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1. Introduction and Preliminaries 

In 2007 Huang and Zhang [8] have generalized the concept of a metric space, replacing the set of 

real numbers by an ordered Banach space and obtained some fixed point theorems for mapping 

satisfying different contractive conditions. Subsequently, many authors have established and 

extended different types of contractive mappings in cone metric spaces, see for instance 

[3],[4],[6],[7],[11] and [12].  The author [3] proved fixed point theorems for mappings satisfying 

generalized contractive condition in cone metric spaces. 

The purpose of this paper is to extend and improve the fixed point theorems of [3,8,12]. 

We recall some definitions of cone metric spaces and some of their properties. 
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Definition 1.1 :Let (   ) be a topological vector space and    .  Then   is called a cone 

whenever  

 

(a)    is closed, non-empty and   { }  

(b)         for all       and non-negative real numbers      

(c)     and            (  )  { }  

 

Given a cone      a partial ordering is defined as   with respect to  , by     if and only 

if     .  We write    to indicate that    but    . 

For          y stand for            where      is the interior of     

 

Definition 1.2 (See[8]): Let   be a non-empty set, a mapping          is called cone 

metric on   if the following conditions are satisfied: 

 

(d1)    (   )for all        and  (   )    if and only if    ; 

(d2)  (   )   (   )for all        

(d3)  (   )   (   )   (   )for all          

From now on, we assume that  is a normed space,   is a cone in  with     ( )    and   is a 

partial ordering with respect to    and (   ) is called cone metric space. 

Definition 1.3 (See[8]): Let (   ) be a cone metric space and {  }be a sequence of points of     

Then 

(i) {  } converges to     and denoted by                    if for any 

      ( )  there exists   such that for all      (     )     
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(ii) {  }is called Cauchy if for every        ( )  there exists   such that for all 

       (     )   . 

(iii) (   )iscomplete if every Cauchy sequence in    is convergent. 

Definition 1.4 (See[3]): A function       is called  - increasing if, for each           

if and only if  ( )   ( ). 

Let       be a function such that 

(F1)   ( )    if and only if      

(F2)    is    increasing; 

(F3)    is surjective. 

We denote by  (   ) the family of functions satisfying (  ) (  )     (  )  

Lemma 1.1(See[4]): Let E be a topological vector space.  If      and       then for each 

       ( ) there exists N such that      for all n>N. 

2.Fixed Point Theorems 

Theorem 2.1:Let (X,d) be a complete cone metric space.  Suppose that a mapping      

satisfies 

 ( (     ))   { ( (    )   (   )   (    ))} ……………..(2.1) 

For all        where   [  
 

 
)        (   ) such that 

(1) F is sub-additive; 

(2) If, for {  }           (  )                     

 

Then    has a unique fixed common point in  . For each   , the iterativesequence{   }is  

convergent to the fixed point. 

Proof: Let each     befixed.  Let       and` let          
      for all      . 
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From (2.1) with      and          we have 

 

 ( (       ))   ( (         )) 

  { ( (      )   (       )   (          ))} 

  { ( (       )   (       )   (       ))}  

Which implies 

 ( (       ))    ( (       ))for all     

Where   
  

   
. 

Hence 

 ( (       ))    ( (       ))   
  ( (         )) 

                             - - - - - -    ( (     )). 

 

We now show that {  } is a Cauchy sequence in    

For      we have 

 ( (     ))   ( (       )   (         )        

      (       )) 

       ( (         ))   ( (         ))          

       ( (       )) 

    ( (     ))   
    ( (     ))         

            ( (     )) 

     
  

   
 ( (     ))   . 
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Hence           (     )    by (ii).  Applying Lemma 1.1, {  } is a Cauchy sequence in  .  

Since   is complete, there exists     such that             

Let       ( ) be given.  We can choose     such that  

 (       )     (
 (   )

  
)and 

 (     )     (
 (   )

 
)for all      

By (F2) and (F3), 

 ( (       ))  
 (   )

  
and 

 ( (    ))  
 (   )

 
for all    . 

