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1. Introduction

The theory of fixed points as an important branch of functional analysis has been

applied in the study of nonlinear phenomena. A Lot of problems arising in economics,

engineering, and physics can be studied by fixed point techniques. Krasnoselskii-Mann

iteration, which is also known as a one-step iteration is an classic algorithm to study

fixed points of nonlinear operators. However, Krasnoselskii-Mann iteration only enjoys

weak convergence for nonexpansive mappings only; see [1] and the reference therein.
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There are a lot of real world problems which exist in infinite dimension spaces. In such

problems, strong convergence or norm convergence is often much more desirable than weak

convergence. To guarantee the strong convergence of Krasnoselskii-Mann iteration, many

authors use different regularization methods. The projection technique which was first

introduced by Haugazeau [2] has been considered for the approximation of fixed points of

nonexpansive mappings. The advantage of projection methods is that strong convergence

of iterative sequences can be guaranteed without any compact assumptions.

In this paper, we study common zero points of a family of maximal monotone oper-

ators and common solutions of a system of equilibrium problems based on a projection

algorithm. Strong convergence of the algorithm is obtained in a uniformly smooth and

strictly convex Banach space which also enjoys the Kadec-Klee property.

2. Preliminaries

Let E be a real Banach space, E∗ be the dual space of E and C be a nonempty subset

of a E. Let f be a bifunction from C ×C to R, where R denotes the set of real numbers.

Recall that the following equilibrium problem. Find x̄ ∈ C such that

f(x̄ y) ≥ 0, ∀y ∈ C. (2.1)

We use EP (f) to denote the solution set of the equilibrium problem (2.1). That is,

EP (f) = {p ∈ C : f(p, y) ≥ 0, ∀y ∈ C}.

Given a mapping B : C → E∗, let

f(x, y) = 〈Bx, y − x〉, ∀x, y ∈ C.

Then x̄ ∈ EP (f) iff x̄ is a solution of the following variational inequality. Find x̄ such

that

〈Bx̄ y − x̄〉 ≥ 0, ∀y ∈ C. (2.2)

In order to study the solution of the equilibrium problem (2.1), we assume that f

satisfies the following conditions:
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(A1) f(x, x) = 0,∀x ∈ C;

(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0,∀x, y ∈ C;

(A3)

lim sup
t↓0

f(tz + (1− t)x, y) ≤ f(x, y),∀x, y, z ∈ C;

(A4) for each x ∈ C, y 7→ f(x, y) is convex and weakly lower semi-continuous.

Recall that the normalized duality mapping J from E to 2E∗
is defined by

Jx = {f ∗ ∈ E∗ : 〈x, f ∗〉 = ‖x‖2 = ‖f ∗‖2},

where 〈·, ·〉 denotes the generalized duality pairing.

A Banach space E is said to be strictly convex if ‖x+y
2
‖ < 1 for all x, y ∈ E with

‖x‖ = ‖y‖ = 1 and x 6= y. It is said to be uniformly convex if limn→∞ ‖xn−yn‖ = 0 for any

two sequences {xn} and {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and limn→∞ ‖xn+yn
2
‖ = 1.

Let UE = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then the Banach space E is said

to be smooth provided

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x, y ∈ UE. It is also said to be uniformly smooth if the above limit is

attained uniformly for x, y ∈ UE. It is well known that if E is uniformly smooth, then J

is uniformly norm-to-norm continuous on each bounded subset of E. It is also well known

that if E is uniformly smooth if and only if E∗ is uniformly convex.

Recall that a Banach space E enjoys Kadec-Klee property if for any sequence {xn} ⊂ E,

and x ∈ E with xn ⇀ x, and ‖xn‖ → ‖x‖, then ‖xn − x‖ → 0 as n → ∞. For more

details on Kadec-Klee property, the readers can refer to [3] and the reference therein. It

is well known that if E is a uniformly convex Banach spaces, then E enjoys Kadec-Klee

property.

Next, we assume that E is a smooth Banach space. Consider the functional defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 ∀x, y ∈ E.

