
Available online at http://scik.org

Adv. Fixed Point Theory, 5 (2015), No. 2, 192-207

ISSN: 1927-6303

ON COMPLETELY GENERALIZED RANDOM VARIATIONAL INCLUSIONS
WITH RANDOM FUZZY MAPPING

SYED SHAKAIB IRFAN1,∗, ZEID IBRAHIM AL-MUHIAMEED2

1College of Engineering, P. O. Box 6677, Qassim University, Buraidah 51452, Al-Qassim, KSA

2Department of Mathematics, College of Science, P.O. Box 6644, Qassim University,

Buraidah 51452, Al-Qassim, KSA

Copyright c© 2015 Irfan and Al-Muhiameed. This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we consider the completely generalized random variational inclusions for random fuzzy

mappings and define an Ishikawa type algorithm. We prove existence of solutions of our inclusions involving

random relaxed Lipschitz and random relaxed monotone mappings and study the convergence of the iterative

sequences generated by the proposed algorithm. The result presented in this paper improve and generalize some

known corresponding results in the literature.
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1. Introduction-preliminaries

The theory of variational inequalities was introduced in early sixties. This theory arise in

models for a wide class of optimization and control, mechanics, elasticity, physics, transporta-

tion and engineering sciences. For the physical formulation, numerical methods, applications
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and other aspects of variational inequalities, see for example [1]-[22] and references therein.

An useful and important generalization of the variational inequalities is a variational inclusions.

In 1994, Hassouni and Moudafi [8] introduced and studied a class of variational inclusions and

developed a perturbed algorithm for finding approximate solutions of the variational inclusions.

In 1965, Professor Lotfi Zadeh [22] at the University of California introduced the concept of

fuzzy sets. This theory has emerged as an interesting and fascinating branch of pure and applied

sciences. The applications of fuzzy set theory can be found in many branches of physical,

mathematical and engineering sciences, see for example [2, 10, 11, 12, 14, 15, 16, 17, 19] and

references therein.

In 1999, Huang [12] introduced the concept of random fuzzy mapping. The random vari-

ational inclusion problem involving random fuzzy mapping is studied by Petrot and Balooee

[19]. They consider a new class of general nonlinear random set-valued variational inclusion

problem. By using the resolvent operator technique for A maximal mrelaxed η-accretive map-

pings they constuct a new iterative algorithm for finding the approximate solutions of this class

of nonlinear random equations. Very recently Ahmad and Farajzadeh [3] introduced and study

random variational inclusions with random fuzzy and random relaxed cocoercive mappings. In

support of their results they also provide some examples.

Motivated and inspired by the resent research work in this fascinating area, in this paper we

consider the completely generalized random variational inclusions for random fuzzy mappings

and define an Ishikawa type algorithm. We prove existence of random solution for completely

generalized random variational inclusions problem and the convergence of iterative sequence

generated by the algorithm.

Throughout the paper, let (Ω,Σ) be a measurable space, where Ω is a set and Σ is a σ -algebra

of subsets of Ω. Let H be a real Hilbert space whose norm and inner product are denoted by ‖.‖

and 〈., .〉, respectively. We denote B(H),2H ,CB(H) and H (., .) the class of Borel σ -fields in

H, the family of all nonempty subsets of H, the family of all nonempty closed bounded subsets

of H and the Housdorff metric on CB(H) respectively.
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Definition 1.1. A mapping g : Ω×H→H is called a random operator if for any x∈H, g(t,x)=

x(t) is measurable. A random operator g is said to be continuous if for any t ∈Ω, the mapping

g(t, .) : H→ H is continuous.

Definition 1.2. A multivalued mapping T : Ω→ 2H is said to be measurable if for any B ∈

B(H), T−1(B) = {t ∈Ω : T (t)∩B 6= φ} ∈ Σ.

Definition 1.3. A mapping u : Ω→ H is called a measurable selection of a multivalued mea-

surable mapping T : Ω→ 2H if u is a measurable and for any t ∈Ω, u(t) ∈ T (t).

Definition 1.4. A mapping T : Ω×H→ 2H is called a random multivalued mapping if for any

x ∈H, T (.,x) is measurable. A random multivalued mapping T : Ω×H→CB(H) is said to be

H -continuous if for any t ∈Ω, T (t, .) is continuous in the Houdorff metric.

