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Abstract. The aim of the present paper is to establish a fixed point theorem for six set-valued mappings in three

complete Menger spaces. The results presented in this article mainly generalize the corresponding results in [1].
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1. Introduction

The literature in related fixed point theorems have been developed by many authors; [1], [2],

[4]-[9] and the references therein. The result of Fisher on two metric spaces [4] was generalized

to three metric spaces by Jain, Sahu and Fisher [8]. The result in [8] was generalized to set-

valued mapings by Jain and Fisher [7]. Recently Beg and Chauhan extended the result in [7] in

Menger spaces and obtained related fixed point theorems for three mappings; for more details,

see [1]. In this paper, a related fixed point theorem for six set-valued mapings in three Menger

spaces is obtained based on the result in [1].

2. Preliminaries
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In this paper, we always use R to denote the set of real numbers and R+ to denote the set of

non-negative real numbers. Next, we give some definitions and lemmas which play an important

role in this paper.

Definition 2.1. A mapping F : R→ R+ is called a distribution function if it is non-decreasing

and left continuous with inft∈R F(t) = 0 and supt∈R F(t) = 1.Let D denotes the set of all dis-

tribution functions whereas H stands for specific distribution function(also known as Heaviside

function) defined as

H(t) =

 0, t ≤ 0;

1, t > 0.

Definition 2.2. A PM-space is an ordered pair (X ,F)consisting of non- empty set Xand a

mapping F from X×X into D.The value of F at (x,y) ∈ X is represented by Fx,y.The functions

Fx,yare assumed to satisfy the following conditions:

(i) Fx,y(t) = 1 for all t > 0 if and only if x = y;

(ii) Fx,y(0) = 0;

(iii) Fx,y(t) = Fy,x(t);

(iv) if Fx,y(t) = 1 and Fy,z(s) = 1,then Fx,z(t + s) = 1for all x,y ∈ X and t,s≥ 0.

Every metric (X ,d) space can always be realized as a PM-space by considering F from X×X

into D as Fu,v(s) = H(s−d(u,v)) for all u,v ∈ X .

Definition 2.3. A mapping ∆ : [0,1]× [0,1]→ [0,1] is called a triangular norm (briefly t-norm)

if the following conditions are satisfied:

(i) ∆(a,1) = a f or all a ∈ [0,1];

(ii) ∆(a,b) = ∆(b,a);

(iii) ∆(c,d)≥ ∆(a,b) for c≥ a,d ≥ b;

(iv) ∆(∆(a,b),c) = ∆(a,∆(b,c)) for all a,b,c,d ∈ [0,1].

Examples of t-norm are ∆(a,b) = min(a,b), ∆(a,b) = ab and ∆(a,b) = min(a+ b− 1,0)

etc.
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Definition 2.4. A Menger space is a triplet(X ,F,∆),where(X ,F)is a PM-space,∆is t-norm and

the following condition hold:

Fx,z(t + s)≥ ∆(Fx,y(t),Fy,z(s)),∀x,y,z ∈ X , t,s≥ 0.

Definition 2.5. A sequence {pn}in a Menger space (X ,F,∆) is said to converge to a point p

in X if for every ε > 0 and λ > 0,there is an integer N(ε,λ ) such that Fpn,p(ε) > 1−λ ,for all

n ≥ N(ε,λ ).The sequence is said to be Cauchy sequence if for every ε > 0 and λ > 0,there is

an integer N(ε,λ ) such that Fpn,pm(ε)> 1−λ , for all n,m≥ N(ε,λ ).

Throughout this paper, B(X) is denoted by the set of all non-empty bounded subsets of

Menger space X .

For all A,B ∈ B(X) and for all t > 0, we define

δFA,B(t) = inf{Fa,b(t) : a ∈ A,b ∈ B}.

If A = {a}, then δFA,B(t) = δFa,B(t).

If we have also B = {b}, then δFA,B(t) = Fa,b(t).

It follows from the definition that δFA,B(t) = 1⇔ A = B = {a}.

Let {An} be a sequence in B(X). we say that {An} δ -converges to a set A in X if for every

ε > 0 we have

lim
n→∞

δFAn,A(ε) = 1.

Lemma 2.1 [3] Let (X ,F,min) be a Menger space. Let A,G,H ∈ B(X). Then for t1, t2 > 0 we

have

δFA,H(t1 + t2)≥min{δFA,G(t1),δFG,H(t2)}.