Observe that, in a Hilbert space H, the equality is reduced to φ(x, y) = ‖x−y‖2, x, y ∈ H.
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As we all know if C is a nonempty closed convex subset of a Hilbert space H and

PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This fact

actually characterizes Hilbert spaces and consequently, it is not available in more general

Banach spaces. In this connection, Alber [4] recently introduced a generalized projection

operator ΠC in a Banach space E which is an analogue of the metric projection PC in

Hilbert spaces. Recall that the generalized projection ΠC : E → C is a map that assigns

to an arbitrary point x ∈ E the minimum point of the functional φ(x, y), that is, ΠCx = x̄,

where x̄ is the solution to the minimization problem

φ(x̄, x) = min
y∈C

φ(y, x).

Existence and uniqueness of the operator ΠC follows from the properties of the functional

φ(x, y) and strict monotonicity of the mapping J ; see, for example, [3] and [4]. In Hilbert

spaces, ΠC = PC . It is obvious from the definition of function φ that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖y‖+ ‖x‖)2, ∀x, y ∈ E, (2.3)

and

φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉, ∀x, y, z ∈ E. (2.4)

Remark 2.1. If E is a reflexive, strictly convex and smooth Banach space, then φ(x, y) =

0 if and only if x = y; for more details, for more details; see [3] for more details.

Let T : C → C be a mapping. In this paper, we use F (T ) to denote the fixed point set

of T. T is said to be closed if for any sequence {xn} ⊂ C such that limn→∞ xn = x0 and

limn→∞ Txn = y0, then Tx0 = y0. In this paper, we use → and ⇀ to denote the strong

convergence and weak convergence, respectively.

A point p in C is said to be an asymptotic fixed point of T [5] iff C contains a sequence

{xn} which converges weakly to p such that limn→∞ ‖xn−Txn‖ = 0. The set of asymptotic

fixed points of T will be denoted by F̃ (T ). T is said to be relatively nonexpansive iff

F̃ (T ) = F (T ) 6= ∅ and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F (T ). T is said

to be quasi-φ-nonexpansive [6] iff F (T ) 6= ∅ and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and
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p ∈ F (T ). Recently, a number of projection methods have been investigated for the class

of mappings; for more details, see [6-10] and the references therein.

Remark 2.2. The class of quasi-φ-nonexpansive mappings is more general than the class

of relatively nonexpansive mappings which requires the restriction: F (T ) = F̃ (T ).

Remark 2.3. The class of quasi-φ-nonexpansive mappings is a generalization of the class

of quasi-nonexpansive mappings in Hilbert spaces.

Let A be a multivalued operator from E to E∗ with domain Dom(A) = {z ∈ E : Az 6=

∅} and range Ran(A) = ∪{Az : z ∈ Dom(A)}. An operator A is said to be monotone iff

〈x1 − x2, y1 − y2〉 ≥ 0 for each xi ∈ Dom(A) and yi ∈ Axi, i = 1, 2. A monotone operator

A issaid to be maximal if its graph Grap(A) = {(x, y) : y ∈ Ax} is not properly contained

in the graph of any other monotone operator. We know that if A is a maximal monotone

operator, then A−1(0) is closed and convex.

Let E be a reflexive, strictly convex and smooth Banach space, and let A be a maximal

monotone operator from E to E∗. From Rockafellar [11], we find that s > 0 and x ∈ E,

there exists a unique xs ∈ D(A) such that Jx ∈ Jxs + sAxs. If Jsx = xs, then we can

define a single valued mapping Js : E → Dom(A) by Js = (J + sA)−1J and such a Js is

called the resolvent of A. We know that A−1(0) = F (Js) for all s > 0.

Lemma 2.4. From [6], we know that Js : E → Dom(A) is closed quasi-φ-nonexpansive

with A−1(0) = F (Js) for all s > 0.

In order to our main results, we also need the following lemmas.

Lemma 2.5 [4] Let E be a reflexive, strictly convex, and smooth Banach space, C a

nonempty, closed, and convex subset of E, and x ∈ E. Then

φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x), ∀y ∈ C.



HYBRID PROJECTION ALGORITHMS 583

Lemma 2.6 [4] Let C be a nonempty, closed, and convex subset of a smooth Banach space

E, and x ∈ E. Then x0 = ΠCx if and only if

〈x0 − y, Jx− Jx0〉 ≥ 0, ∀y ∈ C.

Lemma 2.7 [12] Let E be a strictly convex, and smooth Banach space. Let C be a

nonempty closed and convex subset of E. Let T : C → C be a closed quasi-φ-nonexpansive

mapping. Then F (T ) is a closed convex subset of C.

