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Abstract. In this paper, we establish some fixed point theorems for two pairs of compatible mappings of type (B)

and for two pairs of weakly compatible mappings in Banach spaces.
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1. INTRODUCTION

The concept of compatible mappings of type (B) introduced by Pathak et al. (see [45]).

Definition 1.1 [45] Let S and T be mappings from a normed space E into itself. The mappings

S and T are said to be compatible mappings of type (B) if

lim
n→∞
‖ST xn−T T xn‖ ≤

1
2
[ lim
n→∞
‖ST xn−St‖+ lim

n→∞
‖St−SSxn‖]
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and

lim
n→∞
‖T Sxn−SSxn‖ ≤

1
2
[ lim
n→∞
‖T Sxn−Tt‖+ lim

n→∞
‖Tt−T T xn‖]

whenever {xn} is a sequence in E such that lim
n→∞

Sxn = lim
n→∞

T xn = t for some t ∈ E.

Proposition 1.2 [45] Let S and T be compatible mappings of type (B) from a normed space E

into itself. Suppose that

lim
n→∞

Sxn = lim
n→∞

T xn = t for some t ∈ E then

lim
n→∞

T T xn = St if S is continuous at t,

lim
n→∞

SSxn = Tt if T is continuous at t,

STt = T St and St = Tt if Sand T are continuous at t.

Let A and B be two mappings of a metric space (M,d) into itself. Pathak [44] defined A and B

to be weakly compatible mappings with respect to B if and only if whenever

lim
n→∞

Axn = lim
n→∞

Bxn = t ∈M,

lim
n→∞

d(ABxn,BAxn)≤ d(At,Bt)

for all sequence {xn} in M and

d(At,Bt)≤ lim
n→∞

d(Bt,BAxn)

for at least one sequence {xn} in M.

The following lemma is useful in the sequel.

Lemma 1.3 [44] Let A, B:(M,d)→ (M,d) be weak compatible with respect to B

(a1) If At = Bt, then ABt = BAt.

(a2) Suppose that limn→∞ Axn = limn→∞ Bxn for some t ∈ X .

(a3) If A is continuous at t, then limn→∞ d(BAxn,At)≤ d(At,Bt).

(a4) If A and B are continuous at t, then At = Bt and ABt = BAt.

The paper is organized as follows: In Section 1, we explain some notations, concepts and

the results as noted earlier which can be found in [2,13,29-37,41-48]. In Section 2, we prove
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a common fixed point theorem for two pairs of compatible mappings of type (B) in Banach

spaces. Section 3 contains also a common fixed point theorem for two pairs of weakly compat-

ible mappings in Banach spaces.

One of our main result to prove a common fixed point theorem for two pairs of compatible

mappings of type (B) in Banach spaces will be given in the following section.

2. FIXED POINTS BY COMPATIBLE MAPS OF TYPE (B)

Now we use the definition of compatible mappings of type (B) to obtain a common fixed

point theorem in Banach spaces.

Theorem 2.1. Let A, B, S, and T be mappings from a Banach space X into itself, and the pairs

{A,S} and {B,T} are compatible of type (B), satisfying the following conditions:

(2.1)
‖Ax−By‖ ≤ Φ

(
max{‖Sx−Ty‖,‖Sx−Ax‖,‖Sx−Ax‖ 1

2‖Ty−By‖ 1
2 ,

‖Ty−Ax‖ 1
2‖Sx−By‖ 1

2}
)

for all x,y ∈ X , and the function Φ satisfies the following conditions:

(b1) Φ : [0,∞)→ [0,∞) is nondecreasing and right continuous.

(b2) For every t > 0, Φ(t)< t and we suppose that

(1− k)A(X)+ kS(X)⊂ A(X), ∀ k ∈ (0,1),

(1− ḱ)B(X)+ ḱT (X)⊂ B(X), ∀ ḱ ∈ (0,1).

For some x0 ∈ X, the sequence {xn} is defined by

(2.2) Ax2n+1 = (1− c2n)Ax2n + c2nSx2n,

(2.3) Bx2n+2 = (1− c2n+1)Bx2n+1 + c2n+1T x2n+1,

with (i) 0 < cn ≤ 1 and (ii) limn→∞ cn = h > 0 for n = 0,1,2, ... . Then {xn} converges to a

point z in C and if A and B are continuous at z, then z is a common fixed point of A,B,S and

T.
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Proof. Let z ∈ X such that limn→∞ xn = z. Now since A is continuous at z, then we have

Axn→ Az as n→ ∞. From (2.2), we have

Sx2n =
Ax2n+1− (1− c2n)Ax2n

c2n
→ Az− (1−h)Az

h
= Az as n→ ∞.

Similarly, from (2.3) we have T x2n+1→ Bz as n→ ∞

Assume AAz 6= Bz. Then using (2.1) with x = Sx2n, y = x2n+1, we obtain

‖ASx2n−Bx2n+1‖ ≤Φ
(
max{‖SSx2n−T x2n+1‖,‖SSx2n−ASx2n‖,

‖SSx2n−ASx2n‖
1
2‖T x2n+1−Bx2n+1‖

1
2 ,‖T x2n+1−ASx2n‖

1
2 ‖SSx2n−Bx2n+1‖

1
2}
)
.

