
Available online at http://scik.org

Adv. Fixed Point Theory, 5 (2015), No. 2, 168-191

ISSN: 1927-6303

TRIPLED BEST PROXIMITY POINT THEOREMS IN PARTIALLY ORDERED
METRIC SPACES

JAMNIAN NANTADILOK∗, SOMKIAT CHAIPORNJAREANSRI

Department of Mathematics, Lampang Rajabhat University, Lampang 52000, Thailand

Copyright c© 2015 Nantadilok and Chaipornjareansri. This is an open access article distributed under the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we establish tripled best proximity point theorems for a mixed monotone mapping satisfy-

ing the proximally tripled weak (ψ,φ) contraction in a partially ordered metric space. Presented theorems extend

and improve many existing results in the literature.
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1. Introduction

Let (X ,d) be a metric space and A be a nonempty subset of X . If T : A→ X is a mapping such

that the equation T x = x has at least one solution in A, then x is called a fixed point of T . If the

equation T x = x does not possess a solution, then d(x,T x) > 0. In such situation, it is crucial

to find an element x such that x is in proximity to T x. In the setting of a metric space (X ,d), if

T : A→ X , then a best approximation theorem provides sufficient conditions that ascertain the
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existence of an element x0 such that

d(x0,T x0) = dist(T x0,A),

where dist(A,B) = inf{d(x,y) : x ∈ A and y ∈ B} for any nonempty subsets A and B of X . A

point x0 is known as a best approximant. In fact, a well-known best approximation theorem,

due to Ky Fan [19], states that if K is a nonempty compact convex subset of a Banach space X

and T : K→ X is a single-valued continuous mapping, then there exists an element x0 ∈ K such

that

d(x0,T x0) = dist(T x0,K).

Later, this result has been generalized by many authors (see [15, 16, 17, 39, 40, 61, 60]). De-

spite the fact that the existence of an approximate solution is ensured by best approximation

theorems, a natural question in this direction is whether it is possible to guarantee the existence

of approximate solution that is optimal. In other words, if A and B are nonempty subsets of a

normed linear space and T : A→ B is a mapping, then the point to be explored is whether one

can find an element x0 ∈ A such that

d(x0,T x0) = min{d(x,T x) : x ∈ A}.

The answer to this poser is provided by best proximity pair theorems. A best proximity pair the-

orem investigates the conditions under which the optimization problem has a solution. In deed,

if T is a multifunction from A to B, then d(x,T x) ≥ dist(A,B), where d(x,T x) = inf{d(x,y) :

y ∈ T x}. So, the most optimal solution to the problem of minimizing the real-valued function

x→ d(x,T x) over the domain A of the mapping T will be the one for which the value dist(A,B)

is attained. In view of this standpoint, best proximity pair theorems are considered to study the

conditions that assert the existence of an element x0 such that

d(x0,T x0) = dist(A,B).

The pair (x0,T x0) is called a best proximity pair of T and the point x0 is called a best proximity

point of T . If the mapping under consideration is a self-mapping, it may be observed that a best

proximity pair theorem is nothing but a fixed point theorem under certain suitable conditions.

For detailed study on fixed point theory, we refer readers to ([20, 28, 58, 59, 62]).
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The existence and convergence of best proximity points is an interesting topic of optimization

theory which recently attracted the attention of many authors (see [7, 18, 27, 29, 30, 31, 33, 51,

52, 53, 54, 55, 56]). One can also find the existence of best proximity point in the setting of

partially ordered metric space in ([4, 38, 49, 50]). Recently, Bhaskar and Lakshmikantham

have introduced the concept called mixed monotone mapping and proved coupled fixed point

theorems for mappings satisfying the mixed monotone property, which is used to investigate

a large class of problems, and they discussed the existence and uniqueness of a solution for a

periodic boundary value problem. One can find the existence of coupled fixed points in the

setting of partially ordered metric space in ([4, 14, 21, 22, 23, 29, 30, 33, 34, 35, 38, 42, 44, 45,

47, 48, 49, 50, 51, 52]). Moreover, one can also find the existence of tripled fixed points in the

setting of various ordered metric spaces in ([1, 2, 3, 6, 8, 9, 10, 11, 13, 24, 32, 37, 41, 46, 57])

and references therein.

2. Preliminaries

Let Φ be the class of all functions φ : [0,∞)→ [0,∞) which satisfy:

(i) φ is continuous and nondecreasing,

(ii) φ(t) = 0 if and only if t = 0,

(iii) φ(t + s)≤ φ(t)+φ(s), ∀t,s ∈ (0,∞].

And let Ψ be the class of all functions ψ : (0,∞]→ (0,∞] which satisfy lim
t→r

ψ(t) > 0 for all

r > 0 and lim
t→0+

ψ(t) = 0.

In [26], Kumum et al. extended the main theoretical result of Luong and Thuan in [36]. The

main result of Kumam et al. in [26] is the following.

