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Abstract. In this paper we propose a new definition of topological sequence entropy for continuous maps on

arbitrary topological spaces (compactness, metrizability, even axioms of separation not necessarily required), in-

vestigate fundamental properties of the new sequence entropy, and compare the new sequence entropy with the

existing ones. The defined sequence entropy generates that of Goodman. Yet, it holds various basic properties of

Goodman’s sequence entropy, e.g., the sequence entropy of a subsystem is bounded by that of the original system,

topologically conjugated systems have a same sequence entropy, the sequence entropy of the induced hyperspace

system is larger than or equal to that of the original system, and in particular this new sequence entropy coincides

with Goodman’s sequence entropy for compact systems.
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1. Introduction

The concepts of entropy are useful for studying topological and measure-theoretic structures

of dynamical systems, i.e., topological entropy (see [1, 3, 4]) and measure-theoretic entropy
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(see [8, 16]). For instance, two conjugate systems have a same entropy and thus entropy is

a numerical invariant of the class of conjugated dynamical systems. The theory of expansive

dynamical systems has been closely related to the theory of topological entropy [5, 15, 24].

Entropy and chaos are closely related, e.g., a continuous map of interval is chaotic if and only

if it has a positive topological entropy [2].

In [18], Kushnirenko extended the definition of the entropy of a measure preserving trans-

formation to give a new invariant: sequence entropy. Newton [23] and Goodman [11] further

extended the concept of topological entropy of a continuous map and gave the concept of topo-

logical sequence entropy for compact dynamical systems. Franzová and Smı́tal [10] studied

the relationship between Li-Yorke chaos [20] and topological sequence entropy for the contin-

uous map of the interval and gave “the map is Li-Yorke chaos if and only if there exists an

increasing sequence of nonnegative integers such that it has the positive topological sequence

entropy”. Hric [12, 13] discussed topological sequence entropy for maps of the interval and the

circle. Cánovas [6] discussed topological sequence entropy of piecewise monotonic mappings

and gave a full classification of piecewise monotonic maps from the point of view of the topo-

logical sequence entropy. Li [19] studied the characterisation of topologically weak mixing by

using the topological sequence entropy.

This paper investigates a more general definition of topological sequence entropy for con-

tinuous maps defined on arbitrary topological spaces (compactness, metrizability, even axioms

of separation not necessarily required), and explore the properties of such a topological se-

quence entropy. This definition generalizes that of Goodman’s. Moreover, we have proved that

the topological sequence entropy defined in this paper holds most properties of the topological

sequence entropy under Goodman’s definition, e.g., for compact systems, this new sequence en-

tropy coincides with the sequence entropy defined by Goodman’s, the defined sequence entropy

(over arbitrary topological spaces) either retains the fundamental properties of sequence entropy

(over compact or metric spaces) or has similar properties, the topological sequence entropy of

a subsystem is bounded by that of the original system, topologically conjugated systems have a
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same topological sequence entropy, the topological sequence entropy of an autohomeomorphis-

m from R onto itself is 0 if the sequence is an increasing sequence of nonnegative integers, and

the sequence entropy of the induced hyperspace map is at least that of the original mapping.

2. The new definition of topological sequence entropy and its relations with
other definitions

2.1. The new definition of topological sequence entropy

Let X be an arbitrary topological space and f : X → X be a continuous mapping. Then the

pair (X , f ) is said to be a topological dynamical system. If X is compact, (X , f ) is called a

compact dynamical system.

For compact topological dynamical systems, Goodman introduced the concept of topological

sequence entropy and studied its properties [11]. Their definition is as follows:

Definition 2.1. Let X be a compact topological space and f : X → X be a continuous map.

For any open cover α of X , denote by NX(α) the smallest cardinality of all subcovers of α .

Let HX(α) = logNX(α) and T = (ti : i = 1,2, · · ·) be a sequence of nonnegative integers. Then

hT ( f ,α,X) = lim
n→∞

sup 1
nHX(

n∨
i=0

f−ti(α)) is called the topological sequence entropy of f relative

to the cover α with respect to T , and hT ( f ) = hT ( f ,X) = sup
α

{hT ( f ,α,X)}, where the supre-

mum is taken over α of X , is called the topological sequence entropy of f with respect to T .

Now, we begin our process to introduce our new definition of topological sequence entropy.

Let (X , f ) be an arbitrary topological dynamical system, i.e., X is an arbitrary topological space

and f is a continuous map from X to itself. Let α be an open cover of X and F be a nonempty

compact subset of X invariant under f , i.e., f (F) ⊆ F . Denote N∗F(α) the smallest cardinality

of all subcovers (for F) of α , i.e., N∗F(α) = min{card(β ) : β is a subset of α and β covers F}.

As F is compact, N∗F(α) is a positive integer. Let H∗F(α) = logN∗F(α).