Lemma 2.2 [10] Let (X ,F,min) be a Menger space. If the sequence {an} converges to a and

the sequence {bn} converges to b, then for t > 0 we have

liminf
n→∞

Fan,bn(t) = Fa,b(t).
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Lemma 2.3 [3] Let (X ,F,min) be a Menger space. If the sequence {An} δ -converges to a and

the sequence {Bn} δ -converges to b, then for t > 0 we have

liminf
n→∞

δFAn,Bn(t) = Fa,b(t).

3. Main result

Now, we are in a position to state the main results of the paper.

Theorem 3.1 Let (X ,F1,min), (Y,F2,min) and (Z,F3,min) be three complete Menger spaces.

If F and P are continuous mappings of X into B(Y ), G and Q are continuous mappings of Y

into B(Z) and H and R are mappings of Z into B(X) satisfying the inequalities

δ1F1HGFx,RQPx′(ct)≥min{F1x,x′(t),δ1F1x,HGFx(t),δ1F1x′,RQPx′(t),

δ3F3GFx,QPx′(t),δ2F2Fx,Px′(t)} (1)

δ2F2FRQy,PHGy′(ct)≥min{F2y,y′(t),δ2F2y,FRQy(t),δ2F2y′,PHGy′(t),

δ1F1RQy,HGy′(t),δ3F3Qy,Gy′(t)} (2)

δ3F3GFRz,QPHz′(ct)≥min{F3z,z′(t),δ3F3z,GFRz(t),δ3F3z′,QPHz′(t),

δ2F2FRz,PHz′(t),δ1F1Rz,Hz′(t)} (3)

for all x,x′in X,y,y′ in Y and z,z′ in Z and c ∈ (0,1), Then HGF and RQP has a unique fixed

point u in X, FRQ and PHG has a unique fixed point v in Y and GFR and QPH has a unique

fixed point w in Z. Further, Fu = Pu = {v},Gv = Qv = {w} and Hw = Rw = {u}.

Proof. Let x1 be an arbitrary point in X . Define sequences {xn} in X , {yn} in Y , {zn} in Z by

y2n+1 ∈ Fx2n+1, y2n+2 ∈ Px2n+2,

z2n+1 ∈ Gy2n+1, z2n+2 ∈ Qy2n+2,

x2n+2 ∈ Hz2n+1, x2n+3 ∈ Rz2n+2,
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for n = 0,1,2.... Using inequality (1), we get that

F1x2n+2,x2n+3(ct)≥ δ1F1RQPx2n+2,HGFx2n+1(ct)

≥min{F1x2n+2,x2n+1(t),δ1F1x2n+2,RQPx2n+2(t),δ1F1x2n+1,HGFx2n+1(t),

δ3F3QPx2n+2,GFx2n+1(t),δ2F2Px2n+2,Fx2n+1(t)}

≥min{δ1F1HGFx2n+1,RQPx2n(t),δ1F1HGFx2n+1,RQPx2n+2(t),

δ1F1RQPx2n,HGFx2n+1(t),

δ3F3QPHz2n+1,GFRz2n(t),δ2F2PHGy2n+1,FRQy2n(t)}

≥min{δ1F1HGFx2n+1,RQPx2n(t),δ3F3QPHz2n+1,GFRz2n(t),

δ2F2PHGy2n+1,FRQy2n(t)}.

(4)

In view of (2), we have

F2y2n+2,y2n+3(ct)≥ δ2F2FRQy2n+2,PHGy2n+1(ct)

≥min{F2y2n+2,y2n+1(t),δ2F2y2n+2,FRQy2n+2(t),

δ2F2y2n+1,PHGy2n+1(t),δ1F1RQy2n+2,HGy2n+1(t),

δ3F3Qy2n+2,Gy2n+1(t)}

≥min{δ2F2PHGy2n+1,FRQy2n(t),δ2F2PHGy2n+1,FRQy2n+2(t),

δ2F2FRQy2n,PHGy2n+1(t),δ1F1RQPx2n+2,HGFx2n+1(t),

δ3F3QPHz2n+1,GFRz2n(t)}.