Theorem 2.1. Let (X ,d,≤) be a partially ordered complete metric space. Let A and B be

nonempty closed subsets of the metric space (X ,d) such that A0 6= /0. Let F : A×A→ B satisfy

the following conditions:

(i) F is a continuous proximally coupled weak (ψ,φ) contraction having the proximal

mixed monotone property on A such that F(A0×A0)⊆ B0.
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(ii) There exist elements (x0,y0) and (x1,y1) in A0×A0 such that

d(x1,F(x0,y0)) = dist(A,B) with x0 ≤ x1

and

d(y1,F(y0,x0)) = dist(A,B) with y0 ≤ y1.

Then, there exist (x,y) ∈ A×A such that

d(x,F(x,y)) = dist(A,B) and d(y,F(y,x)) = dist(A,B).

Motivated and inspired by the above Theorem, we investigate the concept of the proximal

mixed monotone property and of a proximally tripled weak (ψ,φ) contraction on A. We also

prove the existence and uniqueness of tripled best proximity points in the setting of partially

ordered metric spaces. Further, we attempt to provide an extension to the Theorem 2.1 above.

Now we recall the definition of a tripled fixed point which recently introduced by Berinde

and Borcut in [12]. Let X be a nonempty set and F : X3→ X be a given mapping. An element

(x,y,z) ∈ X3 is called a tripled fixed point of the mapping F if

x = F(x,y,z) , y = F(y,x,y) and z = F(z,y,x).

The authors mentioned above also introduced the notion of mixed monotone mapping. If

(X ,≤) is a partially ordered set, the mapping F is said to have the mixed monotone property, if

x1,x2 ∈ X , x1 ≤ x2 ⇒ F(x1,y,z)≤ F(x2,y,z) , ∀y,z ∈ X ,

y1,y2 ∈ X , y1 ≤ y2 ⇒ F(x,y1,z)≥ F(x,y2,z) , ∀x,z ∈ X ,

z1,z2 ∈ X , z1 ≤ z2 ⇒ F(x,y,z1)≤ F(x,y,z2) , ∀x,y ∈ X .

Let A and B be nonempty subsets of a metric space (X ,d). We use the following notations in

the sequel:

dist(A,B) = inf{d(x,y) : x ∈ A and y ∈ B},

A0 = {x ∈ A : d(x,y) = dist(A,B), for some y ∈ B},

B0 = {y ∈ B : d(x,y) = dist(A,B), for some x ∈ A}.
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In [29], the authors discussed sufficient conditions which guarantee the nonemptiness of A0 and

B0. Also in [53], the authors proved that A0 ⊆ Bd(A) and B0 ⊆ Bd(B) in the setting of normed

linear space, where Bd(K) denotes the boundary of K for any K ⊆ X .

We now give the following definition.

Definition 2.1. Let (X ,d,≤) be a partially ordered metric space and A,B are nonempty subsets

of X. A mapping F : A× A× A→ B is said to have proximal mixed monotone property if

F(x,y,z) is proximally nondecreasing in x and z, and is proximally nonincreasing in y, that is,

for all x,y,z ∈ A,

x1 ≤ x2 ≤ x3

d(u1,F(x1,y,z)) = dist(A,B)

d(u2,F(x2,y,z)) = dist(A,B)

d(u3,F(x3,y,z)) = dist(A,B)


⇒ u1 ≤ u2 ≤ u3;

y1 ≤ y2 ≤ y3

d(u4,F(x,y1,z)) = dist(A,B)

d(u5,F(x,y2,z)) = dist(A,B)

d(u6,F(x,y3,z)) = dist(A,B)


⇒ u4 ≥ u5 ≥ u6;

and

z1 ≤ z2 ≤ z3

d(u7,F(x,y,z1)) = dist(A,B)

d(u8,F(x,y,z2)) = dist(A,B)

d(u9,F(x,y,z3)) = dist(A,B)


⇒ u7 ≤ u8 ≤ u9,

where x1,x2,x3,y1,y2,y3,u1,u2, . . . ,u9 ∈ A.

We note that if A = B in the above definition, the notion of the proximal mixed monotone

property reduces to that of mixed monotone property. The following lemmas are essential.

Lemma 2.2. Let (X ,d,≤) be a partially ordered metric space and A,B are nonempty subsets

of X. Assume A0 is nonempty. A mapping F : A×A×A→ B has the proximal mixed monotone
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property with F(A0×A0×A0)⊆ B0 whenever x0,x1,x2,x3,y0,y1,y2,z0,z1,z2 in A such that

x0 ≤ x1 ≤ x2 ; y0 ≥ y1 ≥ y2 ; z0 ≤ z1 ≤ z2

d(x1,F(x0,y0,z0)) = dist(A,B)

d(x2,F(x1,y1,z1)) = dist(A,B)

d(x3,F(x2,y2,z2)) = dist(A,B)


⇒ x1 ≤ x2 ≤ x3.(1)

Proof By hypothesis F(A0×A0×A0)⊆ B0 , therefore F(x2,y0,z0) ∈ B0 . Hence, there exists

x∗1 ∈ A such that

(2) d(x∗1,F(x2,y0,z0)) = dist(A,B).