Lemma 2.8 [13] Let E be a smooth and uniformly convex Banach space and let r > 0.

Then there exists a strictly increasing, continuous and convex function g : [0, 2r] → R

such that g(0) = 0 and

‖tx+ (1− t)y‖2 ≤ t‖x‖2 + (1− t)‖y‖2 − t(1− t)g(‖x− y‖)

for all x, y ∈ Br = {x ∈ E : ‖x‖ ≤ r} and t ∈ [0, 1].

Lemma 2.9. Let C be a closed convex subset of a smooth, strictly convex and reflexive

Banach space E. Let f be a bifunction from C × C to R satisfying (A1)-(A4). Let r > 0

and x ∈ E. Then

(a) [14] There exists z ∈ C such that

f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C.

(b) ([6], [15]) Define a mapping Tr : E → C by

Srx = {z ∈ C : f(z, y) +
1

r
〈y − z, Jz − Jx〉, ∀y ∈ C}.

Then the following conclusions hold:

(1) Sr is single-valued;

(2) Sr is a firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈Srx− Sry, JSrx− JSry〉 ≤ 〈Srx− Sry, Jx− Jy〉

(3) F (Sr) = EP (f);
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(4) Sr is quasi-φ-nonexpansive;

(5)

φ(q, Srx) + φ(Srx, x) ≤ φ(q, x), ∀q ∈ F (Sr);

(6) EP (f) is closed and convex.

3. Main results

Theorem 3.1. Let E be a uniformly smooth and strictly convex Banach space which

also enjoys the Kadec-Klee property. Let C be a nonempty closed and convex subset

of E. Let Λ be an index set. Let {si} be a positive real number sequence. Let fi be a

bifunction from C×C to R satisfying (A1)-(A4) and Ai : E → E∗ be a maximal monotone

operator such that Dom(Ai) ⊂ C for every i ∈ Λ. Assume that the common solution set

CSS := ∩i∈ΛA
−1
i (0)

⋂
∩i∈ΛEF (fi) is nonempty. Let {xn} be a sequence generated in the

following manner:

x0 ∈ E chosen arbitrarily,

C(1,i) = C,

C1 = ∩i∈ΛC(1,i),

x1 = ΠC1x0,

y(n,i) = J−1(α(n,i)Jxn + (1− α(n,i))JJ
Ai
si
xn),

u(n,i) ∈ C such that fi(u(n,i), y) + 1
r(n,i)
〈y − u(n,i), Ju(n,i) − Jy(n,i)〉 ≥ 0, ∀y ∈ C,

C(n+1,i) = {z ∈ C(n,i) : φ(z, u(n,i)) ≤ φ(z, xn)},

Cn+1 = ∩i∈ΛC(n+1,i),

xn+1 = ΠCn+1x1,

where JAi
si

= (J+siAi)
−1J , {α(n,i)} is a real sequence in [0, 1] such that lim infn→∞ α(n,i)(1−

α(n,i)) > 0, and {r(n,i)} is a real sequence in [a,∞), where a is some positive real number,

for every i ∈ Λ. Then the sequence {xn} converges strongly to ΠCSSx1, where ΠCSS is the

generalized projection from E onto CSS.
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Proof. In the light of Remark 2.4, we see that JAi
si

is closed quasi-φ-nonexpansve with

F (JAi
si

) = A−1
i (0). We conclude from Lemma 2.7 and Lemma 2.9 that the common solution

set CSS is closed and convex. Next, we prove that Cn is closed, and convex. It suffices

to show that, for each fixed but arbitrary i ∈ Λ, C(n,i) is closed and convex. This can be

proved by induction on n. It is obvious that C(1,i) = C is closed and convex. Assume

that C(k,i) is closed and convex for some k ≥ 1. Let For z1, z2 ∈ C(k+1,i), we see that

z1, z2 ∈ C(k,i). It follows that z = tz1 + (1− t)z2 ∈ C(k,i), where t ∈ (0, 1). Notice that

φ(z1, u(k,i)) ≤ φ(z1, xk),

and

φ(z2, u(k,i)) ≤ φ(z2, xk),

The above inequalities are equivalent to

2〈z1, Jxk − Ju(k,i)〉 ≤ ‖xk‖2 − ‖u(k,i)‖2, (3.1)

and

2〈z2, Jxk − Ju(k,i)〉 ≤ ‖xk‖2 − ‖u(k,i)‖2, (3.2)

Multiplying t and (1− t) on the both sides of (3.1) and (3.2), respectively yields that and

2〈z, Jxk − Ju(k,i)〉 ≤ ‖xk‖2 − ‖u(k,i)‖2.