It follows from (4) that

F2y2n+2,y2n+3(ct)≥min{δ2F2PHGy2n+1,FRQy2n(t),δ1F1HGFx2n+1,RQPx2n(t),

δ3F3QPHz2n+1,GFRz2n(t)}.
(5)

Using inequality (3), we have

F3z2n+2,z2n+3(ct)≥ δ3F3GFRz2n+2,QPHz2n+1(ct)≥min{F3z2n+1,z2n+2(t),δ3F3z2n+2,GFRz2n+2(t),

δ3F3z2n+1,QPHz2n+1(t),δ2F2FRz2n+2,PHz2n+1(t),δ1F1Rz2n+2,Hz2n+1(t)}

≥min{δ3F3QPHz2n+1,GFRz2n(t),δ3F3QPHz2n+1,GFRz2n+2(t),

δ3F3GFRz2n,QPHz2n+1(t),δ2F2FRQy2n+2,PHGy2n+1(t),δ1F1RQPx2n+2,HGFx2n+1(t)}.
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In view of (4) and (5), we find that

F3z2n+2,z2n+3(ct)≥min{δ3F3QPHz2n+1,GFRz2n(t),δ2F2FRQy2n,PHGy2n+1(t),

δ1F1HGFx2n+1,RQPx2n(t)}
(6)

Combining (4), (5) and (6), we have

F1x2n+2,x2n+3(t)≥ δ1F1RQPx2n+2,HGFx2n+1(ct)≥min{δ1F1HGFx1,RQPx2(
t

c2n+1 ),

δ2F2PHGy1,FRQy2(
t

c2n+1 ),δ3F3QPHz1,GFRz2(
t

c2n+1 )} (7)

F2y2n+2,y2n+3(t)≥ δ2F2FRQy2n+2,PHGy2n+1(ct)≥min{δ1F1HGFx1,RQPx2(
t

c2n+1 ),

δ2F2PHGy1,FRQy2(
t

c2n+1 ),δ3F3QPHz1,GFRz2(
t

c2n+1 )} (8)

F3z2n+2,z2n+3(t)≥ δ3F3GFRz2n+2,QPHz2n+1(ct)≥min{δ1F1HGFx1,RQPx2(
t

c2n+1 ),

δ2F2FRQy2,PHGy1(
t

c2n+1 ),δ3F3QPHz1,GFRz2(
t

c2n+1 )} (9)

Now for r = 2,4,6.. and m≥ n, we from Lemma 2.1 find that

F1x2n+r,x2m+r+1(ε)≥ δ1F1RQPx2m+r,HGFx2n+r−1(ε)≥ min{δ1F1HGFx2n+r−1,RQPx2n+r(ε− cε),

δ1F1RQPx2n+r,RQPx2m+r(cε)}

It follows from (7) that

≥min{δ1F1HGFx1,RQPx2(
ε−cε

c2n+r−2 ),δ2F2PHGy1,FRQy2(
ε−cε

c2n+r−2 ),

δ3F3QPHz1,GFRz2(
ε−cε

c2n+r−2 )},min{F1RQPx2n+r,HGFx2n+r+1(cε− c2ε),

F1HGFx2n+r+1,RQPx2m+r(c
2ε)}}

≥min{δ1F1HGFx1,RQPx2(
ε−cε

c2n+r−2 ),δ2F2PHGy1,FRQy2(
ε−cε

c2n+r−2 ),

δ3F3QPHz1,GFRz2(
ε−cε

c2n+r−2 )},min{δ1F1HGFx1,RQPx2(
cε−c2ε

c2n+r−1 ),δ2F2PHGy1,FRQy2(
cε−c2ε

c2n+r−1 ),

δ3F3QPHz1,GFRz2(
cε−c2ε

c2n+r−1 )},F1HGFx2n+r+1,RQPx2m+r(c
2ε)}}

≥min{δ1F1HGFx1,RQPx2(
ε−cε

c2n+r−2 ),δ2F2PHGy1,FRQy2(
ε−cε

c2n+r−2 ),

δ3F3QPHz1,GFRz2(
ε−cε

c2n+r−2 ),F1HGFx2n+r+1,RQPx2m+r(c
2ε)}}

Continuing in this process, we have

≥min{δ1F1HGFx1,RQPx2(
ε−cε

c2n+r−2 ),δ2F2PHGy1,FRQy2(
ε−cε

c2n+r−2 ),
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δ3F3QPHz1,GFRz2(
ε−cε