Let α and β be two open covers of X . Define their join by α ∨β = {U ∩V : U ∈ α,V ∈ β}.

Clearly, the join α ∨β remains an open cover of X . If for every element V of β , there exists an
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element U of α satisfying V ⊆U , then β is called a refinement of α , denoted by α ≺ β . Proofs

for the four properties below are straightforward from the definition of H∗F .

For convenience, we will take the following convention. If α is a cover of X , F is a subset of

X , and a subcollection {Us : s ∈ S} of α forms a cover of F , then we will say that {Us : s ∈ S}

is a subcover (for F) of α . Alternatively, we say that for F , {Us ∈ α : s ∈ S} is a subcover of

α . Recall that a compact Hausdorff space is of course locally compact; but a compact non-

Hausdorff space need not be locally compact. When the Hausdorff property is not assumed, the

image of a compact subset under a continuous map is not necessarily a closed subset.

Property 2.1: H∗F(α)≥ 0.

Property 2.2: If α ≺ β , then H∗F(α)≤ H∗F(β ).

Property 2.3: H∗F(α ∨β )≤ H∗F(α)+H∗F(β ).

Property 2.4: H∗F( f−1(α))≤ H∗F(α). When f (F) = F , the equality holds.

Denote by K(X , f ) the set of all f−invariant nonempty compact subsets of X , i.e., K(X , f ) =

{F ⊆ X : F 6= /0,F is compact and f (F)⊆ F}. If X is compact, it follows from f (X) ⊆ X that

K(X , f ) 6= /0. However, when X is noncompact, K(X , f ) could be empty. The translation f :

R→ R defined by x 7→ x+1 is such an example. Another example is f : (0,∞)→ (0,∞) where

f (x) = 2x and (0,∞) has the subspace topology of R.

Definition 2.2. Let (X , f ) be a topological dynamical system and T = (ti : i = 1,2, · · ·) be

a sequence of nonnegative integers. For F ∈ K(X , f ) and any cover α of X , h∗T ( f ,α,F) =

lim
n→∞

sup 1
nH∗F(

n∨
i=0

f−ti(α)) is called the topological sequence entropy of f on F relative to α

with respect to T . h∗T ( f ,F) = sup
α

{h∗T ( f ,α,F)}, where the supremum is taken over α of X , is

called the topological sequence entropy of f on F with respect to T .

Lemma 2.1. Let (X , f ) be a topological dynamical system and T = (ti : i = 1,2, · · ·) be a

sequence of nonnegative integers. Let F be a nonempty compact subset of X invariant under f

and α be any open cover of X. Then h∗T ( f ,α,F) = hT ( f |F ,α|F ,F), where α|F = {U ∩F : U ∈

α} and f |F : F → F is the induced map of f , i.e., for any x ∈ F, f |F(x) = f (x).

Proof. Since h∗T ( f ,α,F) = lim
n→∞

sup 1
nH∗F(

n∨
j=1

f−t j(α)), hT ( f |F ,α|F ,F) = lim
n→∞

sup 1
nHF(

n∨
j=1

( f |F)−t j(α|F)), by Definitions 2.1 and 2.2, it suffices to show N∗F(
n∨

j=1
f−t j(α))=NF(

n∨
j=1

( f |F)−t j
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(α|F)). Let NF(
n∨

j=1
( f |F)−t j(α|F)) = m. Suppose that {U1,U2, · · · ,Um} is a finite subcov-

er (for F) of
n∨

j=1
( f |F)−t j(α|F). Without loss of generality, assume Ui =

n⋂
j=1

( f |F)−t j(Ui j ∩

F),Ui j ∈ α , (i = 1,2, · · · ,m). Denote Vi =
n⋂

j=1
f−t j(Ui j). Then Ui ⊆Vi, (i = 1,2, · · · ,m). Hence,

{V1,V2, · · · ,Vm} is a finite subcover (for F) of
n∨

j=1
f−t j(α). Therefore, N∗F(

n∨
j=1

f−t j(α)) ≤

NF(
n∨

j=1
( f |F)−t j(α|F)).

In order to complete the proof. we now show the reversed inequality N∗F(
n∨

j=1
f−t j(α)) ≥

NF(
n∨

j=1
( f |F)−t j(α|F)). Let N∗F(

n∨
j=1

f−t j(α)) = m. Suppose that {U1,U2, · · · ,Um} is a finite

subcover (for F) of
n∨

j=1
f−t j(α). Denote Ui =

n⋂
j=1

f−t j(Ui j),Ui j ∈ α , (i = 1,2, · · · ,m). As F ⊆
m⋃

i=1
Ui, we have

m⋃
i=1

(Ui ∩F) = (
m⋃

i=1
Ui)∩F = F . On the other hand, it follows from f (F) ⊆ F

that F ⊆ f−1(F) and consequently f ⊆ f− j(F), ( j = 0,1,2, · · ·). Since

Ui∩F = (
n⋂

j=1

f−t j(Ui j))∩F ⊆
n⋂

j=1

( f−t j(Ui j)∩ f−t j(F)) =
n⋂

j=1

f−t j(Ui j∩F),

we proved Ui∩F =
n⋂

j=1
( f−t j(Ui j∩F)∩F) =

n⋂
j=1

( f |F)−t j(Ui j∩F), which implies F =
m⋃

i=1

n⋂
j=1

( f |F)−t j(Ui j∩F). Hence, NF(
n∨

j=1
( f |F)−t j(α|F))≤ N∗F(

n∨
j=1

f−t j(α)).