That is,

φ(z, u(k,i)) ≤ φ(z, xk),

where z ∈ C(k,i). This finds that C(k+1,i) is closed and convex. We conclude that C(n,i) is

closed and convex. This in turn implies that Cn = ∩i∈ΛC(n,i) is closed, and convex. This

implies that ΠCn+1x1 is well defined.
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Next, we show that CSS ⊂ Cn. CSS ⊂ C1 = C is clear. Suppose that CSS ⊂ C(k,i)

for some positive integer k. For any w ∈ CSS ⊂ C(k,i), we see that

φ(w, u(k,i))

= φ(w, Sr(k,i)y(k,i))

≤ φ(w, y(k,i))

= φ(w, J−1(α(k,i)Jxk + (1− α(k,i))JJ
Ai
si
xk))

= ‖w‖2 − 2〈w, α(k,i)Jxk + (1− α(k,i))JJ
Ai
si
xk〉

+ ‖α(k,i)Jxk + (1− α(k,i))JJ
Ai
si
xk‖2

≤ ‖w‖2 − 2α(k,i)〈w, Jxk〉 − 2(1− α(k,i))〈w, JJAi
si
xk〉

+ α(k,i)‖xk‖2 + (1− α(k,i))‖JAi
si
xk‖2

= α(k,i)φ(w, xk) + (1− α(k,i))φ(w, JAi
si
xk)

≤ α(k,i)φ(w, xk) + (1− α(k,i))φ(w, xk)

= φ(w, xk),

(3.3)

which shows that w ∈ C(k+1,i). This implies that CSS ⊂ C(n,i). This in turn implies that

CSS ⊂ ∩i∈ΛC(n,i). This is completes the proof that CSS ⊂ Cn.

Next, we show that the sequence {xn} is bounded. In view of xn = ΠCnx1, we find from

Lemma 2.6 that 〈xn − z, Jx1 − Jxn〉 ≥ 0, for any z ∈ Cn. Since CSS ⊂ Cn, we find that

〈xn − w, Jx1 − Jxn〉 ≥ 0, ∀w ∈ CSS. (3.4)

It follows from Lemma 2.5 that

φ(xn, x1) ≤ φ(ΠCSSx1, x1)− φ(ΠCSSx1, xn)

≤ φ(ΠCSS)x1, x1).

This implies that the sequence {φ(xn, x1)} is bounded. It follows from (2.3) that the

sequence {xn} is also bounded.

Since the space is reflexive, we may assume that xn ⇀ x̄. Next, we show that x̄ ∈ CSS.

Since Cn is closed, and convex, we find that x̄ ∈ Cn. On the other hand, we see from the
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weakly lower semicontinuity of the norm that

φ(x̄, x1) = ‖x̄‖2 − 2〈x̄, Jx1〉+ ‖x1‖2

≤ lim inf
n→∞

(‖xn‖2 − 2〈xn, Jx1〉+ ‖x1‖2)

= lim inf
n→∞

φ(xn, x1)

≤ lim sup
n→∞

φ(xn, x1)

≤ φ(x̄, x1),

which implies that limn→∞ φ(xn, x1) = φ(x̄, x1). Hence, we have limn→∞ ‖xn‖ = ‖x̄‖. In

view of Kadec-Klee property of E, we find that xn → x̄ as n → ∞. Since xn = ΠCnx1,

and xn+1 = ΠCn+1x1 ∈ Cn+1 ⊂ Cn, we find that φ(xn, x1) ≤ φ(xn+1, x1). This shows

that {φ(xn, x1)} is nondecreasing. It follows from its boundedness that limn→∞ φ(xn, x1)

exists. In view of the construction of xn+1 = ΠCn+1x1 ∈ Cn+1 ⊂ Cn, we arrive at

φ(xn+1, xn) = φ(xn+1,ΠCnx1)

≤ φ(xn+1, x1)− φ(ΠCnx1, x1)

= φ(xn+1, x1)− φ(xn, x1).