c2n+r−2 ),F1HGFx2m+r−1,RQPx2m+r(c
2m−2nε)}}

≥min{δ1F1HGFx1,RQPx2(
ε−cε

c2n+r−2 ),δ2F2PHGy1,FRQy2(
ε−cε

c2n+r−2 ),

δ3F3QPHz1,GFRz2(
ε−cε

c2n+r−2 ),δ1F1HGFx1,RQPx2(
c2m−2nε

c2m+r−2 ),

δ2F2PHGy1,FRQy2(
c2m−2nε

c2m+r−2 ),δ3F3QPHz1,GFRz2(
c2m−2nε

c2m+r−2 )}

≥min{δ1F1HGFx1,RQPx2(
ε−cε

c2n+r−2 ),δ2F2PHGy1,FRQy2(
ε−cε

c2n+r−2 ),

δ3F3QPHz1,GFRz2(
ε−cε

c2n+r−2 )}

Now for n greater than some N we can have some λ > 0 such that

F1x2n+r,x2m+r+1(ε)≥ δ1F1RQPx2m+r,HGFx2n+r−1(ε)≥ 1−λ ,n≥ N. (10)

This show {xn} is a Cauchy sequence in complete Menger space X .Let it converges to some

point u in X .Similarly,we can show sequences {yn} and {zn} are Cauchy sequences with limits

v and w in complete Menger spaces Y and Z respectively. It follows from (10) that

δ1F1x2n+3,x2n+2(ε)≥ δ1F1RQPx2n+2,HGFx2n+1(ε)≥ 1−λ ,n≥ N.

This gives that

lim
n→∞

x2n+2 = lim
n→∞

x2n+3 = lim
n→∞

HGFx2n+1 = lim
n→∞

RQPx2n+2 = {u}

= lim
n→∞

HGy2n+1 = lim
n→∞

RQy2n+2.
(11)

Similarly we have

lim
n→∞

y2n+2 = lim
n→∞

y2n+3 = lim
n→∞

FRQy2n+2 = lim
n→∞

PHGy2n+1 = {v}

= lim
n→∞

FRz2n+2 = lim
n→∞

PHz2n+1

= lim
n→∞

Fx2n+3 = lim
n→∞

Px2n+2

(12)

and

lim
n→∞

z2n+2 = lim
n→∞

z2n+3 = lim
n→∞

GFRz2n+2 = lim
n→∞

QPHz2n+1 = {w}

= lim
n→∞

GFx2n+3 = lim
n→∞

QPx2n+2 = lim
n→∞

Gy2n+3 = lim
n→∞

Qy2n+2.
(13)

Notice that F , P, G and Q are continuous. From (12) and (23), we have

lim
n→∞

y2n+3 = Fu = Pu = {v}, (14)
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lim
n→∞

z2n+3 = Gv = Qv = {w}. (15)

Combining (14) with (15), we see that

GFu = GPu = QFu = QPu = Gv = Qv = {w}. (16)

In view of Lemma 2.3, we find from (1) that

δ1F1u,HGFu(ct) = liminf
n→∞

δ1F1x2n+3,HGFu(ct)

≥ liminf
n→∞

δ1F1RQPx2n+2,HGFu(ct)

≥ liminf
n→∞

min{F1x2n+2,u(t),δ1F1x2n+2,RQPx2n+2(t),δ1F1u,HGFu(t),

δ3F3QPx2n+2,GFu(t),δ2F2Px2n+2,Fu(t)}.

Using (11), (12), (13), (14), (16), Lemma 2.2 and Lemma 2.3, we have

δ1F1u,HGFu(ct)≥ δ1F1u,HGFu(t).

It gives that

HGFu = {u}. (17)

Again using Lemma 2.3 and from (1), we have

δ1F1u,RQPu(ct) = liminf
n→∞

δ1F1x2n+2,RQPu(ct)

≥ liminf
n→∞

δ1F1HGFx2n+1,RQPu(ct)

≥ liminf
n→∞

min{F1x2n+1,u(t),δ1F1x2n+1,HGFx2n+1(t),

δ1F1u,RQPu(t),δ3F3GFx2n+1,QPu(t),δ2F2Fx2n+1,Pu(t)}.

Using (11), (12), (13), (14), (16), Lemma 2.2 and Lemma 2.3, we have

δ1F1u,RQPu(ct)≥ δ1F1u,RQPu(t)

It gives RQPu = {u} (18)

By (17), (14) we have PHGv = PHGFu = Pu = {v}. (19)

By (18), (14) we have FRQv = FRQPu = Fu = {v}. (20)
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By (15), (20) we have GFRw = GFRQv = Gv = {w}.