Using that F is proximal mixed monotone (in particular F is proximally nondecreasing in x) to

(1) and (2), we get

x0 ≤ x1 ≤ x2

d(x1,F(x0,y0,z0)) = dist(A,B)

d(x2,F(x1,y1,z1)) = dist(A,B)

d(x∗1,F(x2,y0,z0)) = dist(A,B)


⇒ x1 ≤ x2 ≤ x∗1.(3)

Analogously, using the fact that F is proximal mixed monotone (in particular, F is proximally

nonincreasing in y) to (1) and (2), we get

y0 ≥ y1 ≥ y2

d(x∗1,F(x2,y0,z0)) = dist(A,B)

d(x3,F(x2,y2,z2)) = dist(A,B)

 ⇒ x∗1 ≤ x3.(4)

From (3) and (4), we conclude that x1 ≤ x2 ≤ x3. The proof is finished.

Lemma 2.3. Let (X ,d,≤) be a partially ordered metric space and A,B are nonempty subsets

of X. Assume A0 is nonempty. A mapping F : A×A×A→ B has the proximal mixed monotone

property with F(A0×A0×A0)⊆ B0 whenever x0,x1,x2,y0,y1,y2,y3,z0,z1,z2 in A such that

x0 ≤ x1 ≤ x2 ; y0 ≥ y1 ≥ y2 ; z0 ≤ z1 ≤ z2

d(y1,F(y0,x0,z0)) = dist(A,B)

d(y2,F(y1,x1,z1)) = dist(A,B)

d(y3,F(y2,x2,z2)) = dist(A,B)


⇒ y1 ≥ y2 ≥ y3.(5)
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Proof By hypothesis F(A0×A0×A0)⊆ B0 , therefore F(y2,x1,z1) ∈ B0 . Hence, there exists

y∗1 ∈ A such that

(6) d(y∗1,F(y2,x1,z1)) = dist(A,B).

Using that F is proximal mixed monotone (in particular F is proximally nondecreasing in x) to

(5) and (6), we get

x0 ≤ x1 ≤ x2 ; y0 ≥ y1 ≥ y2

d(y1,F(y0,x0,z0)) = dist(A,B)

d(y2,F(y1,x1,z1)) = dist(A,B)

d(y∗1,F(y2,x1,z1)) = dist(A,B)


⇒ y1 ≥ y2 ≥ y∗1.(7)

Analogously, using the fact that F is proximal mixed monotone (in particular, F is proximally

nonincreasing in y) to (5) and (6), we get

x0 ≤ x1 ≤ x2;z0 ≤ z1 ≤ z2

d(y∗1,F(y2,x1,z1)) = dist(A,B)

d(y3,F(y2,x2,z2)) = dist(A,B)

 ⇒ y∗1 ≥ y3.(8)

From (7) and (8), we conclude that y1 ≥ y2 ≥ y3. The proof is finished.

Lemma 2.4. Let (X ,d,≤) be a partially ordered metric space and A,B are nonempty subsets

of X. Assume A0 is nonempty. A mapping F : A×A×A→ B has the proximal mixed monotone

property with F(A0×A0×A0)⊆ B0 whenever x0,x1,x2,y0,y1,y2,z0,z1,z2,z3 in A such that

x0 ≤ x1 ≤ x2 ; y0 ≥ y1 ≥ y2 ; z0 ≤ z1 ≤ z2

d(z1,F(z0,y0,x0)) = dist(A,B)

d(z2,F(z1,y1,x1)) = dist(A,B)

d(z3,F(z2,y2,x2)) = dist(A,B)


⇒ z1 ≤ z2 ≤ z3.(9)

Proof The proof is similar to that of Lemma 2.2 and Lemma 2.3.

As in [26], we similarly give the following definition.

Definition 2.2. Let (X ,d,≤) be a partially ordered metric space and A,B are nonempty subsets

of X. Assume A0 is nonempty. A mapping F : A×A×A→ B is said to be proximally tripled
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weak (ψ,φ) contraction on A, whenever

x1 ≤ x2 ; y1 ≥ y2 ; z1 ≤ z2

d(u,F(x1,y1,z1)) = dist(A,B)

d(v,F(x2,y2,z2)) = dist(A,B)

 ⇒ φ(d(u,v))≤ 1
3

φ (d(x1,x2)+d(y1,y2)+d(z1,z2))

−ψ

(
d(x1,x2)+d(y1,y2)+d(z1,z2)

3

)
,

where x1,x2,y1,y2,z1,z2,u,v ∈ A.

One can see that, if A = B in the above definition, the notion of proximally tripled weak

(ψ,φ) contraction on A reduces to that of a tripled weak (ψ,φ) contraction.

3. Main results

Let (X ,d,≤) be a partially complete metric space endowed with the product space X×X×X

with the following partial order:

for (x,y,z),(u,v,w) ∈ X×X×X ,

(u,v,w)� (x,y,z) ⇔ x≥ u,y≤ v,z≥ w.

Theorem 3.1. Let (X ,d,≤) be a partially ordered complete metric space. Let A,B are nonemp-

ty closed subsets of the metric space (X ,d) such that A0 6= /0. Let F : A×A×A→ B satisfy the

following conditions:

(i) F is continuous proximally tripled weak (ψ,φ) contraction on A having the proximal

mixed monotone property on A such that F(A0×A0×A0)⊆ B0.