Theorem 2.1. Let (X , f ) be a topological dynamical system and T = (ti : i = 1,2, · · ·) be a

sequence of nonnegative integers. Assume that X is Hausdorff. If F ∈ K(X , f ), then h∗T ( f ,F) =

hT ( f |F ,F).

Proof. Let αF be an open cover of F , where αF consists of open subsets of F . Since X is

Hausdorff and F is a compact subset of X , F is a closed subset of X . For every A ∈ αF , there

exists an open subset UA of X satisfying A = UA ∩F . Denote α ′ = {UA : A ∈ αF}. Clearly,

α = α ′∪ (X \F) is an open cover of X satisfying α|F = αF ∪{ /0}. Hence, every open cover αF

of F is a restriction α|F of some special open cover α of X that includes open subset X \F of

X . From Definition 2.1, we have

hT ( f ,F) = sup
αF

hT ( f |F ,αF ,F) = sup
α

hT ( f |F ,α|F ,F).
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From Definition 2.2, we have h∗T ( f ,F) = sup
β

h∗T ( f ,β ,F), where β runs over all open covers of

X . It follows from Lemma 2.1 that h∗T ( f ,α,F) = hT ( f |F ,α|F ,F), thus

hT ( f |F ,F) = sup
αF

hT ( f |F ,α|F ,F) = sup
α

h∗T ( f ,α,F).

Recall that the open covers α are some special open covers of X . Hence, we have sup
α

hT ( f ,α,F)

≤ h∗T ( f ,F), implying hT ( f |F ,F)≤ h∗T ( f ,F).

Next, we show the reversed inequality hT ( f |F ,F) ≥ h∗T ( f ,F). Let α be any open cover of

X . From Lemma 2.1, we have h∗T ( f ,α,F) = hT ( f |F ,α|F ,F) and thus from Definition 2.2,

h∗T ( f ,F) = sup
α

h∗T ( f ,α,F) = sup
α

hT ( f |F ,α|F ,F). As α|F are only some special open covers of

F , we have sup
α

hT ( f |F ,α|F ,F)≤ hT ( f |F ,F), which implies h∗T ( f ,F)≤ hT ( f |F ,F).

Theorem 2.2. Let (X , f ) be a topological dynamical system and T = (ti : i = 1,2, · · ·) be a

sequence of nonnegative integers. For F1,F2 ∈ K(X , f ) with F1 ⊆ F2, an open cover α of X, the

inequalities h∗T ( f ,α,F1)≤ h∗T ( f ,α,F2) and h∗T ( f ,F1)≤ h∗T ( f ,F2) hold.

Proof. Let α be any open cover of X . Denote N∗F2
(

n∨
j=1

f−t j(α)) = m. Let {U1,U2, · · · ,Um} be

such a subcover (for F2) of
n∨

j=1
f−t j(α) with the smallest cardinality m. As F1 is a subset of

F2, {U1,U2, · · · ,Um} is also a subcover (for F1) of
n∨

j=1
f−t j(α) implying N∗F1

(
n∨

j=1
f−t j(α))≤ m,

i.e., N∗F1
(

n∨
j=1

f−t j(α)) ≤ N∗F2
(

n∨
j=1

f−t j(α)) which implies H∗F1
(

n∨
j=1

f−t j(α)) ≤ H∗F2
(

n∨
j=1

f−t j(α)).

Hence,

h∗T ( f ,α,F1) = lim
n→∞

sup
1
n

H∗F1
(

n∨
j=1

f−t j(α))≤ lim
n→∞

sup
1
n

H∗F2
(

n∨
j=1

f−t j(α)) = h∗T ( f ,α,F2),

i.e., h∗T ( f ,α,F1)≤ h∗T ( f ,α,F2). The first inequality is thus proved. It follows from h∗T ( f ,F1) =

sup
α

{h∗T ( f ,α,F1)} and h∗T ( f ,F2) = sup
α

{h∗T ( f ,α,F2)} that the second inequality h∗T ( f ,F1) ≤

h∗T ( f ,F2) holds.