This implies that

lim
n→∞

φ(xn+1, xn) = 0. (3.5)

In the light of xn+1 = ΠCn+1x1 ∈ Cn+1, we find that φ(xn+1, u(n,i)) ≤ φ(xn+1, xn). This

implies from (3.5) that

lim
n→∞

φ(xn+1, u(n,i)) = 0. (3.6)

In view of (2.3), we see that limn→∞(‖xn+1‖−‖u(n,i)‖) = 0. It follows that limn→∞ ‖u(n,i)‖ =

‖x̄‖. This is equivalent to

lim
n→∞

‖Ju(n,i)‖ = ‖Jx̄‖. (3.7)

This implies that {Ju(n,i)} is bounded. Note that both E and E∗ are reflexive. We may

assume that Ju(n,i) ⇀ u(∗,i) ∈ E∗. In view of the reflexivity of E, we see that J(E) = E∗.
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This shows that there exists an element ui ∈ E such that Jui = u(∗,i). It follows that

φ(xn+1, u(n,i)) = ‖xn+1‖2 − 2〈xn+1, Ju(n,i)〉+ ‖u(n,i)‖2

= ‖xn+1‖2 − 2〈xn+1, Ju(n,i)〉+ ‖Ju(n,i)‖2.

Taking lim infn→∞ on the both sides of the equality above yields that

0 ≥ ‖x̄‖2 − 2〈x̄, u(∗,i)〉+ ‖u(∗,i)‖2

= ‖x̄‖2 − 2〈x̄, Jui〉+ ‖Jui‖2

= ‖x̄‖2 − 2〈x̄, Jui〉+ ‖ui‖2

= φ(x̄, ui).

That is, x̄ = ui, which in turn implies that u(∗,i) = Jx̄. It follows that Ju(n,i) ⇀ Jx̄ ∈ E∗.

Since E∗ enjoys Kadec-Klee property, we obtain from (3.7) that limn→∞ Ju(n,i) = Jx̄.

Since E enjoys the Kadec-Klee property, we obtain that u(n,i) → x̄, as n→∞. Note that

‖xn − u(n,i)‖ ≤ ‖xn − x̄‖+ ‖x̄− u(n,i)‖. It follows that

lim
n→∞

‖xn − u(n,i)‖ = 0. (3.8)

Notice that

φ(w, xn)− φ(w, u(n,i)) = ‖xn‖2 − ‖u(n,i)‖2 − 2〈w, Jxn − Ju(n,i)〉

≤ ‖xn − u(n,i)‖(‖xn‖+ ‖u(n,i)‖) + 2‖w‖‖Jxn − Ju(n,i)‖.

In view of (3.8), we find that

lim
n→∞

(φ(w, xn)− φ(w, u(n,i))) = 0. (3.9)
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Since E is uniformly smooth, we know that E∗ is uniformly convex. In view of Lemma

2.8, we find that

φ(w, u(n,i))

= φ(w, Sr(n,i)
y(n,i))

≤ φ(w, y(n,i))

= φ(w, J−1(α(n,i)Jxn + (1− α(n,i))JJ
Ai
si
xn))

= ‖w‖2 − 2〈w, α(n,i)Jxn + (1− α(n,i))JJ
Ai
si
xn〉

+ ‖α(n,i)Jxn + (1− α(n,i))JJ
Ai
si
xn‖2

≤ ‖w‖2 − 2α(n,i)〈w, Jxn〉 − 2(1− α(n,i))〈w, JJAi
si
xn〉

+ α(n,i)‖xn‖2 + (1− α(n,i))‖JAi
si
xn‖2 − α(n,i)(1− α(n,i))g(‖Jxn − JJAi

si
xk‖)

= α(n,i)φ(w, xn) + (1− α(n,i))φ(w, JAi
si
xn)− α(n,i)(1− α(n,i))g(‖Jxn − JJAi

si
xn‖)

≤ φ(w, xn)− α(n,i)(1− α(n,i))g(‖Jxn − JJAi
si
xn‖).

This implies that

α(n,i)(1− α(n,i))g(‖Jxn − JJAi
si
xn‖) ≤ φ(w, xn)− φ(w, u(n,i)).