(ii) There exist elements (x0,y0,z0) and (x1,y1,z1) in A0×A0×A0 such that

d(x1,F(x0,y0,z0)) = dist(A,B) with x0 ≤ x1,

d(y1,F(y0,x0,z0)) = dist(A,B) with y0 ≥ y1,and

d(z1,F(z0,y0,x0)) = dist(A,B) with z0 ≤ z1.

Then, there exists (x,y,z) in A×A×A such that d(x,F(x,y,z)) = dist(A,B), d(y,F(y,x,z)) =

dist(A,B) and d(z,F(z,y,x)) = dist(A,B)
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Proof. By hypothesis, there exist elements (x0,y0,z0) and (x1,y1,z1) in A0×A0×A0 such that

d(x1,F(x0,y0,z0)) = dist(A,B) with x0 ≤ x1,

d(y1,F(y0,x0,z0)) = dist(A,B) with y0 ≥ y1,and

d(z1,F(z0,y0,x0)) = dist(A,B) with z0 ≤ z1.

Since F(A0×A0×A0)⊆ B0, there exists element (x2,y2,z2) in A0×A0×A0 such that

d(x2,F(x1,y1,z1)) = dist(A,B),

d(y2,F(y1,x1,z1)) = dist(A,B),and

d(z2,F(z1,y1,x1)) = dist(A,B).

And also there exists element (x3,y3,z3) in A0×A0×A0 such that

d(x3,F(x2,y2,z2)) = dist(A,B),

d(y3,F(y2,x2,z2)) = dist(A,B),and

d(z3,F(z2,y2,x2)) = dist(A,B).

Hence from Lemma 2.2, Lemma 2.3 and Lemma 2.4, we obtain that x1 ≤ x2 ≤ x3,y1 ≥ y2 ≥ y3

and z1 ≤ z2 ≤ z3. Continuing this process, we can construct the sequences {xn},{yn} and {zn}

in A0 such that

(10) d(xn+1,F(xn,yn,zn)) = dist(A,B) , ∀n ∈ N with x0 ≤ x1 ≤ ·· · ≤ xn ≤ xn+1 ≤ ·· · ,

(11) d(yn+1,F(yn,xn,zn)) = dist(A,B) , ∀n ∈ N with y0 ≥ y1 ≥ ·· · ≥ yn ≥ yn+1 ≥ ·· · ,

and

(12) d(zn+1,F(zn,yn,xn)) = dist(A,B) , ∀n ∈ N with z0 ≤ z1 ≤ ·· · ≤ zn ≤ zn+1 ≤ ·· · .

Then d(xn,F(xn−1,yn−1,zn−1)) = d(A,B),d(xn+1,F(xn,yn,zn)) = dist(A,B) and we also have

xn−1 ≤ xn,yn−1 ≥ yn and zn−1 ≤ zn,∀n ∈ N. Now using the fact that F is proximally tripled
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weak (ψ,φ) contraction on A, we have

φ(d(xn,xn+1)) ≤
1
3

φ (d(xn−1,xn)+d(yn−1,yn)+d(zn−1,zn))

−ψ

(
d(xn−1,xn)+d(yn−1,yn)+d(zn−1,zn)

3

)
,

(13)

similarly,

φ(d(yn,yn+1)) ≤
1
3

φ (d(yn−1,yn)+d(xn−1,xn)+d(zn−1,zn))

−ψ

(
d(xn−1,xn)+d(yn−1,yn)+d(zn−1,zn)

3

)
,

(14)

and

φ(d(zn,zn+1)) ≤
1
3

φ (d(zn−1,zn)+d(yn−1,yn)+d(xn−1,xn))

−ψ

(
d(xn−1,xn)+d(yn−1,yn)+d(zn−1,zn)

3

)
.

(15)

Adding (13), (14) and (15), we get

φ(d(xn,xn+1))+φ(d(yn,yn+1))+φ(d(zn,zn+1))

≤ φ (d(xn−1,xn)+d(yn−1,yn)+d(zn−1,zn))

−3ψ

(
d(xn−1,xn)+d(yn−1,yn)+d(zn−1,zn)

3

)
.

(16)

By property (iii) of φ , we have

φ (d(xn,xn+1)+d(yn,yn+1)+d(zn,zn+1))

≤ φ(d(xn,xn+1))+φ(d(yn,yn+1))+φ(d(zn,zn+1))
(17)

From (16) and (17), we get

φ (d(xn,xn+1)+d(yn,yn+1)+d(zn,zn+1))

≤ φ (d(xn−1,xn)+d(yn−1,yn)+d(zn−1,zn))

−3ψ

(
d(xn−1,xn)+d(yn−1,yn)+d(zn−1,zn)

3

)
.

(18)

From (18) and using the fact that φ is nondecreasing, we get

(19) d(xn,xn+1)+d(yn,yn+1)+d(zn,zn+1)≤ d(xn−1,xn)+d(yn−1,yn)+d(zn−1,zn).
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Putting δn = d(xn,xn+1)+d(yn,yn+1)+d(zn,zn+1), then the sequence {δn} is decreasing. There-

fore, there is some δ ≥ 0 such that

(20) lim
n→∞

δn = lim
n→∞

[d(xn,xn+1)+d(yn,yn+1)+d(zn,zn+1)] = δ .