Definition 2.3. Let (X , f ) be a topological dynamical system and T = (ti : i = 1,2, · · ·) be

a sequence of nonnegative integers. When K(X , f ) 6= /0, define h∗T ( f ) = sup
F∈K(X , f )

{h∗T ( f ,F)}.

When K(X , f ) = /0, define h∗T ( f ) = 0. h∗T ( f ) is said to be the topological sequence entropy of f

with respect to T .
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2.2. The relations with other definitions

The next theorem indicates the concept of topological sequence entropy h∗T ( f ) with respect

to T defined above generates that of Goodman, i.e., h∗T ( f ) coincides with hT ( f ) with respect to

T when X is compact. Recall that hT ( f ) with respect to T is defined for compact dynamical

systems only while in the preceding section h∗T ( f ) with respect to T is defined for arbitrary

topological spaces.

Theorem 2.3. If (X , f ) is a compact topological dynamical system and T = (ti : i = 1,2, · · ·) is

a sequence of nonnegative integers, then h∗T ( f ) = hT ( f ,X).

Proof. Since X is compact and f (X) ⊆ X , we have X ∈ K(X , f ) implying K(X , f ) 6= /0. Thus

from Definition 2.3, h∗T ( f ) = sup
F∈K(X , f )

{h∗T ( f ,F)}. By Theorem 2.2, for any F ∈ K(X , f ), it

holds h∗T ( f ,F) ≤ h∗T ( f ,X), i.e., the supremum is achieved when F = X . By Lemma 2.1,

h∗T ( f ,α,X) = hT ( f ,α,X), where α is any open cover of X . Recall the definitions of h∗T ( f ,X)

and hT ( f ,X), i.e., h∗T ( f ,X) = sup
α

{h∗T ( f ,α,X)} and hT ( f ,X) = sup
α

{hT ( f ,α,X)}. Hence, we

have h∗T ( f ,X)= hT ( f ,X). So, from the previous proved equality h∗T ( f )= h∗T ( f ,X) we conclude

h∗T ( f ) = hT ( f ,X).

In [21] Liu, Wang and Wei gave the definition topological entropy for mappings on general

topological spaces. To compare the relationship between our definition and that given by [21],

we recall their definition.

Definition 2.4. [21] Let (X , f ) be a topological dynamical system. For F ∈ K(X , f ) and any

open cover α of X , ent∗( f ,α,F) = lim
n→∞

1
nHF(

n−1∨
i=0

f−i(α)) is called the topological entropy of f

on F relative to α , ent∗( f ,F) = sup
α

{ent∗( f ,α,F)}, where the supremum is taken over all open

covers α of X . When K(X , f ) 6= /0, define ent∗( f ) = sup
F∈K(X , f )

{ent∗( f ,F)}. When K(X , f ) = /0,

define ent∗( f ) = 0. ent∗( f ) is said to be the entropy of f .

Clearly, if ti = i− 1, then h∗T ( f ) = ent∗( f ). Further, if (X , f ) is a compact topological dy-

namical system and ti = i−1, then by Theorem 2.3, h∗T ( f ) is the topological entropy of Adler,
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Konheim and McAndrew [1]. If (X , f ) is a topological dynamical system where X is a met-

ric space and ti = i− 1, then h∗T ( f ) is the topological entropy which given by Canovas and

Rodriguez [7] from [21].

3. Fundamental properties and main results of the topological sequence
entropy

Proposition 3.1. Let X be any topological space and id be the identity map from X onto it-

self. Then for the dynamical system (X , id) and a nonnegative integers sequence T = (ti : i =

1,2, · · ·), we have h∗T (id) = 0.

Proof. For any F ∈ K(X , id) and any open cover α of X ,
n∨

j=1
(id)−t j(α)≺ α implies H∗F(

n∨
j=1

(id)−t j(α))≤ H∗F(α). Hence,

h∗T (id,α,F) = lim
n→∞

sup
1
n

H∗T (
n∨

j=1

(id)−t j(α))≤ lim
n→∞

sup
1
n

H∗T (α) = 0,

and subsequently h∗T (id,α,F) = 0. It follows from Definitions 2.2 and 2.3 that h∗T (id,F) =

sup
α

h∗T (id,α,F) = 0, which gives h∗T (id) = sup
F∈K(X , f )

{h∗T (id,F)}= 0.

Let (X , f ) and (Y,g) be two topological dynamical system. For the product space X ×Y ,

define a map f ×g : X×Y →X×Y by ( f ×g)(x,y) = ( f (x),g(y)). This map f ×g is continuous

and (X×Y, f ×g) forms a topological dynamical dynamical system. If α and β are open covers

of X and Y , respectively, then α×β is an open cover of X×Y .

Lemma 3.1. [21] Let (X , f ) and (Y,g) be two topological dynamical system. Let Px : X×Y →X

and Py : X ×Y → Y be the projections on X and Y , respectively. If F ∈ K(X ×Y, f × g), then

Px(F) ∈ K(X , f ), Py(F) ∈ K(Y,g) and F ⊆ Px(F)×Py(F).