In view of the restrictions on the sequence {α(n,i)}, we find from (3.9) that

lim
n→∞

‖Jxn − JJAi
si
xn‖ = 0.

Notice that ‖JJAi
si
xn − Jx̄‖ ≤ ‖JJAi

si
xn − Jxn‖+ ‖Jxn − Jx̄‖. It follows that

lim
n→∞

‖JJAi
si
xn − Jx̄‖ = 0. (3.10)

The demicontinuity of J−1 : E∗ → E implies that JAi
si
xn ⇀ x̄. Note that

|‖JAi
si
xn‖ − ‖x̄‖| = |‖JJAi

si
xn‖ − ‖Jx̄‖| ≤ ‖JJAi

si
xn − Jx̄‖.

This implies from (3.10) that limn→∞ ‖JAi
si
xn‖ = ‖x̄‖. Since E has Kadec-Klee property,

we obtain that limn→∞ ‖JAi
si
xn − x̄‖ = 0. It follows from the closedness of JAi

si
that x̄ ∈

F (JAi
si

) = A−1
i (0) for every i ∈ Λ. This proves that x̄ ∈ ∩i∈ΛA

−1
i (0).
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Next, we show that x̄ ∈ ∩i∈ΛEF (fi). In view of Lemma 2.5, we find that

φ(u(n,i), y(n,i)) ≤ φ(w, y(n,i))− φ(w, u(n,i))

≤ φ(w, xn)− φ(w, u(n,i)).

It follows from (3.9) that limn→∞ φ(u(n,i), y(n,i)) = 0. This implies that limn→∞(‖u(n,i)‖ −

‖y(n,i)‖) = 0. In view of (3.8), we see that u(n,i) → x̄ as n → ∞. This implies that

‖y(n,i)‖ − ‖x̄‖ → 0, as n → ∞. It follows that limn→∞ ‖Jy(n,i)‖ = ‖Jx̄‖. Since E∗ is

reflexive, we may assume that Jy(n,i) ⇀ p(∗,i) ∈ E∗. In view of J(E) = E∗, we see that

there exists pi ∈ E such that Jpi = p(∗,i). It follows that

φ(u(n,i), y(n,i)) = ‖u(n,i)‖2 − 2〈u(n,i), Jy(n,i)〉+ ‖y(n,i)‖2

= ‖u(n,i)‖2 − 2〈u(n,i), Jy(n,i)〉+ ‖Jy(n,i)‖2.

Taking lim infn→∞ the both sides of equality above yields that

0 ≥ ‖x̄‖2 − 2〈x̄, p(∗,i)〉+ ‖p(∗,i)‖2

= ‖x̄‖2 − 2〈x̄, Jpi〉+ ‖Jpi‖2

= ‖x̄‖2 − 2〈x̄, Jpi〉+ ‖pi‖2

= φ(x̄, pi).

That is, x̄ = pi, which in turn implies that p(∗,i) = Jx̄. It follows that Jy(n,i) ⇀ Jx̄ ∈ E∗.

Since E∗ enjoys the Kadec-Klee property, we obtain that Jy(n,i) − Jx̄ → 0 as n → ∞.

Note that J−1 : E∗ → E is demi-continuous. It follows that y(n,i) ⇀ x̄. Since E enjoys

the Kadec-Klee property, we obtain that y(n,i) → x̄ as n→∞. Note that ‖u(n,i)−y(n,i)‖ ≤

‖u(n,i) − x̄‖+ ‖x̄− y(n,i)‖. This implies that

lim
n→∞

‖u(n,i) − y(n,i)‖ = 0. (3.11)

Since J is uniformly norm-to-norm continuous on any bounded sets, we have lim
n→∞

‖Ju(n,i)−

Jy(n,i)‖ = 0. From the assumption r(n,i) ≥ a, we see that

lim
n→∞

‖Ju(n,i) − Jy(n,i)‖
r(n,i)

= 0. (3.12)
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In view of u(n,i) = Sr(n,i)
y(n,i), we see that

fi(u(n,i), y) +
1

r(n,i)

〈y − u(n,i), Ju(n,i) − Jy(n,i)〉 ≥ 0, ∀y ∈ C.