We shall show that δ = 0. Suppose, to the contrary, that δ > 0. By taking the limit as n→∞ on

both sides of (18) and φ is continuous, we have

φ(δ )≤ lim
n→∞

φ(δn−1)−3 lim
n→∞

ψ

(
δn−1

3

)
= φ(δ )−3 lim

n→∞
ψ

(
δn−1

3

)
< φ(δ ) , since lim

t→r
ψ(t)> 0, for all r > 0.

This is a contradiction. Therefore δ = 0, that is

lim
n→∞

(δn) = lim
n→∞

[d(xn,xn+1)+d(yn,yn+1)+d(zn,zn+1)]

= 0.
(21)

Now, we prove that {xn},{yn} and {zn} are Cauchy sequences. On the contrary, assume that at

least one of {xn},{yn} and {zn} is not a Cauchy sequence. This means that

lim
n,m→∞

d(xn,xm) 6→ 0 or lim
n,m→∞

d(yn,ym) 6→ 0 or lim
n,m→∞

d(zn,zm) 6→ 0

and consequently,

lim
n,m→∞

[d(xn,xm)+d(yn,ym)+d(zn,zm)] 6→ 0.

Then, there exists ε > 0 for which we can find subsequences {xnk},{xmk} of {xn}; {ynk},{ymk}

of {yn} and {znk},{zmk} of {zn} such that nk is the smallest index for which nk > mk > k,

(22) d(xnk ,xmk)+d(ynk ,ymk)+d(znk ,zmk)≥ ε.

This means that

(23) d(xnk−1,xmk)+d(ynk−1,ymk)+d(znk−1,zmk)< ε.
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Using (22) and (23) and the triangle inequality, we get

ε ≤ d(xnk ,xmk)+d(ynk ,ymk)+d(znk ,zmk)

≤ d(xnk ,xnk−1)+d(xnk−1,xmk)+d(ynk ,ynk−1)+d(ynk−1,ymk)

+d(znk ,znk−1)+d(znk−1,zmk)

≤ d(xnk ,xnk−1)+d(ynk ,xyk−1)+d(znk ,znk−1)+ ε.

Letting k→ ∞ and using (21), we obtain

(24) lim
n→∞

[d(xnk ,xmk)+d(ynk ,ymk)+d(znk ,zmk)] = ε.

By the triangle inequality, we have

d(xnk ,xmk)+d(ynk ,ymk)+d(znk ,zmk)

≤ d(xnk ,xnk+1)+d(xnk+1,xmk+1)+d(xmk+1,xmk)

+d(ynk ,ynk+1)+d(ynk+1,ymk+1)+d(ymk+1,ymk)

+d(znk ,znk+1)+d(znk+1,zmk+1)+d(zmk+1,zmk)

=
[
d(xnk ,xnk+1)+d(ynk ,ynk+1)+d(znk ,znk+1)

]
+
[
d(xmk ,xmk+1)+d(ymk ,ymk+1)+d(zmk ,zmk+1)

]
+
[
d(xnk+1,xmk+1)+d(ynk+1,ymk+1)+d(znk+1,zmk+1)

]
.

(25)

Using the property of φ , we obtain

(26)

φ(γk)≤ φ(δnk)+φ(δmk)+φ(d(xnk+1,xmk+1))+φ(d(ynk+1,ymk+1))+φ(d(znk+1,zmk+1)),

where γk = d(xnk ,xmk)+d(ynk ,ymk)+d(znk ,zmk),

δnk = d(xnk ,xnk+1)+d(ynk ,ynk+1)+d(znk ,znk+1) and

δmk = d(xmk ,xmk+1)+d(ynk ,ynk+1)+d(znk ,znk+1).
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Since xnk ≥ xmk ,ynk ≤ ymk and znk ≥ zmk , using the fact that F is a proximally tripled weak

(ψ,φ) contraction on A, we get

φ(d(xnk+1,xmk+1)) ≤
1
3

φ (d(xnk ,xmk)+d(ynk ,ymk)+d(znk ,zmk))

−ψ

(
d(xnk ,xmk)+d(ynk ,ymk)+d(znk ,zmk)

3

)
=

1
3

φ(γk)−ψ

(
γk

3

)
,(27)

and

φ(d(ymk+1,ynk+1)) ≤
1
3

φ (d(ymk ,ynk)+d(xmk ,xnk)+d(zmk ,znk))

−ψ

(
d(xmk ,xnk)+d(ymk ,ynk)+d(zmk ,znk)

3

)
=

1
3

φ(γk)−ψ

(
γk

3

)
,(28)

and

φ(d(znk+1,zmk+1)) ≤
1
3

φ (d(znk ,zmk)+d(ynk ,ymk)+d(xnk ,xmk))

−ψ

(
d(xnk ,xmk)+d(ynk ,ymk)+d(znk ,zmk)

3

)
=

1
3

φ(γk)−ψ

(
γk

3

)
.(29)

From (26) - (29), we get

(30) φ(γk)≤ φ(δnk)+φ(δmk)+φ(γk)−3ψ(
γk

3
).

Letting k→ ∞ and using (21), (24) and (30), we have

φ(ε)≤ φ(0)+φ(0)+φ(ε)−3ψ(
ε

3
)< φ(ε).

