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Abstract. In this paper, some results on fixed points for a set valued maps in complete G-metric space are estab-

lished.
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1. Introduction

Unless mentioned or defined otherwise, for all terminology and notation in this paper, the

reader is referred to [5,7,9,10,14]. There are several reasons for the acceleration of interest in

fixed point theory. One way to study a fixed point is through set valued maps. For such fixed

point study, Nadler [10] introduced a important notion of set valued contraction and proved a

set valued version of the Banach contraction principle. In a related vein, several authors studied

many fixed point results for set valued contraction mappings; see [1,2,8,13] and the references

therein. In [11] and [12], Popa initiated the study of fixed point for mappings satisfying implicit
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relations satisfying φ -map. Afterwards, Berinde [4] proved some constructive fixed point the-

orems for almost contractions satisfying an implicit relation, which generalize related results;

see [2,5,6] and the references therein.

Throughout this paper, let (X ,G) be G-metric space, CB(X) denotes the collection of all

nonempty closed bounded subsets of X .

Let H(., ., .) be the Hausdorff G-distance on CB(X), i.e, for A,B,C ∈CB(X) and x ∈ X

DG(A,B,C) := inf{G(a,b,c) : a ∈ A,b ∈ B,c ∈C}

δG(A,B,C) := sup{G(a,b,c) : a ∈ A,b ∈ B,c ∈C}

and in [8] Kaewcharoen and Kaewkhao defined Hausdorff G-metric as,

HG(A,B,C) := max{sup
x∈A

G(x,B,C),sup
x∈B

G(x,C,A),sup
x∈C

G(x,A,B)},

where,

G(x,B,C) = dG(x,B)+dG(B,C)+dG(x,C),

dG(x,B) = inf{dG(x,y) : y ∈ B},

dG(A,B) = inf{dG(a,b) : a ∈ A,b ∈ B}.

In this paper, we establish some results on fixed points for a set valued maps in complete G-

metric space.

2. Preliminaries

Before going to the main theorem it is necessary to present a formidable number of defini-

tions, basic concepts and terminology, which will be use in sequel.

In [9], Mustafa and Sims introduced the more appropriate notion of generalized metric space

called G-metric spaces as follows.

Definition 2.1. [9] Let X be a nonempty set, and let G : X ×X ×X → R+∪{0} be a function

satisfying the following axioms:

• (G1) G(x,y,z) = 0 if x = y = z;

• (G2) G(x,x,y)> 0, for all x,y ∈ X with x 6= y;
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• (G3) G(x,x,y)≤ G(x,y,z), for all x,y,z ∈ X with z 6= y;

• (G4) G(x,y,z) = G(x,z,y) = G(y,z,x) = · · · (symmetry in all three variables);

• (G5) G(x,y,z)≤ G(x,a,a)+G(a,y,z) for all x,y,z,a ∈ X , (rectangle inequality).

Then the function G is called a generalized metric, or more specifically a G-metric on X and the

pair (X ,G) is called a G-metric space.

Definition 2.2. [9] Let (X ,G) be a G-metric space and {xn} be a sequence of points in X , a point

x ∈ X is said to be the limit of the sequence {xn} if, limn→∞ G(x,xn,xm) = 0, and the sequence

{xn} is G-convergent to x.

Proposition 2.3. [9] Let (X ,G) be a G-metric space. Then the following are equivalent:

• {xn} is G-convergent to x;

• G(xn,xn,x)→ 0 as n→ ∞;

• G(xn,x,x)→ 0 as n→ ∞;

• G(xm,xn,x)→ 0 as m,n→ ∞.

Definition 2.4. [9] Let (X ,G) be a G-metric space. A sequence {xn} is called G-Cauchy if, for

each ε > 0 there exists a positive integer N such that G(xn,xm,xl) < ε for all n,m, l ≥ N; i.e.,

G(xn,xm,xl)→ 0 as n,m, l→ ∞.

Definition 2.5. [9] A G-metric space (X ,G) is said to be G-complete if every G-Cauchy se-

quence in (X ,G) is G-convergent in X .

Proposition 2.6. [9] Let (X ,G) be a G-metric space. For any x,y,z,a ∈ X , it follows that:

• If G(x,y,z) = 0, then x = y = z;

• G(x,y,z)≤ G(x,x,y)+G(x,x,z);

• G(x,y,y)≤ 2G(y,x,x),

• G(x,y,z)≤ G(x,a,z)+G(a,y,z);

• G(x,y,z)≤ 2
3(G(x,y,a)+G(x,a,z)+G(a,y,z));

• G(x,y,z)≤ G(x,a,a)+G(y,a,a)+G(z,a,a).