It follows from (A2) that

‖y − u(n,i)‖
‖Ju(n,i) − Jy(n,i)‖

rn
≥ 1

r(n,i)

〈y − u(n,i), Ju(n,i) − Jy(n,i)〉 ≥ fi(y, u(n,i)), ∀y ∈ C.

In view of (A4), we find from (3.12) that

fi(y, x̄) ≤ 0, ∀y ∈ C.

For 0 < ti < 1 and y ∈ C, define y(t,i) = tiy + (1 − ti)x̄. It follows that y(t,i) ∈ C, which

yields that f(y(t,i), x̄) ≤ 0. It follows from the (A1) and (A4) that

0 = f(y(t,i), y(t,i)) ≤ tif(y(t,i), y) + (1− ti)f(y(t,i), x̄) ≤ tif(y(t,i), y).

That is,

f(y(t,i), y) ≥ 0.

Letting ti ↓ 0, we obtain from (A3) that fi(x̄, y) ≥ 0, ∀y ∈ C. This implies that x̄ ∈ EP (fi)

for every i ∈ Λ. This shows that x̄ ∈ CSS.

Finally, we prove that x̄ = ΠCSSx1. Letting n→∞ in (3.4), we see that

〈x̄− w, Jx1 − Jx̄〉 ≥ 0, ∀w ∈ CSS.

In view of Lemma 2.6, we find that that x̄ = ΠCSSx1. This completes the proof.

Remark 3.2. Since every uniformly convex Banach space is a strictly convex Banach

space which also enjoys the Kadec-Klee property, we see that Theorem 3.1 is still valid

in uniformly smooth and uniformly convex Banach space. Theorem 3.1 improves the

corresponding results in Qin, Cho and Kang [6].

For a single bifunction and maximal monotone operator, we find from Theorem 3.1 the

following.

Corollary 3.3. Let E be a uniformly smooth and strictly convex Banach space which also

enjoys the Kadec-Klee property. Let C be a nonempty closed and convex subset of E. Let

s be a positive real number. Let f be a bifunction from C × C to R satisfying (A1)-(A4)
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and A : E → E∗ be a maximal monotone operator such that Dom(A) ⊂ C. Assume that

the common solution set CSS := A−1(0) ∩ EF (f) is nonempty. Let {xn} be a sequence

generated in the following manner:



x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

yn = J−1(αnJxn + (1− αn)JJA
s xn),

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},

xn+1 = ΠCn+1x1,

where JA
s = (J+sA)−1J , {αn} is a real sequence in [0, 1] such that lim infn→∞ αn(1−αn) >

0, and {rn} is a real sequence in [a,∞), where a is some positive real number. Then the

sequence {xn} converges strongly to ΠCSSx1, where ΠCSS is the generalized projection

from E onto CSS.

Remark 3.4. Since JA
s is closed quasi-φ-nonexpansive, we see that Corollary 3.3 mainly

improves the corresponding results in Qin, Cho and Kang [6].

If A is a zero mapping, then we have from Theorem 3.1 the following.

Corollary 3.5. Let E be a uniformly smooth and strictly convex Banach space which also

enjoys the Kadec-Klee property. Let C be a nonempty closed and convex subset of E. Let

Λ be an index set. Let fi be a bifunction from C ×C to R satisfying (A1)-(A4) for every

i ∈ Λ. Assume that the common solution set CSS := ∩i∈ΛEF (fi) is nonempty. Let {xn}
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be a sequence generated in the following manner:

x0 ∈ E chosen arbitrarily,

C(1,i) = C,

C1 = ∩i∈ΛC(1,i),

x1 = ΠC1x0,

u(n,i) ∈ C such that fi(u(n,i), y) + 1
r(n,i)
〈y − u(n,i), Ju(n,i) − Jxn〉 ≥ 0, ∀y ∈ C,

C(n+1,i) = {z ∈ C(n,i) : φ(z, u(n,i)) ≤ φ(z, xn)},

Cn+1 = ∩i∈ΛC(n+1,i),

xn+1 = ΠCn+1x1,

where {α(n,i)} is a real sequence in [0, 1] such that lim infn→∞ α(n,i)(1 − α(n,i)) > 0, and

{r(n,i)} is a real sequence in [a,∞), where a is some positive real number, for every i ∈ Λ.

Then the sequence {xn} converges strongly to ΠCSSx1, where ΠCSS is the generalized

projection from E onto CSS.
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