This is a contradiction. Therefore, we can conclude that {xn},{yn} and {zn} are Cauchy se-

quences. Since A is a closed subset of a complete metric space X , these sequences have limits.

Hence, there exist x,y,z ∈ A such that xn → x,yn → y and zn → z. Then (xn,yn,zn)→ (x,y,z)

in A× A× A. Since F is continuous, we have that F(xn,yn,zn)→ F(x,y,z),F(yn,xn,zn)→

(y,x,z) and F(zn,yn,xn)→ (z,y,x). But from (10), (11) and (12), we know that the sequences

{d(xn+1,F(xn,yn,zn))},{d(yn+1,F(yn,xn,zn))} and {d(zn+1,F(zn,yn,xn))} are constant sequences
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with the value dist(A,B). Therefore d(x,F(x,y,z)) = dist(A,B), d(y,F(y,x,z)) = dist(A,B) and

d(z,F(z,y,x)) = dist(A,B). This completes our proof.

Corollary 3.2. Let (X ,d,≤) be a partially ordered complete metric space. Let A be a nonempty

closed subset of the metric space (X ,d). Let F : A×A×A→ A satisfy the following conditions:

(i) F is continuous having the proximal mixed monotone property and proximally tripled

weak (ψ,φ) contraction on A.

(ii) There exist (x0,y0,z0) and (x1,y1,z1) in A×A×A such that x1 = F(x0,y0,z0) with x0 ≤

x1, y1 = F(y0,x0,z0) with y0 ≥ y1 and z1 = F(z0,y0,x0) with z0 ≤ z1.

Then, there exists (x,y,z) ∈ A× A× A such that d(x,F(x,y,z)) = 0,d(y,F(y,x,z)) = 0 and

d(z,F(z,y,x)) = 0.

We also note that Theorem 3.1 is still valid for F not necessarily continuous, if A has the

following property that

(31) {xn} is a nondecreasing sequence in A such that xn→ x, then xn ≤ x,

(32) {yn} is a nonincreasing sequence in A such that yn→ y, then yn ≥ y,

(33) {zn} is a nondecreasing sequence in A such that zn→ z, then zn ≤ z.

Theorem 3.3. Assume the conditions (31), (32) and (33) and A0 is closed in X instead of

continuity of F in Theorem 3.1, then the conclusion of Theorem 3.1 holds.

Proof Similar to the proof of Theorem 3.1, there exist sequences {xn},{yn} and {zn} in A

satisfying the following conditions:

(34) d(xn+1,F(xn,yn,zn)) = d(A,B) with xn ≤ xn+1 , ∀n ∈ N,

(35) d(yn+1,F(yn,xn,zn)) = d(A,B) with yn ≥ yn+1 , ∀n ∈ N,

(36) d(zn+1,F(zn,yn,xn)) = d(A,B) with zn ≤ zn+1 , ∀n ∈ N.

Moreover, xn→ x,yn→ y and zn→ z. From (31), (32) and (33), we get xn≤ x,yn≥ y and zn≤ z,

respectively. Note that the sequences {xn},{yn} and {zn} are in A0 and A0 is closed. Therefore,
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(x,y,z)∈ A0×A0×A0. Since F(A0×A0×A0)⊆ B0, there exist F(x,y,z),F(y,x,z) and F(z,y,x)

in B0. Therefore, there exist (x∗,y∗,z∗) ∈ A0×A0×A0 such that

(37) d(x∗,F(x,y,z)) = d(A,B),d(y∗,F(y,x,z)) = d(A,B) and d(z∗,F(z,y,x)) = d(A,B).

Since xn ≤ x,yn ≥ y and zn ≤ z. By using the fact that F is a proximally tripled weak (ψ,φ)

contraction on A for (34),(35),(36) and (37), we get

φ(d(xn+1,x∗)) ≤
1
3

φ (d(xn,x)+d(yn,y)+d(zn,z))

−ψ

(
d(xn,x)+d(yn,y)+d(zn,z)

3

)
, for all n,

φ(d(y∗,yn+1)) ≤
1
3

φ (d(y,yn)+d(x,xn)+d(z,zn))

−ψ

(
d(y,yn)+d(x,xn)+d(z,zn)

3

)
, for all n and

φ(d(zn+1,z∗)) ≤
1
3

φ (d(zn,z)+d(yn,y)+d(xn,x))

−ψ

(
d(zn,z)+d(yn,y)+d(xn,x)

3

)
, for all n.

Since xn→ x,yn→ y and zn→ z, by taking the limit on the above inequalities, we get x = x∗,y =

y∗ and z = z∗. Hence from (37), we get that

d(x,F(x,y,z)) = dist(A,B),d(y,F(y,x,z)) = dist(A,B) and d(z,F(z,y,x)) = dist(A,B).

Our proof is finished.

We note that the hypothesis in Theorem 3.1 and Theorem 3.3 do not guarantee the uniqueness

of the tripled best proximity point. We give the following example.

Example 3.1. Let X = {(0,0,1),(1,0,0),(−1,0,0),(0,0,−1)} ⊂ R3 and consider the usual

order

(x,y,z)� (u,v,w) ⇔ x≤ u,y≤ v and z≤ w.