Let Q be any set and F (H) be a collection of fuzzy sets over H. A mapping F from Q into

F (H) is called a fuzzy mapping. If F is a fuzzy mapping on H, then for any x ∈ Q, F(x)

(denote it by Fx, in the sequel) is a fuzzy set on H and Fx(y) is the membership function of y in

Fx.

Let N ∈F (H), q ∈ [0,1]. Then the set (N)q = {x ∈ H : N(x)≥ q} is called a q-cut set of N.

Definition 1.5. A fuzzy mapping F : Ω→F (H) is called measurable, if for any α ∈ (0,1], (F(.))α :

Ω→ 2H is a measurable multivalued mapping.

Definition 1.6. A fuzzy mapping F : Ω×H →F (H) is called a random fuzzy mapping if for

any x ∈ H,F(.,x) : Ω→F (H) is a measurable fuzzy mapping.

Clearly, the random fuzzy mapping include multivalued mappings, random multivalued map-

pings and fuzzy mappings as the special cases.

Let M,S,T : Ω×H→F (H) be random fuzzy mappings satisfying the following condition:

(∗) : There exist three mappings a,b,c : H→ (0,1] such that

(Mt,x)a(x) ∈CB(H), (St,x)b(x) ∈CB(H), (Tt,x)c(x) ∈CB(H), ∀ (t,x) ∈Ω×H.
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By using the random fuzzy mappings M,S and T , we can define three random multivalued

mappings M̃, S̃ and T̃ respectively as follows:

M̃ : Ω×H→CB(H), x→ (Mt,x)a(x), ∀ (t,x) ∈Ω×H;

S̃ : Ω×H→CB(H), x→ (St,x)b(x), ∀ (t,x) ∈Ω×H;

and

T̃ : Ω×H→CB(H), x→ (Tt,x)c(x), ∀ (t,x) ∈Ω×H.

In the sequel, M̃, S̃ and T̃ are called the random multivalued mappings induced by the random

fuzzy mapping M,S and T respectively.

Given mappings a,b,c : H → (0,1], random fuzzy mappings M,S,T : Ω×H →F (H) and

random operators g,h,F,G,P : Ω×H→H with Img∩dom(∂φ(t, ., .)) 6= φ and the random map

η : Ω×H×H→ H. We consider the following problem:

Find measurable mappings x,u,w,q : Ω→H such that for all t ∈Ω, x(t),y(t)∈H, Mt,x(t)(u(t))≥

a(x(t)), St,x(t)(w(t))≥ b(x(t)), Tt,x(t)(q(t))≥ c(x(t)), g(t,x(t))∩ dom(∂φ(t, ., .)) 6= φ and

〈P(t,h(t,u(t)))− (F(t,w(t))−G(t,q(t))),η(t,y(t),g(t,x(t)))〉

≥ φ(t,g(t,x(t)),x(t))−φ(t,y(t),x(t)),
(1.1)

where ∂φ denotes the subdifferential of a proper, convex and lower semicontinuous function

φ : Ω×H×H→ R∪{+∞}. Problem (1.1) is called completely generalized random variational

inclusion problem for random fuzzy mappings. The set of measurable mappings (x,u,w,q) is

called a random solution of (1.1).

Special Cases.

(i) If h= I identity mapping η(t,y(t),g(t,x(t)) = y(t)−g(t,x(t)) and φ(t,g(t,x(t)),x(t))−

φ(t,y(t),x(t) = φ(t,g(t,x(t))− φ(y(t)) then (1.1) reduces to the problem of finding

measurable mappings x,u,w,q : Ω→H such that for all t ∈Ω,x(t),y(t)∈H, Mt,x(t))(u(t))

≥ a(x(t)), St,x(t))(w(t)) ≥ b(x(t)), Tt,x(t))(q(t)) ≥ c(x(t)), g(t,x(t))
⋂

dom(∂φ) 6= φ ,

and

〈P(t,u(t))− ((F(t,w(t))−G(t,q(t)),y(t)−g(t,x(t))〉 ≥ φ(g(t,x(t))−φ(y(t)). (1.2)

Problem (1.2) is introduced and studied by Ahmad and Bazán [2].
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(ii) If F,G,h = I are identity mappings and

φ(t,g(t,x(t)),x(t)))−φ(t,y(t),x(t)) = φ(t,g(t,x(t))−φ(t,y(t)),

then (1.1) reduces to the problem of finding measurable mapping x : Ω→ H such that

for all t ∈Ω,x(t),y(t) ∈ H, and

〈P(t,u(t))+q(t)−w(t),η(t,y(t),g(t,x(t)))〉 ≥ φ(t,g(t,x(t))−φ(t,y(t)). (1.3)

Which is called the generalized nonlinear random variational inclusions for random

multivalued operators in Hilbert spaces. The determinate form of the problem (1.3) was

studied by Agarwal et al. [1].