Definition 2.7. An element x∈X is said to be fixed point of set valued mapping T : X→CB(X),

if x ∈ T x.
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Example 2.8 Consider X = [0,+∞) and define T : X →CB(X) as

T x =

 {x}, if x ∈ [0,1)

([0,1]), if x ∈ [1,+∞)

 .

Clearly, T is set valued mapping.

Theorem 2.9. [10] Let (X ,d) be a complete metric space and T : X →CB(X) be a set valued

map satisfying

H(T x,Ty)≤ qd(x,y) ∀ x,y ∈ X ,

where q ∈ [0,1] then T has a fixed point.

Proposition 2.10 Let X be a nonempty set. Assume that g : X → X and T : X → 2X are weakly

compatible mappings. If g and T have a unique point of coincidence w = gx ∈ T x, then w is the

unique common fixed point of g and T.

Proof. Assume that g and T have a unique point of coincidence w = gx ∈ T x. Therefore gw =

g(gx) ∈ gT (x)⊆ T g(x) = Tw. This implies that gw is a point of coincidence of g and T . Thus,

w= gw∈ Tw, since g and T have unique point of coincident, w is a common fixed point of g and

T . Now we shall show that w is the unique common fixed point. To do so, suppose z be another

fixed point distinct from w, which gives z = gz ∈ T z, implies that z is point of coincidence of

g and T . But w is unique point of coincidence, hence z = w, which gives that w is the unique

common fixed point of g and T .�

In order to establish the main result we need to state the following Lemma 2.11, which is

more general form of lemma 2.1 used to prove the theorem 2.1 in [15]. Its proof is a simple

consequence of the definition of the Hausdorff G-distance

Lemma 2.11. Let (X ,G) be a complete G-metric space and A,B ∈CB(X), then for each a ∈ A

and ε > 0, there exist b ∈ B such that

G(a,b,b)≤ hHG(A,B,B), h > 1 and b = b(a).
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3. Main Result

Theorem 3.1. Let (X ,G) be a complete G-metric space and let T : X →CB(X) be a set valued

map such that the contraction condition

HG(T x,Ty,T z)≤ α(G(x,y,z))+β [G(x,T x,T x)+G(y,Ty,Ty)+G(z,T z,T z)]

+γ[G(x,Ty,Ty)+G(x,T z,T z)+G(y,T x,T x)+G(y,T z,T z)+G(z,T x,T x)+G(z,Ty,Ty)] hold-

s ∀ x,y ∈ X, where α,β ,γ > 0 and α +3β +4γ < 1. Then T has a fixed point.

Proof. In view of lemma 2.11 and the assumption 0 < α +3β +4γ < 1, we see that there exists

r > 0 such that

0 < α +3β +4γ <
√

r < 1.

Let us choose λ = α+β+2γ√
r−(2β+2γ)

, clearly 0 < λ < 1.

Let x0 ∈ X be arbitrary. Then there exist x1 ∈ X such that x1 ∈ T x0. Now using Lemma 2.11,

h = 1√
r , it follows that

∃ x2 ∈ T x1; G(x1,x2,x2)≤ 1√
r HG(T x0,T x1,T x1)

∃ x3 ∈ T x2; G(x2,x3,x3)≤ 1√
r HG(T x1,T x2,T x2)

∃ x4 ∈ T x3; G(x3,x4,x4)≤ 1√
r HG(T x2,T x3,T x3)

· · ·

· · ·

· · ·

∃ xn+1 ∈ T xn; G(xn,xn+1,xn+1)≤ 1√
r HG(T xn−1,T xn,T xn)



.

Hence, we have

G(xn,xn+1,xn+1)≤
1√
r

HG(T xn−1,T xn,T xn).

Using contraction condition, one can obtain

≤ 1√
r



α(G(xn−1,xn,xn))+β [(G(xn−1,T xn−1,T xn−1))+G(xn,T xn,T xn)

+G(xn,T xn,T xn)]+ γ[(G(xn−1,T xn,T xn))+G(xn−1,T xn,T xn)

+G(xn,T xn,T xn)+G(xn,T xn−1,T xn−1)+(G(xn,T xn,T xn))

+G(xn,T xn−1,T xn−1)]


.
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Notie that xn ∈ T xn−1 implies

G(xn−1,T xn−1,T xn−1)≤ G(xn−1,xn,xn)

and xn+1 ∈ T xn implies

G(xn,T xn,T xn)≤ G(xn,xn+1,xn+1).

Thus we get

≤ 1√
r



α(G(xn−1,xn,xn))+β [(G(xn−1,xn,xn))+G(xn,xn+1,xn+1)

+G(xn,xn+1,xn+1)]+ γ[(G(xn,xn+1,xn+1))+G(xn,xn+1,xn+1)

+G(xn,xn,xn)+G(xn,xn,xn)+(G(xn−1,xn,xn))

+G(xn−1,xn,xn)]


.