Thus, (X ,�) is a partially ordered set. We note that (X ,d3) is a complete metric space, where d3

is the Euclidean metric. Let A = {(0,0,1),(1,0,0)} and B = {(0,0,−1),(−1,0,0)} be closed

subsets of X. Then dist(A,B) =
√

2,A = A0 and B = B0. Let F : A×A×A→ B be defined as

F ((x1,x2,x3),(y1,y2,y3),(z1,z2,z3)) = (−x3,−x2,−x1).
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Then, one can see that F is continuous and F(A0×A0×A0)⊆B0. The only comparable pairs of

points in A are x� x for x ∈ A, hence the proximal mixed monotone property and the proximally

tripled weak (ψ,φ) contraction on A are obviously satisfied.

One can show that the other hypotheses of the theorem are also satisfied. However, F has

many tripled best proximity points, such as ((0,0,1),(0,0,1),(0,0,1)); ((1,0,0),(1,0,0),(1,0,0));

((1,0,0),(1,0,0),(0,0,1)), etc. Hence, not unique.

However, we can prove that the tripled best proximity point is in fact unique, provided that

the product space A×A×A endowed with the partial order mentioned above has the following

property :

(38) Every pair of elements has either a lower bound or an upper bound.

This condition is equivalent to the following statement.

For every pair of (x,y,z),(x∗,y∗,z∗) ∈ A×A×A. There exists

(z1,z2,z3) ∈ A×A×A which is comparable to (x,y,z) and (x∗,y∗,z∗).
(39)

Theorem 3.4. In addition to the hypothesis of Theorem 3.1 (resp. Theorem 3.3), suppose that

for any two elements (x,y,z) and (x∗,y∗,z∗) in A0×A0×A0,

there exists (z1,z2,z3) ∈ A0×A0×A0 such that

(z1,z2,z3) is comparable to (x,y,z) and (x∗,y∗,z∗),
(40)

then F has a unique tripled best proximity point.

Proof From Theorem 3.1 (resp. Theorem 3.3), the set of tripled best proximity points of F is

nonempty. Suppose that there exist (x,y,z) and (x∗,y∗,z∗) in A×A×A which are tripled best

proximity points. That is

d(x,F(x,y,z)) = dist(A,B),

d(y,F(y,x,z)) = dist(A,B),

d(z,F(z,y,x)) = dist(A,B),
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and

d(x∗,F(x∗,y∗,z∗)) = dist(A,B),

d(y∗,F(y∗,x∗,z∗)) = dist(A,B),

d(z∗,F(z∗,y∗,x∗)) = dist(A,B).

We consider two cases :

Case I : Suppose (x,y,z) is comparable. Let (x,y,z) is comparable to (x∗,y∗,z∗) with respect to

the ordering in A×A×A. Using the fact that F is a proximally tripled weak (ψ,φ) contraction

on A to d(x,F(x,y,z)) = dist(A,B) and d(x∗,F(x∗,y∗,z∗)) = dist(A,B), we get

φ(d(x,x∗)) ≤ 1
3

φ (d(x,x∗)+d(y,y∗)+d(z,z∗))

−ψ

(
d(x,x∗)+d(y,y∗)+d(z,z∗)

3

)
.(41)

Similarly, we get

φ(d(y,y∗)) ≤ 1
3

φ (d(y,y∗)+d(x,x∗)+d(z,z∗))

−ψ

(
d(y,y∗)+d(x,x∗)+d(z,z∗)

3

)
(42)

and

φ(d(z,z∗)) ≤ 1
3

φ (d(z,z∗)+d(y,y∗)+d(x,x∗))

−ψ

(
d(z,z∗)+d(y,y∗)+d(x,x∗)

3

)
.(43)

Adding (41), (42) and (43), we get

φ(d(x,x∗))+φ(d(y,y∗))+φ(d(z,z∗)) ≤ φ (d(x,x∗)+d(y,y∗)+d(z,z∗))

−3ψ

(
d(x,x∗)+d(y,y∗)+d(z,z∗)

3

)
.(44)

By the property (iii) of φ , we obtain

(45) φ(d(x,x∗)+d(y,y∗)+d(z,z∗))≤ φ(d(x,x∗))+φ(d(y,y∗))+φ(d(z,z∗)).
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From (44) and (45), we get

φ(d(x,x∗)+d(y,y∗)+d(z,z∗)) ≤ φ (d(x,x∗)+d(y,y∗)+d(z,z∗))

−3ψ

(
d(x,x∗)+d(y,y∗)+d(z,z∗)

3

)
.(46)

This implies that 3ψ

(
d(x,x∗)+d(y,y∗)+d(z,z∗)

3

)
≤ 0. Using the property of ψ , we get d(x,x∗)+

d(y,y∗)+d(z,z∗) = 0. Hence d(x,x∗) = d(y,y∗) = d(z,z∗) = 0. So x = x∗,y = y∗ and z = z∗.