(iii) If η(t,y(t),g(t,x(t))) = y(t)−g(t,x(t)) for all t ∈ Ω x(t),y(t) ∈ H, then problem (1.3)

reduces to the problem of finding measurable mappings x,u : Ω→ H such that u(t) ∈

M(t,x(t)), and

〈P(t,u(t))+q(t)−w(t),y(t)−g(t,x(t))〉 ≥ φ(t,g(t,x(t))−φ(t,y(t)). (1.4)

The determinate form is a generalization of the problem (1.4) considered in [7].

Definition 1.7. A random mapping η : Ω×H×H→ H is said to be:

(i) monotone if

〈x(t)− y(t),η(t,x(t),y(t))〉 ≥ 0, ∀ x(t),y(t) ∈ H, t ∈Ω; (1.5)

(ii) strictly monotone if the equality holds in (1.5) only when x(t) = y(t);

(iii) strongly monotone if there exists a measurable function q : Ω→ (0,∞) such that

〈x(t)− y(t),η(t,x(t),y(t))〉 ≥ q(t)‖x(t)− y(t)‖2, ∀ x(t),y(t) ∈ H, t ∈Ω;

(iv) Lipschitz continuous if there exists a measurable function z : Ω→ (0,∞) such that

‖η(t,x(t),y(t))‖ ≤ z(t)‖x(t)− y(t)‖, ∀ x(t),y(t) ∈ H, t ∈Ω.

Definition 1.8. If G : Ω×H→ 2H is a maximal monotone mapping. Then the resolvent operator

JGt
ρ(t) for G is defined as follows:

JGt
ρ(t)(x) = (I +ρ(t)Gt)

−1(x)
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where Gt(x) = G(t,x(t)), ∀ t ∈Ω, x(t) ∈H, and ρ : Ω→ (0,∞) is a measurable function and I

is the identity mapping on H.

Furthermore, the resolvent operator Gt is single-valued and nonexpansive that is

‖JGt
ρ(t)(x(t))− JGt

ρ(t)(y(t))‖ ≤ ‖x(t)− y(t)‖, ∀ t ∈Ω and x(t),y(t) ∈ H.

Since the subdifferential ∂φ of proper, convex and lower semicontinuous function, η : Ω×H×

H → H is strictly monotone, φ : Ω×H×H → R∪{+∞} is a maximal monotone multivalued

mapping, it follows that resolvent operator J∂η φt
ρ(t) of ∂ηφt is given by

J∂η φt
ρ(t) = (I +ρ(t)∂ηφt)

−1(x(t)) ∀ t ∈Ω and x(t) ∈ H.

Lemma 1.1. Let {an(t)}n≥0, {bn(t)}n≥0 and {cn(t)}n≥0 be non-negative sequences satisfying

an+1(t) ≤ (1−χn)an(t)+bn(t)χn + cn(t) ∀ n≥ 0

where 0≤ χn ≤ 1,
∞

∑
n=0

χn = ∞, lim
n→∞

bn(t) = 0 and
∞

∑
n=0

cn(t)< ∞. Then lim
n→∞

an(t) = 0.

Assumption 1.1. the random operator η : Ω×H×H→ H satisfies the condition

η(t,y(t),x(t))+η(t,x(t),y(t)) = 0, ∀ x(t),y(t) ∈ H, t ∈Ω.

2. Ishikawa type iterative algorithm

To suggest the random three step iterative algorithm for computing the approximate solutions

of problem (1.1), we mention the following equivalence between (1.1) and a fixed point problem

which can be easily proved by using Definition 1.8.

Lemma 2.1 [4]. Let T : Ω×H → CB(H) be a H -continuous random multivalued mapping.

Then for any measurable mapping q : Ω→H, the multivalued mapping T (.,q(.)) : Ω→CB(H)

is measurable.