Taking the limit as n→ ∞, we obtain

‖A2z−Bz‖ ≤Φ
(
max{‖SAz−Bz‖,‖SAz−A2z‖,‖SAz−A2z‖

1
2 ‖Bz−Bz‖

1
2 ,

‖Bz−A2z‖
1
2 ‖SAz−Bz‖

1
2}
)

≤Φ
(
max{‖A2z−Bz‖p,0,0,‖A2z−Bz‖}

)
≤Φ

(
‖A2z−Bz‖

)
≤ ‖A2z−Bz‖.

This is a contradiction if ‖A2z−Bz‖> 0, and hence ‖A2z−Bz‖= 0. Thus AAz = Bz.

Now suppose that T z 6= Az. Then from (2.1) and Proposition 1.2, we obtain

‖ASx2n−Bz‖ ≤Φ
(
max{‖SSx2n−T z‖,‖SSx2n−ASx2n‖,

‖SSx2n−ASx2n‖
1
2‖T z−Bz‖

1
2 ,‖T z−ASx2n‖

1
2 ‖SSx2n−Bz‖

1
2}
)
.

Letting n→ ∞, we get, as Bz = AAz and ‖ASx2n−Bx2n‖→ 0,

‖AAz−T z‖ ≤Φ(max{‖AAz−T z‖,0,0,‖AAz−T z‖}),

which implies, AAz = T z. Similarly Sz = BBz therefore, Az = Bz = Sz = T z, and

SAz = S2z = A2z = ST z = AT z = T z.
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So T z = u is common fixed point of A,B,S and T . Let v be a another common fixed point of

A, B, S and T. By (2.1), we have

‖u− v‖ = ‖Au−Bv‖

≤Φ
(
max{‖Su−T v‖,‖Su−Au‖,‖Su−Au‖

1
2

×‖T v−Bv‖
1
2 ,‖T v−Au‖

1
2 ‖Su−Bv‖

1
2}
)

≤Φ
(
max{‖u− v‖,0,0,‖u− v‖}

)
,

which implies u = v. This completes the proof.

3. FIXED POINTS BY WEAKLY COMPATIBLE MAPS

For the class of weakly compatible mappings, we have the following result.

Theoem 3.1. Let C be a nonempty closed convex subset of a Banach space X and A, B, S, and

T be mappings from C into itself satisfying the following conditions:

‖Sx−Ty‖(3.1)

≤Φ
(
max{‖Ax−By‖,‖Ax−Sx‖,‖By−Ty‖,‖Ax−Ty‖,‖By−Sx‖}

)
for all x,y ∈C, and the function Φ satisfies the following conditions:

(c1) Φ : [0,∞)→ [0,∞) is nondecreasing and right continuous

(c2) For every t > 0, Φ(t)< t.

Also, we suppose that

(1− k)A(C)+ kS(C)⊂ A(C), ∀k ∈ (0,1),

(1− ḱ)B(C)+ ḱT (C)⊂ B(C), ∀ḱ ∈ (0,1),

(3.2) {A,B} ,{S,B}and {T,B} are weakly compatible pairs with respect to B of X .

For some x0 ∈ X, the sequence {xn} is defined by

(3.3) Ax2n+1 = (1− c2n)Ax2n + c2nSx2n,



6 A. EL-SAYED AHMED AND A. KAMAL

(3.4) Bx2n+2 = (1− c2n+1)Bx2n+1 + c2n+1T x2n+1 ,

with (i) 0 < cn ≤ 1 and (ii) limn→∞ cn = h > 0 for n = 0,1,2, ... . Then {xn} converges to a

point z in C and if A and B are continuous at z, then z is a coincidence point of A,B,S and T.

Further, if A and B are continuous at z, then S and T are continuous at z.

Proof. Let z ∈C such that lim
n→∞

xn = z. Now since A is continuous at z, then we have Axn→ Az

as n→ ∞, so from (3.3) we have

Sx2n =
Ax2n+1− (1− c2n)Ax2n

c2n
→ Az− (1−h)Az

h
= Az as n→ ∞.

Similarly, from (3.4) we have T x2n+1 → Bz as n→ ∞. Assume Az 6= Bz. Then using (3.1)

with x = x2n, y = x2n+1, we obtain

‖Sx2n−T x2n+1‖ ≤Φ
(
max{‖Ax2n−Bx2n+1‖,‖Ax2n−Sx2n‖,‖Bx2n+1−T x2n+1‖,

‖Ax2n−T x2n+1‖,‖Bx2n+1−Sx2n‖}
)
.