Lemma 3.2. [21] Let (X , f ) and (Y,g) be two compact topological dynamical system. If γ is an

open cover of X×Y , then there exists an open cover α of X and an open cover β of Y satisfying

γ ≺ α×β , i.e., α×β refines γ .

Proposition 3.2. Let (X , f ) and (Y,g) be two topological dynamical systems, where X and Y are

hausdorff, and T = (ti : i = 1,2, · · ·) be a sequence of nonnegative integers. Then h∗T ( f ×g) ≤

h∗T ( f )+h∗T (g).
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Proof. If K(X ×Y, f × g) = /0, by Definition 2.3 we have h∗T ( f × g) = 0, thus h∗T ( f × g) ≤

h∗T ( f )+h∗T (g).

Now, consider K(X×Y, f ×g) 6= /0. Recall the projections Px : X×Y → X and Py : X×Y →Y .

For F ∈ K(X ×Y, f × g) and any open cover γ of X ×Y , by Lemma 3.1, Px(F) ∈ K(X , f ),

Py(F) ∈ K(Y,g) and F ⊆ Px(F)×Py(F). As X and Y are Hausdorff, Px(F) is a closed subset of

X and Py(F) is a closed subset of Y . Denote Px(F) by Fx and Py(F) by Fy.

By Theorem 2.2, h∗T ( f ×g,γ,F)≤ h∗T ( f ×g,γ,Fx×Fy). From Lemma 2.1, we have h∗T ( f ×

g,γ,Fx× Fy) = hT ( f × g|Fx×Fy,γ|Fx×Fy ,Fx× Fy). As γ|Fx×Fy is an open cover of Fx× Fy, by

Lemma 3.2, there exist an open cover α ′ = {Ui : i = 1, · · · ,n} of Fx (U ,
i s are open subsets of Fx)

and an open cover β ′= {Vj : j = 1, · · · ,m} of Fy (V ,
js are open subsets of Fy) satisfying γ|Fx×Fy ≺

α ′×β ′. For every Ui, there exists an open subset Ai of X satisfying Ui = Ai∩Fx, (i = 1, · · · ,n).

Denote α = {A1, · · · ,An,X \Fx}. Then α is an open cover of X and α|Fx = α ′∪{ /0}. Similarly,

there exists an open cover β of Y satisfying β |Fy = β ′ ∪{ /0}. Hence, from γ|Fx×Fy ≺ α ′×β ′,

we have γ|Fx×Fy ≺ (α ′∪{ /0})× (β ′∪{ /0}). Therefore, γ|Fx×Fy ≺ α|Fx×β |Fy . Moreover, we also

have α×β |Fx×Fy = α|Fx×β |Fy . It follows from Goodman result [11] that

hT ( f ×g|Fx×Fy ,γ|Fx×Fy ,Fx×Fy)≤ hT ( f ×g|Fx×Fy ,α|Fx×β |Fy ,Fx×Fy)

= hT ( f ×g|Fx×Fy,α×β |Fx×Fy,Fx×Fy)≤ hT ( f |Fx ,α|Fx ,Fx)+hT (g|Fy ,β |Fy,Fy).

Moreover, from Lemma 2.1, h∗T ( f ×g,α×β ,Fx×Fy) = hT ( f ×g|Fx×Fy ,α×β |Fx×Fy,Fx×Fy),

h∗T ( f ,α,Fx) = hT ( f |Fx ,Fx) and h∗T (g,β ,Fy) = hT (g|Fy,β |Fy ,Fy), thus

h∗T ( f ×g,α×β ,Fx×Fy)≤ h∗T ( f ,α,Fx)+h∗T (g,β ,Fy).

By Theorem 2.2,

h∗T ( f ×g,γ,F)≤ h∗T ( f ×g,γ,Fx×Fy) = hT ( f ×g|Fx×Fy ,α×β |Fx×Fy)

≤ hT ( f ×g|Fx×Fy ,α|Fx×β |Fy ,Fx×Fy).

Hence, h∗T ( f ×g,γ,F)≤ h∗T ( f )+h∗T (g). Finally from Definitions 2.2 and 2.3, we have h∗T ( f ×

g) = sup
F∈K(X×Y, f×g)

sup
γ

h∗T ( f ×g,γ,F), thus h∗T ( f ×g)≤ h∗T ( f )+h∗T (g).
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Lemma 3.3. (Goodman [11]) Let (X , f ) be a compact dynamical system where X is Hausdorff

and T = (ti : i = 1,2, · · ·) be a sequence of nonnegative integers. Then hT ( f × f ) = 2hT ( f ).

Proposition 3.3. Let (X , f ) be a topological dynamical system where X is Haudorff and T =

(ti : i = 1,2, · · ·) be a sequence of nonnegative integers. Then h∗T ( f × f ) = 2h∗T ( f ).