By (15), (19) we have QPHw = QPHGv = Qv = {w}.

By (16), (17), (18) we have Hw = {u} and Rw = {u}.

Uniqueness of u:

Let u′be another fixed point different from u such that

HGFu′ = {u′}, RQPu′ = {u′}. (21)

From inequality (3) and using (21),we have

δ3F3GFu′,QPu′(ct) = δ3F3GFRQPu′,QPHGFu′(ct)

≥min{F3QPu′,GFu′(t),δ3F3GFu′,QPu′(t),

δ3F3GFu′,QPu′(t),δ2F2Fu′,Pu′(t),δ1F1u′,u′(t)}

≥ δ2F2Fu′,Pu′(t).

(22)

From inequality (2) and using (21), we have

δ2F2Fu′,Pu′(ct) = δ2F2FRQPu′,PHGFu′(ct)≥min{F2Pu′,Fu′(t),δ2F2Pu′,Fu′(t),

δ2F2Fu′,Pu′(t),δ1F1u′,u′(t),δ3F3QPu′,GFu′(t)}

≥ δ3F3QPu′,GFu′(t). (23)

From (22) and (23), we have

δ3F3GFu′,QPu′(t)≥ δ2F2Fu′,Pu′(
t
c)≥ δ3F3GFu′,QPu′(

t
c2 )≥ ....≥ δ3F3GFu′,QPu′(

t
c2k ).

Taking k→ ∞ where k = 1,2,3.. we have

δ3F3GFu′,QPu′(t)≥ 1

GFu′ = QPu′ and GFu’and QPu’ are singleton. (24)

Again from (22) and (23), we have

δ2F2Fu′,Pu′(t)≥ δ3F3QPu′,GFu′(
t
c)≥ δ2F2Fu′,Pu′(

t
c2 )≥ ....≥ δ2F2Fu′,Pu′(

t
c2k )
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Taking k→ ∞, we find

δ2F2Fu′,Pu′(t)≥ 1

Fu′ = Pu′ and Fu′and Pu′ are singleton (25)

Using (17) and (21) and from (1), we have

δ1F1u,u′(ct) = δ1F1HGFu,RQPu′(ct)≥ mini{F1u,u′(t),δ1F1u,HGFu(t),δ1F1u′,RQPu′(t),

δ3F3GFu,QPu′(t),δ2F2Fu,Pu′(t)}

Using (17) and (21), we have

≥ mini{δ3F3GFu,QPu′(t),δ2F2Fu,Pu′(t)} (26)

From (3) and Using (18) and (21),we have

δ3F3GFu,QPu′(ct) = δ3F3GFRQPu,QPHGFu′(ct)≥ mini{F3QPu,GFu′(t),δ3F3QPu,GFRQPu(t),

δ2F2FRQPu,PHGFu′(t),δ1F1RQPu,HGFu′(t),

δ3F3GFu′,QPHGFu′(t)}.

Using (16), (18), (21) and (24),we have

≥ mini{δ2F2Fu,Pu′(t),δ1F1u,u′(t)}. (27)

From (26) and (27),we have

δ1F1u,u′(ct)≥ δ2F2Fu,Pu′(t). (28)

From (2) and using (18) and (21), we have

δ2F2Fu,Pu′(ct)≥ mini{F2Pu,Fu′(t),δ2F2Pu,FRQPu(t),δ2F2Fu′,PHGFu′(t),

δ1F1RQPu,HGFu′(t),δ3F3QPu,GFu′(t)}.

Using (14), (18), (25) and (21), we have

≥ mini{δ1F1u,u′(t),δ3F3QPu,GFu′(t)}.

Using (16) and (24), we have
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δ2F2Fu,Pu′(ct)≥mini{δ1F1u,u′(t),δ3F3GFu,QPu′(t)} (29)

Using (29) in (27), we have

δ3F3GFu,QPu′(ct)≥ δ1F1u,u′(t). (30)

From (29) and (30), we have

δ2F2Fu,Pu′(ct)≥ δ1F1u,u′(t). (31)

From (28), (31), we have

δ1F1u,u′(ct)≥ δ1F1u,u′(t).

This gives u = u′. Hence u is unique. Similarly uniqueness of v and w can be proved.

Remark 3.2. If we put F = P,G = Q,H = R in Theorem 3.1, then we get result of Beg and

Chauhan [1] immediately.
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