Taking the limit as n→ ∞, yields

‖Az−Bz‖ ≤Φ
(
max{‖Az−Bz‖,‖Az−Az‖,‖Bz−Bz‖,

‖Az−Bz‖,‖Bz−Az‖}
)

≤Φ
(
max{‖Az−Bz‖,0,0,‖Az−Bz‖,‖Bz−Az‖}

)
≤Φ

(
‖Az−Bz‖

)
a contradiction, if ‖Az−Bz‖ > 0, and so ‖Az−Bz‖ = 0. Thus Az = Bz. Now suppose that

T z 6= Az. Then from (3.1), we have

‖Sx2n−T z‖ ≤Φ
(
max{‖Ax2n−Bz‖,‖Ax2n−Sx2n‖,‖Bz−T z‖,

‖Ax2n−T z‖,‖Bz−Sx2n‖}
)
.

Letting n→ ∞, we get, as Bz = Az and ‖Ax2n−Sx2n‖→ 0,

‖Az−T z‖ ≤Φ
(
max{0,‖Az−Sz‖,‖Bz−T z‖,‖Az−T z‖,0}),
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which implies that, Az = T z. Similarly Sz = Bz therefore, Az = Bz = Sz = T z.

From (3.2), since {A,B} is weakly compatible with respect to B and Az = Bz, we obtain ABz =

BAz by Lemma 1.3. Similarly, SBz = BSz since Sz = Bz and {S,B} is weakly compatible with

respect to B. Similarly, T Bz = BT z since T z = Bz and {T,B} is weakly compatible with respect

to B. Hence, using (3.1), we have

‖S2z−T z‖ ≤Φ
(
max{‖ASz−Bz‖,‖ASz−SAz‖,‖Bz−T z‖,

‖ASz−T z‖,‖Bz−SAz‖})

≤Φ
(
max{‖S2z−T z‖,0,0,‖S2z−T z‖,‖T z−S2z‖}

)
,

which implies that

S2z = T z = Az = Bz = Sz = SAz = SBz = ST z.

So Sz = u is common fixed point of A,B,S and T. Let v be a second common fixed point of

A, B, S and T . By (c2), we have

‖u− v‖ = ‖Su−T v‖

≤Φ
(
max{‖Au−Bv‖,‖Au−Su‖,‖Bv−T v‖,‖Au−T v‖,‖Bv−Su‖})

≤Φ
(
max{‖u− v‖,0,0,‖u− v‖,‖v−u‖}

)
,

which implies u = v.

Now we prove that, If A and B are continuous at z, then S and T are continuous at z.

Let {yn} be an arbitrary sequence in C converging to z.

Form (3.1), we have

‖Syn−Sz‖ = ‖Syn−T z‖ ≤Φ
(
max{‖Ayn−Bz‖,‖Ayn−Syn‖,‖Bz−T z‖,

‖Ayn−T z‖,‖Bz−Syn‖}
)

≤Φ
(
max{‖Ayn−Az‖,‖Ayn−Az‖,0,‖Ayn−Az‖,‖Ayn−Az‖}

)
≤ ‖Ayn−Az‖.

Letting n→ ∞ we obtain, as A is continuous, limn→∞ Syn = Sz. Thus, S is continuous at z.

Similarly, we can prove that when B is continuous at z then T is continuous at z.
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Remark 3.2. It is still an open problem to extend the results of this paper using the sense of

doubly sequence iterations. For some studies on various doubly sequence iterations, we refer to

[3, 14, 15, 16, 17, 18].

Remark 3.3. It is still an open problem to study the obtained results of this paper in cone metric

spaces, for more information on cone metric spaces, we refer to [35, 37, 41, 43] and others.

Remark 3.4. How one can investigate fixed points for some spaces defined by integral norms?

For details on such spaces, we refer to [1], [4-18], [19-28], [38, 39, 40] and others.
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[41] Z. Kadelburg, S. Radenović and V. Rakčević, A note on the equivalence of some metric and cone metric fixed

point results, Applied Mathematics Letters, 24(3)(2011), 370-374.

[42] P. P. Murthy, Important tools and possible applications of metric fixed point theory, Nonlinear Anal. 47

(2001), 3479-3490.

[43] S. Omran and A. El-Sayed Ahmed, Generalized cone metric space and fixed point theorem, Journal of Ad-

vanced Studies in Topology, 1(2)(2010), 22-28.



FIXED POINT THEOREMS 11

[44] H. K. Pathak, On a fixed point theorem of Jungck, Proceedings of the First World Congress and Nonlinear

Analysis (1992).

[45] H.K. Pathak, and M.S. Khan, Compatible mappings of type (B) and common fixed point theorems of Gregus

type, Czechoslovak Math. J. 45 (1995), 685-698.

[46] V. Popa, A general fixed point theorem for weakly compatible mappings in compact metric spaces, Turk. J.

Math. 25 (2001), 465-474.

[47] R. A. Rashwan and A. M. Saddeek, Some fixed point theorems in Banach space for weakly compatible

mappings, Stude. Math. 8 (1998), 119-126.

[48] S. Sharma and K. Choubey, Common fixed point theorems for weakly compatible mappings in Menger

spaces, J. Korea Soc. Math. Edu. Ser B, 10 (2003), 245-254.