Proof. By Proposition 3.2, we have h∗T ( f × f )≤ 2h∗T ( f ).

Next, we prove h∗T ( f × f ) ≥ 2h∗T ( f ). If K(X , f ) = /0, then h∗T ( f ) = 0, thus h∗T ( f × f ) ≥

2h∗T ( f ).

Now consider K(X , f ) 6= /0. For any F ∈K(X , f ), by Lemma 3.3, we have hT ( f × f |F×F ,F×

F)= 2hT ( f |F ,F). By Theorem 2.1, hT ( f × f |F×F ,F×F)= h∗T ( f × f ,F×F) and hT ( f |F ,F)=

h∗T ( f ,F), thus we have h∗T ( f × f ,F×F) = 2h∗T ( f ,F). Further, 2h∗T ( f ,F)≤ h∗T ( f × f ). Hence,

we have 2h∗T ( f ) = 2 sup
F∈K(X , f )

h∗T ( f ,F)≤ h∗T ( f × f ). Therefore, h∗T ( f × f )≥ 2h∗T ( f ).

Definition 3.1. Let (X , f ) be a topological dynamical system. If Λ ⊆ X and f (Λ) ⊆ Λ, then

(Λ, f |Λ) is said to be a topological subsystem of (X , f ), or simply a subsystem of (X , f ).

Remark 3.1. In above definition, Λ is not necessarily compact or closed. In the literature of

dynamics, many authors assume subsystems to be compact or closed.

Theorem 3.1. Let (Λ, f |Λ) be a subsystem of (X , f ), where X is Hausdorff and T = (ti : i =

1,2, · · ·) be a sequence of nonnegative integers. Then h∗T ( f |Λ)≤ h∗T ( f ).

Proof. If K(Λ, f |Λ) = /0, it follows from Definition 2.3 that h∗T ( f |Λ) = 0, thus h∗T ( f |Λ)≤ h∗T ( f ).

If K(Λ, f |Λ) 6= /0, then K(Λ, f |Λ)⊆ K(X , f ). For any F ∈ K(Λ, f |Λ), as X is Hausdorff, by The-

orem 2.1, we have h∗T ( f |Λ,F) = hT ( f |F ,F) and h∗T ( f ,F) = hT ( f |F ,F). Hence, h∗T ( f |Λ,F) =

h∗T ( f ,F), which implies h∗T ( f |Λ) = sup
F∈K(Λ, f |Λ)

h∗T ( f |Λ,F) ≤ sup
F∈K(X , f )

h∗T ( f ,F) = h∗T ( f ). There-

fore, h∗T ( f |Λ)≤ h∗T ( f ).

Let (X , f ) and (Y,g) be two topological dynamical systems. Then, (X , f ) is an extension of

(Y,g), or (Y,g) is a factor of (X , f ) if there exists a surjective continuous map π : X→Y (called

a factor map) such that π ◦ f (x) = g◦π(x) for every x ∈ X . If further, π is a homeomorphism,

then (X , f ) and (Y,g) are said to be topologically conjugate and the homeomorphism π is called

a conjugate map.
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Lemma 3.4. ([11]) Let (X , f ) and (Y,g) be two compact topological dynamical systems, where

X, Y are two metric spaces, and T = (ti : i = 1,2, · · ·) be an increasing sequence of nonnegative

integers. If (X , f ) and (Y,g) are topologically conjugate, then hT ( f ) = hT (g).

Theorem 3.2. Let (X , f ) and (Y,g) be two topological dynamical systems, where X, Y are

Hausdorff, and T = (ti : i = 1,2, · · ·) be an increasing sequence of nonnegative integers. If

(X , f ) and (Y,g) are topologically conjugate, i.e., there exists a continuous map π : X → Y

satisfying π ◦ f = g◦π , then h∗T ( f ) = h∗T (g).

Proof. Consider two cases.

Case 1 K(X , f ) = /0. We claim K(Y,g) = /0. If not, assume K(Y,g) 6= /0. Then there exists

some F ∈ K(Y,g) 6= /0 satisfying g(F)⊆ F . As π : X→Y is a conjugate map, i.e., π ◦ f = g◦π ,

the inverse π−1 is a conjugate map from (Y,g) and (X , f ), i.e., π−1 ◦ g = f ◦ π−1. Note that

π−1(F) is a nonempty compact subset of X and f (π−1(F)) = π−1(g(F)) ⊆ π−1(F). Hence,

π−1(F)∈K(X , f ), which contradicts K(X , f ) = /0. Therefore, K(X , f ) = /0 implies K(Y,g) = /0.

Similarly, we can prove that K(Y,g) = /0 implies K(X , f ) = /0. So we have proved that K(X , f ) =

/0 if and only if K(Y,g) = /0, and thus by Definition 2.3, h∗T ( f ) = h∗T (g).