≤ 1√
r


α(G(xn−1,xn,xn))+β [(G(xn−1,xn,xn))+G(xn,xn+1,xn+1)

+G(xn,xn+1,xn+1)]+2γ[(G(xn,xn+1,xn+1))+G(xn,xn,xn)

+(G(xn−1,xn,xn))]

 .

≤ 1√
r

{
(α +β +2γ)G(xn−1,xn,xn)+(2β +2γ)G(xn,xn+1,xn+1)

}
,

implies

G(xn,xn+1,xn+1)≤
α +β +2γ√
r− (2β +2γ)

G(xn−1,xn,xn) ∀ n≥ 1.

On substituting the value of λ we get,

G(xn,xn+1,xn+1)≤ λG(xn−1,xn,xn), 0 < λ < 1.

Repeating the above process, we have

G(xn,xn+1,xn+1)≤ λ
nG(x0,x1,x1), ∀ n≥ 1. (3.1)

Now we claim that {xn} is cauchy sequence. Towards this, we need to show that there is a

(+ive) integer n0 = n0(ε), ε > 0 such that

G(xn,xn+p,xn+p)≤ ε for every n≥ n0 uniformly on p ∈ N.

By the rectangular inequality

G(xn,xn+p,xn+p)≤ G(xn,xn+1,xn+1)+G(xn+1,xn+2,xn+2)+ · · ·+G(xn+p−1,xn+p,xn+p).
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Making use of (3.1), we find that the expression reduces to

G(xn,xn+p,xn+p)≤ λ
nG(x0,x1,x1)+λ

n+1G(x0,x1,x1)+ · · ·+λ
n+p−1G(x0,x1,x1)

= λ
n[1+λ +λ

2 + · · ·+λ
p−1]G(x0,x1,x1).

With the help of geometric progression, the above inequality becomes,

G(xn,xn+p,xn+p)≤
λ n

1−λ
G(x0,x1,x1), ∀ n ∈ N uniformly on p ∈ N. (3.2)

Since 0 < λ < 1 and n→ ∞, there exist a (+ive) integer n0 such that

λ n

1−λ
G(x0,x1,x1)< ε, ∀ n≥ n0 (3.3)

In view of equation (3.2) and (3.3), it is easy to see that the sequence {xn} is Cauchy. By the

completeness of (X ,G) there exists z ∈ X such that limn→∞ xn = z

Now we shall show that z is fixed point of T . Note that

G(z,T z,T z)≤ G(z,zn+1,zn+1)+G(zn+1,T z,T z)

≤ G(z,zn+1,zn+1)+HG(T zn,T z,T z).

Using contraction condition, the expression turns out to be

G(z,zn+1,zn+1)+α(G(zn,z,z))+β [(G(zn,T zn,T zn))+G(z,T z,T z)+G(z,T z,T z)]

+ γ[(G(zn,T z,T z))+(G(zn,T z,T z))+(G(z,T z,T z))+(G(z,T zn,T zn))

+(G(z,T z,T z))+(G(z,T zn,T zn))],

which implies

G(z,zn+1,zn+1)+α(G(zn,z,z))+β [(G(zn,zn+1,zn+1))+2G(z,T z,T z)]

+ γ[(G(zn,T z,T z))+(G(zn,T z,T z))+2(G(z,T z,T z))+2(G(z,T zn,T zn))]

≤ G(z,zn+1,zn+1)+α(G(zn,z,z))+β (G(zn,zn+1,zn+1))+ [2β +2γ]G(z,T z,T z)

+2γ(G(zn,T z,T z))+2γG(z,zn+1,zn+1).

This holds for all n, now proceeding the limit n→ ∞ in above expression, we get

G(z,T z,T z)≤ [2β +2γ]G(z,T z,T z).
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Since [2β +2γ]< 1, we get

[β + γ]<
1
2
,

which gives

G(z,T z,T z) = 0.

It follows that z ∈ T z. Hence z is a fixed point of T . �
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(1997) 129–133.

[11] V. Popa, Some fixed point theorems for compatible mapping satisfyings implicit relations, Demonstratio

Math. 32 (1999) 157–163.

[12] A. Petrusel, I.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134 (2005) 411–418.

[13] A. Tarski, A lattice theoretical fixed point theorem and its application, Pacific J. Math. 5 (1955) 285–309.



68 RAMESH KUMAR VATS, AMIT KUMAR

[14] N. Tahat, H. Aydi, E. Karapinar, W. Shatanawi, Common fixed points for single valued and multi valued maps

satisfying a generalized contraction in G-metric spaces, Fixed Point Theory Appl. (2012) doi: 10.1186/1687-

1812-2012-48.


