‖yn− y∗‖ ,(26)

In a similar way, we get

(27) ‖yn+1− y∗‖ ≤ (1−βn(1−θ6))‖yn− y∗‖+βn(θ4 +θ5)‖zn− z∗‖ ,

and

(28) ‖zn+1− z∗‖ ≤ (1− γn(1−θ9))‖zn− z∗‖+ γn(θ7 +θ8)‖xn− x∗‖ ,

where θi, i = 1,2, . . . ,9 are as in Theorem 4.

Using the arguments as in the proof of Theorem 4, we get that, sequences {xn}, {yn}, {zn}

converges to x∗, y∗ and z∗. respectively.

�

We immediately obtain following results from the Theorem 7.

Corollary 8. Let K be a closed convex subset of a real Hilbert space H. For i = 1,2,3, let Ti,

gi be as in Theorem 4 and Si : K→ K be a nonexpansive mapping. Suppose that x∗,y∗,z∗ ∈ H

are solutions of the problem (2) also x∗,y∗,z∗ ∈ ∩3
i=1F(Si) and {αn}, {βn}, {γn} are sequences

in [0,1]. Assume that the conditions (i), (ii) and (iii) of Corollary 5 are satisfied. Then the

sequence {xn}, {yn} and {zn} generated by Algorithm 5, converges strongly to x∗,y∗ and z∗,

respectively.

Corollary 9. Let K be a closed convex subset of a real Hilbert space H. For i = 1,2,3, let Ti

be as in Theorem 4 and Si : K→ K be a nonexpansive mapping. Suppose that x∗,y∗,z∗ ∈H are

solutions of the problem (3) also x∗,y∗,z∗ ∈ ∩3
i=1F(Si) and {αn}, {βn}, {γn} are sequences in

[0,1]. Assume that the conditions (i) and (ii) of Corollary 6 are satisfied. Then the sequence

{xn}, {yn} and {zn} generated by Algorithm 6, converges strongly to x∗,y∗ and z∗, respectively.

6. Conclusion
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In this paper, we have introduced and considered a new system of generalized extended non-

linear variational inequalities involving three different trivariate operators and six univariate

operators. We have established the equivalence between generalized extended nonlinear vari-

ational inequality and fixed point problem using projection mapping. Using this equivalence,

we suggest and analyze some iterative methods for approximate solvability of the system of

generalized extended nonlinear variational inequalities. Iterative methods to find common ele-

ment of fixed point set of three different nonexpansive mapping and solution set of the system

of generalized extended nonlinear variational inequalities has also been studied and analyzed.

Several special cases are as well discussed.
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