Case 2 K(X , f ) 6= /0. We prove that 2π : K(X , f )→ K(Y,g),2π(F) = π(F) for every F ∈

K(X , f ) is a one-to-one correspondence between K(X , f ) and K(Y,g). Recall π : X → Y is a

conjugate map, i.e., π ◦ f = g ◦ π . Since 2π(F) = π(F) and g(π(F)) = π( f (F)) ⊆ π(F), so

we have π(F) ∈ K(Y,g). Hence, 2π is well definite. Further, for any F1,F2 ∈ K(X , f ) and

F1 6= F2, we have 2π(F1) = π(F1), 2π(F2) = π(F2) and π(F1) 6= π(F2), thus 2π(F1) 6= 2π(F2).

Moreover, for any F ∈ K(Y,g), we have π−1(F) ∈ K(X , f ) and 2π(π−1(F)) = π(π−1(F)) =

F . Therefore, 2π : K(X , f )→ K(Y,g) is bijective. We consider F ∈ K(X , f ), then π : F →

π(F) is a conjugate map, i.e., π ◦ f |F = g|π(F) ◦ π . By Lemma 3.4, we have hT ( f |F ,F) =

hT (g|π(F),π(F)). As X and Y are Hausdorff, so by Theorem 2.1, h∗T ( f ,F) = hT ( f |F ,F) and

h∗T (g,π(F)) = hT (g|π(F),π(F)), further, h∗T ( f ,F) = h∗T (g,π(F)). Hence,

h∗T ( f ) = sup
F∈K(X , f )

h∗T ( f ,F) = sup
F∈K(X , f )

h∗T (g,π(F)).
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Since 2π : K(X , f )→ K(Y,g) is a one-to-one correspondence, we have

sup
F∈K(X , f )

h∗T (g,π(F)) = sup
F ′∈K(Y,g)

h∗T (g,F
′) = h∗T (g).

Therefore, h∗T ( f ) = h∗T (g).

4. Topological sequence entropies of locally compact spaces and induced
hyperspaces

Let R denotes the one-dimensional Euclidean space and X denotes a (noncompact) locally

compact metrizable space, if not indicated otherwise. From Kelley’s result [14], the Alexandroff

compactification (i.e., one-point compactification) ωX = X ∪{ω} of X is also metrizable.

Definition 4.1. [21] Let f : X → X be a continuous map.

(1): If there exists an a ∈ X such that for every sequence xn of points of X , lim
n→∞

f (xn) = a

holds whenever xn does not have any convergent subsequence in X , then f is said to be

convergent to a at infinity.

(2): If for every sequence xn of points of X that does not have any convergent subsequence

in X , f (xn) dose not have any convergent subsequence, then f is said to be convergent

to infinity at the infinity.

(3): If (1) or (2) holds, f is said to be convergent at the infinity.

Theorem 4.1. [25] A continuous map f : X→ X is convergent at the infinity if and only if f can

be extended to a continuous map f̄ on the Alexandroff compactification ωX.

Theorem 4.2. Let (X , f ) be a dynamical system and T = (ti : i = 1,2, · · ·) be a sequence of

nonnegative integers. If f can be extended to a continuous map on the Alexandroff compactifi-

cation ωX, i.e., f is convergent at the infinity and f̄ (ω) = a or f̄ (ω) = ω (refer to Definition

4.1), then h∗T ( f )≤ h∗T ( f̄ ).

Proof. By the assumption, (ωX , f̄ ) is topological dynamical system and (X , f ) is a subsystem

of (ωX , f̄ ) (by a clear embedding). Hence, from Theorem 3.1, h∗T ( f )≤ h∗T ( f̄ ).
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Example 4.1. Let T = (ti : i = 1,2, · · ·) be a sequence of nonnegative integers. Consider

f : R→ R, f (x) = 2x, x ∈ R. Then h∗T ( f ) = 0.

From assumption, the only invariant compact subset of f is {0}, i.e., K(R, f ) = {{0}}. De-

note F = {0}. We prove h∗T ( f ) = 0. In fact, for any open cover α of R, any subcover (for {0}) of

α with the smallest cardinality contains a single elements of α . Hence, N∗{0}(
n∨

j=1
) f−t j(α) = 1,

further, H∗{0}(
n∨

j=1
) f−t j(α)) = 0, which implies h∗T ( f ,α,{0}) = lim

n→∞
sup 1

nH∗{0}(
n∨

j=1
) f−t j(α)) =

0. Therefore, by Definition 2.3, we have h∗T ( f ) = 0.

If R is replaced by (0,∞) which is equipped with the subspace topology of R, K((0,∞), f )= /0.

It follows from Definition 2.3 that h∗T ( f ) = 0.