Lemma 2.2 [4]. Let S,T : Ω×H → CB(H) be two measurable multivalued mappings, ε > 0

be a constant and w : Ω→ H be a measurable selection of S. Then there exist a measurable

selection q : Ω→ H of T such that for all t ∈Ω

‖w(t)−q(t)‖ ≤ (1+ ε)H (S(t),T (t)).
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Lemma 2.3. The set of measurable mappings x,u,w,q : Ω→H is a random solution of problem

(1.1) if and only if ∀ t ∈Ω,x(t) ∈ H, u(t) ∈ M̃(t,x(t)), w(t) ∈ S̃(t,x(t)), q(t) ∈ T̃ (t,x(t)) and

g(t,x(t)) = J∂η φt
ρ(t)

[g(t,x(t))−ρ(t)(P(t,h(t,u(t)))− (F(t,w(t))−G(t,q(t))))], (2.1)

where ρ : Ω→ (0,∞) is a measurable function.

Proof. From the difinition of J∂η φt
ρ(t) , it follows that

g(t,x(t))−ρ(t)[P(t,h(t,u(t)))− (F(t,w(t))−G(t,q(t)))] ∈ g(t,x(t))+ρ(t)∂ηφt

and hence

(F(t,w(t))−G(t,q(t))−P(t,h(t,u(t)))) ∈ ρ(t)∂ηφt .

By using the definition of η-subdifferentiable, we have

〈(F(t,w(t))−G(t,q(t))−P(t,h(t,u(t)))),η(t,y(t),g(t,x(t))〉

≤ φ(t,y(t),x(t))−φ(t,g(t,x(t)),x(t)), ∀ y(t) ∈ H, t ∈Ω.

Thus (x,u,w,q) is a random solution of problem (1.1).

Based on Lemma 2.3, we define the following random three step iterative algorithm for solv-

ing problem (1.1).

Algorithm 2.1. Let h,g,F,G,P : Ω×H→H be random mappings and M,S,T : Ω×H→F (H)

be three random fuzzy mappings satisfying condition (∗). Let M̃, S̃, T̃ : Ω×H → CB(H) be

random multivalued mappings induced by M,S and T respectively. For any given measur-

able mapping x0 : Ω→ H, the multivalued mappings M̃(.,x0(.)), S̃(.,x0(.)), T̃ (.,x0(.)) : Ω→

CB(H) are measurable by Lemma 3.1. Hence there exist measurable selection u0 : Ω→ H of

M̃(.,x0(.)), w0 : Ω→ H of S̃(.,x0(.)) and q0 : Ω→ H of T̃ (.,x0(.)) by Himmelberg [9]. Let

zn(t) = α ′′n (t)xn(t)+β ′′n (t)[xn(t)−g(t,xn(t))+ J∂η φn(t,.,xn(t))
ρ(t) {g(t,xn(t))

−ρ(t)(P(t,h(t,un(t))− (F(t,wn(t))−G(t,qn(t))))}]+ γ ′′n (t)χn(t)

yn(t) = α ′n(t)xn(t)+β ′n(t)[zn(t)−g(t,zn(t))+ J∂η φn(t,.,zn(t))
ρ(t) {g(t,zn(t))

−ρ(t)(P(t,h(t, ū′n(t))− (F(t, w̄′n(t))−G(t, q̄′n(t))))}]+ γ ′n(t) fn(t)

xn+1(t) = αn(t)xn(t)+βn(t)[yn(t)−g(t,yn(t))+ J∂η φn(t,.,yn(t))
ρ(t) {g(t,yn(t))

−ρ(t)(P(t,h(t, ūn(t)))− (F(t, w̄n(t))−G(t, q̄n(t))))}]+ γn(t)sn(t)

(2.2)
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for all n≥ 0, where un(t)∈ M̃(.,xn(t)),wn(t)∈ S̃(.,xn(t)),qn(t)∈ T̃ (.,xn(t)), ū′n(t)∈ M̃(.,zn(t)),

w̄′n(t) ∈ S̃(.,zn(t)), q̄′n (t)∈ T̃ (.,zn(t)), ūn(t) ∈ M̃(.,yn(t)), w̄n(t) ∈ S̃(.,yn(t)), q̄n(t) ∈ T̃ (.,yn(t));

{sn(t)}n≥0,{ fn(t)}n≥0,{χn(t)}n≥0 are bounded sequences in H and {αn(t)}n≥0,{βn(t)}n≥0,