Then we have  

 ( (    ))   ( (        )   (       )) 

  { ( (          )   (      )   (    ))} 

  ( (    )) 

    { ( (       )   (      )   (    ))} 

  ( (    )) 

Hence wehave 

 ( (    ))  
 

   
 ( (       ))  

 

   
 ( (      ))+

 

   
 ( (    )) 

                        
 

 
 
 

 
 
 

 
  . 

Thus,  ( (    ))  
 

 
 for all       and so 

 

 
  ( (    ))   .  Since

 

 
  and P is 

closed,  ( (    ))   . Hence  ( (    ))     
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By (  )  (    )    and so        

Assume that u is another fixed point of  T. 

Then from (2.1) ,we have 

   ( (   ))   ( (     )) 

  { ( (    )   (   )   (    ))} 

  { ( (   )   (   )   (   ))} 

 ( (   ))    ( (   )) 

Which implies     

Therefore,   has a unique fixed point in  .  

Theorem 2.2: Let (   )  be a complete cone metric space. Suppose that a mapping       

satisfies 

 ( (     ))   { ( (    )   (   )   (    ))} ……………..(2.2) 

For all        where   [  
 

 
)        (   ) such that 

(1) F is sub-additive; 

(2) If, for  {  }           (   )    then             

 

Then    has a unique fixed point in  .  For each    , the iterative sequence{   }is convergent 

to the fixed point. 

Proof: Let           be fixed. Let       and let           
      for all   . 

 From (2.2) with     and       ,  we have 

 ( (       ))   ( (         )) 
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     { ( (          )   (         )   (          ))} 

                    { ( (           )   (         )   (       ))} 

  { ( (           ))}   { ( (         ))} 

 

Which implies 

 ( (       ))    ( (       ))for all    , 

Where  
  

   
. 

Hence, 

 ( (       ))    ( (       ))   
  ( (         )) 

                                - - - - - -    ( (     )). 

We now show that {  } is a Cauchy sequence in X. 

For    ,  we have 

 ( (     ))   ( (       )   (         )      

                           - - - -    (       ))  

 

  ( (       ))   ( (         ))      

          - - - - - + ( (        ))  

 

    ( (     ))   
    ( (  ,  ))      

                       - - - - -        ( (     )) 

 

 
  

   
 ( (     ))   . 
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Hence          (     )    by (ii).  Applying Lemma 1.1, {  } is a Cauchy sequence in   .  

Since   is complete, there exists     such that             

Let       ( ) be given.  We can choose     such that  

 (    )     (
 (   )

 
)for all n>N 

By (F2) and (F3), 

 ( (    ))  
 (   )

 
for all    . 

Then we have  

 ( (    ))   ( (        )   (       )) 

  { ( (       )   (      )   (       ))} 

  ( (    )) 

    { ( (    )   (      )   (       ))} 

  ( (    )) 

  { ( (    )   (      )   (      )   (    ))} 

  ( (    )) 

Hence we have, 

(   ) ( (    ))     ( (      ))    ( (    )) 

           ( (    )) 

                     ( (    ))  
  

   
  ( (      ))  

 

   
 ( (    ))+

 

   
 ( (    )) 
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  . 

 

Thus,  ( (    ))  
 

 
 for all      and so

 

 
  ( (    ))   .  Since 

 

 
   and P is closed, 

  ( (    ))   . Hence  ( (    ))     

By (  )  (    )    and so        

Assume thatu is another fixed point of  T. 

Then from (2.2) ,we have   

   ( (   ))   ( (     )) 

  { ( (    )   (   )   (    ))} 

  { ( (   )   (   )   (   ))} 

    ( (   )) 

Hence  (   )   and so     

Therefore,the fixed pointof T is unique.  
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