Theorem 4.3. If f : R→R is an autohomeomorphism and T = (ti : i= 1,2, · · ·) be an increasing

sequence of nonnegative integers, then h∗T ( f ) = 0.

Proof. Let xn be a sequence of points of R that dose not have any convergent subsequence in R.

As f is a homeomorphism, the sequence f (xn) dose not have any convergent subsequence in R

neither. By Theorem 4.1, f can be extended to a continuous map f̄ : ωR→ ωR and f̄ (ω) = ω .

Clearly, f̄ is also an autohomeomorphism . On the other hand, ωR is homeomorphic to the unit

circle S1. Let π : ωR→ S1 be such a homeomorphism. Define g : S1→ S1 by g = π ◦ f̄ ◦π−1.

Then, g is a homeomorphism and π gives the conjugace between (ωR, f̄ ) and (S1,g). Hence,

by Theorem 3.2, h∗T ( f̄ ) = h∗T (g). If g is a homeomorphism then h∗T (g) = 0 from Ref [17],

hT (g)= 0. Since S1 is a compact space, by Theorem 2.3, we have h∗T (g)= hT (g), i.e., h∗T (g)= 0.

Hence, h∗T ( f̄ ) = 0. From Theorem 4.2, h∗T ( f )≤ h∗T ( f̄ ). Therefore, h∗T ( f ) = 0.

We investigate the sequence entropy relation between a topological dynamical system and

its induced hyperspace topological dynamical system. The hyperspace is employed with the

Vietoris topology. Notice that if X is a noncompact metric space, the Vietoris topology non-

metrizable [22].

The Vietoris topology on 2X , the family of all nonempty closed subsets of X , is generated by

the base

υ(U1,U2, · · · ,Un) = {F ∈ 2X : F ⊆
n⋃

i=1

Ui and F ∩Ui 6= /0 for all i≤ n}
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where U1,U2, · · · ,Un are open subsets of X [9].

Let (X , f ) be a topological dynamical system, where f : X→ X is a closed mapping. The hy-

perspace map 2 f : 2X → 2X is induced by f as follows: for every F ∈ 2X , 2 f (F) = f (F). When

f is a closed and continuous map, 2 f is well defined and it is continuous [14, 22], thus ensuring

that (2X ,2 f ) forms a topological dynamical system, i.e., the induced hyperspace topological

dynamical system of (X , f ).

By Michael’s results [22], we have the following facts.

Fact 1: If X is compact, then 2X is compact.

Fact 2: If X is compact and Hausdorff, then 2X is compact and Hausdorff.

Fact 3: π : X → 2X defined by π(x) = {x} for x ∈ X is continuous. If X is compact and

Hausdorff, then π is homeomorphic embedding and (X , f ) and (π(X),2 f ) are topolog-

ically conjugate.

Theorem 4.4. [21] Let (X , f ) be a topological dynamical system, where X is Hausdorff and

f is a closed mapping. If F ∈ K(X , f ), then 2F ∈ K(2X ,2 f ). Hence, (2F ,2 f ) is a topological

dynamical subsystem of (2X ,2 f ).

Theorem 4.5. Let (X , f ) be a topological dynamical system, where X is Hausdorff and f is

a closed mapping and T = (ti : i = 1,2, · · ·) be a sequence of nonnegative integers. Then the

topological sequence entropy of (2X ,2 f ) is at least that of (X , f ), i.e., h∗T (2
f )≥ h∗T ( f ).

Proof. Case 1. K(X , f ) = /0. By Definition 2.3, we have h∗T ( f ) = 0. Hence, h∗T (2
f )≥ h∗T ( f ).

Case 2. K(X , f ) 6= /0. For F ∈ K(X , f ), it follows from Theorem 4.4 that 2F ∈ K(2X ,2 f ).

Define π : F → 2F by π(x) = {x}, x ∈ F . From Fact 3 in the preceding paragraph of The-

orem 4.4, (F, f ) and (π(F),2 f ) are topologically conjugate. From Goodman’s result [11],

hT ( f |F ,F) = hT (2 f |h(F),h(F)). By Theorem 2.1, h∗T ( f ,F) = hT ( f |F ,F) and h∗T (2
f ,π(F)) =

hT (2 f |π(F),π(F)), which implies h∗T ( f ,F) = h∗T (2
f ,π(F)). Again, by the Fact 3, π(F) is a

compact subset of 2X . On the other hand, from 2 f (π(F)) = π( f (F)) and f (F) ⊆ F , we have

2 f (π(F)) = π( f (F))⊆ π(F), thus π(F) ∈ K(2X ,2 f ). Furthermore, it follows from Definition
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2.3 that h∗T (2
f ,π(F))≤ h∗T (2

f ) implying h∗T ( f ,F)≤ h∗T (2
f ). Therefore,

h∗T ( f ) = sup
F∈K(X , f )

≤ h∗T (2
f ).
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