Case II : Suppose (x,y,z) is not comparable. Let (x,y,z) be not comparable to (x∗,y∗,z∗), then

there exists (u1,v1,w1) ∈ A0×A0×A0 which is comparable to (x,y,z) and (x∗,y∗,z∗). Since

F(A0×A0×A0)⊆ B0, there exists (u2,v2,w2) ∈ A0×A0×A0 such that

d(u2,F(u1,v1,w1)) = dist(A,B),

d(v2,F(v1,u1,w1)) = dist(A,B), and

d(w2,F(w1,v1,u1)) = dist(A,B).

Without loss of generality, assume that (u1,v1,w1)≤ (x,y,z) (i.e., x≥ u1,y≤ v1 and z≥ w1).

Note that (u1,v1,u1)≤ (x,y,x) implies that (y,x,y)≤ (v1,u1,v1).

From Lemma 2.2, Lemma 2.3 and Lemma 2.4, we get

u1 ≤ x,v1 ≥ y and w1 ≤ z

d(u2,F(u1,v1,w1)) = dist(A,B)

d(x,F(x,y,z)) = dist(A,B)

 ⇒ u2 ≤ x;

u1 ≤ x and v1 ≥ y

d(v2,F(v1,u1,w1)) = dist(A,B)

d(y,F(y,x,z)) = dist(A,B)

 ⇒ v2 ≥ y and;

v1 ≥ y and w1 ≤ z

d(w2,F(w1,v1,u1)) = dist(A,B)

d(z,F(z,y,x)) = dist(A,B)

 ⇒ w2 ≤ z.
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From the above three inequalities, we obtain (u2,v2,w2)≤ (x,y,z). Continuing this process, we

get sequences {un},{vn} and {wn} such that

d(un+1,F(un,vn,wn)) = dist(A,B),

d(vn+1,F(vn,un,wn)) = dist(A,B), and

d(wn+1,F(wn,vn,un)) = dist(A,B),

with (un,vn,wn)≤ (x,y,z), ∀n ∈N. By using the fact that F is a proximally tripled weak (ψ,φ)

contraction on A, we get

un ≤ x,vn ≥ y and wn ≤ z

d(un+1,F(un,vn,wn)) = dist(A,B)

d(x,F(x,y,z)) = dist(A,B)


⇒ φ(d(un+1,x))≤

1
3

φ (d(un,x)+d(vn,y)+d(wn,z))

−ψ

(
d(un,x)+d(vn,y)+d(wn,z)

3

)
.

(47)

Similarly, we can have that

y≤ vn,x≥ un and wn ≤ z

d(y,F(y,x,z)) = dist(A,B)

d(vn+1,F(vn,unwn)) = dist(A,B)


⇒ φ(d(y,vn+1))≤

1
3

φ (d(y,vn)+d(x,un)+d(z,wn))

−ψ

(
d(x,un)+d(y,vn)+d(z,wn)

3

)
,

(48)

and

wn ≤ z,vn ≥ y and un ≤ x

d(wn+1,F(wn,vn,un)) = dist(A,B)

d(z,F(z,y,x)) = dist(A,B)


⇒ φ(d(z,wn+1))≤

1
3

φ (d(z,wn)+d(y,vn)+d(x,un))

−ψ

(
d(z,wn)+d(y,vn)+d(x,un)

3

)
.

(49)
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Adding (47), (48) and (49), we obtain

φ(d(un+1,x))+φ(d(vn+1,y))+φ(d(wn+1,z))

≤ φ (d(un,x)+d(vn,y)+d(wn,z))

−3ψ

(
d(un,x)+d(vn,y)+d(wn,z)

3

)
.

(50)

By the property (iii) of φ , we get

φ (d(un+1,x)+d(vn+1,y)+d(wn+1,z))

≤ φ(d(un+1,x))+φ(d(vn+1,y))+φ(d(wn+1,z)).
(51)

From (50) and (51), we obtain

φ (d(un+1,x)+d(vn+1,y)+d(wn+1,z))

≤ φ (d(un,x)+d(vn,y)+d(wn,z))−3ψ

(
d(un,x)+d(vn,y)+d(wn,z)

3

)
.

(52)

This implies that

φ (d(un+1,x)+d(vn+1,y)+d(wn+1,z))≤ φ (d(un,x)+d(vn,y)+d(wn,z)) .

Using the fact that φ is nondecreasing, we get

(53) d(un+1,x)+d(vn+1,y)+d(wn+1,z)≤ d(un,x)+d(vn,y)+d(wn,z).

This means that the sequence {d(un,x)+ d(vn,y)+ d(wn,z)} is decreasing. Therefore, there

exists α ≥ 0 such that

(54) lim
n→∞

[d(un,x)+d(vn,y)+d(wn,z)] = α.

We show that α = 0. Suppose, to the contrary, that α > 0. Taking the limit as n→ ∞ in (52),

we have that

φ(α)≤ φ(α)−3 lim
n→∞

ψ

(
d(un,x)+d(vn,y)+d(wn,z)

3

)
< φ(α).

This is a contradiction. Thus α = 0, that is

lim
n→∞

[d(un,x)+d(vn,y)+d(wn,z)] = 0,
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so we have that un→ x,vn→ y and wn→ z. Analogously, we can prove that un→ x∗,vn→ y∗

and wn→ z∗. Therefore, x = x∗,y = y∗ and z = z∗. Our proof is finished.
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