{γn(t)}n≥0,{α ′n(t)}n≥0,{β ′n(t)}n≥0,{γ ′n(t)}n≥0,{α ′′n (t)}n≥0,{β ′′n (t)}n≥0,{γ ′′n (t)}n≥0 are sequences

in [0,1] satisfying suitable conditions and

un(t) ∈ M̃(t,xn(t)), ‖un(t)−un+1(t)‖ ≤ H(M̃(t,xn(t)),M̃(t,xn+1(t)))

wn(t) ∈ S̃(t,xn(t)), ‖wn(t)−wn+1(t)‖ ≤ H(S̃(t,xn(t)), S̃(t,xn+1(t)))

qn(t) ∈ T̃ (t,xn(t)), ‖zn(t)− zn+1(t)‖ ≤ H(T̃ (t,xn(t)), T̃ (t,xn+1(t)))

(2.3)

for any t ∈Ω and n = 0,1,2, · · · .

Lemma 2.4. Let η : Ω×H×H → H be strongly monotone and Lipschitz continuous random

map with constant q(t)> 0 and z(t)> 0, respectively and satisfy Assumption 1.1. Then

‖Jφt
ρ(t)x(t)− Jφt

ρ(t)y(t)‖ ≤ τ(t)‖x(t)− y(t)‖; x(t),y(t) ∈ H,

where τ(t) = z(t)
q(t) .

Proof. For the proof, see Lemma 3 of [18].

3. Existence and convergence theorems

In this section, we establish an existence result for solutions for problem (1.1) and the con-

vergence of the iterative sequences generated by Algorithm 2.1.

Theorem 3.1. Let η : Ω×H×H→ H be strongly monotone and Lipschitz continuous random

map with constant q(t)> 0 and z(t)> 0 respectively. Let g : Ω×H→ H be r -strongly mono-

tone and s-Lipschitz continuous with corresponding constants r(t) and s(t), respectively, and

h,F,G,P : Ω×H→ H be Lipschitz continuous random operator with corresponding constants

α(t),ξ (t),λG(t) and σ(t), respectively. Let M,S,T : Ω×H →F (H) be three random fuzzy

mappings satisfying the condition (∗). Let M̃, S̃, T̃ : Ω×H→CB(H) be three random multival-

ued mappings induced by M,S and T respectively. Suppose that M̃, S̃ and T̃ are H -Lipschitz
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continuous with corresponding constants γ(t),h(t) and d(t), respectively, and S̃ be relaxed Lip-

schitz with respect to F with constant k(t) and T̃ be relaxed monotone with respect to G with

constant c(t). Let φ : Ω×H ×H → R∪{+∞} be such that for each y(t) ∈ H, φ(t, .,y(t)) is

a proper, convex and lower semicontinuous function on H, g(H)∩dom∂ηφ(t, .,y(t)) 6= φ , and

for each x(t),y(t),z(t) ∈ H, µ(t)> 0 and

‖J∂η φ(t,.,x(t))
ρ(t) (z)− J∂η φ(t,.,y(t))

ρ(t) (z)‖ = 0. (3.1)

Suppose that there exists a constant ρ(t)> 0, such that

0< χ(t)+τ(t)[χ(t)+(1−2ρ(t)(k(t)−c(t))+ρ
2(t)(ξ (t)h(t)+λG(t)d2(t)))1/2+σ(t)α(t)γ(t))< 1.

where

χ(t) = (1−2r(t)+ s2(t))1/2 < 1.

Then problem (1.1) has a solution (x?(t),u?(t),w?(t),q?(t)).

We require the following definitions to achieve the results of this paper.

Definition 3.1. A random operator g : Ω×H→ H is said to be

(i) r-Strongly monotone if there exists a measurable function r : Ω→ (0,∞) such that

〈g(t,x1(t))−g(t,x2(t)),x1(t)− x2(t)〉 ≥ r(t)‖x1(t)− x2(t)‖2, ∀ x1(t),x2(t) ∈ H, t ∈Ω.

(ii) s-Lipschitz continuous if there exists a measurable function s : Ω→ (0,∞) such that

‖g(t,x1(t))−g(t,x2(t))‖ ≤ s(t)‖x1(t)− x2(t)‖, ∀ x1(t),x2(t) ∈ H, t ∈Ω.

Definition 3.2. A random multivalued mapping S : Ω×H→ 2H is said to be

(i) H -Lipschitz continuous if there exists a measurable function h : Ω→ (0,∞) such that

H(S(t,x1(t)),S(t,x2(t))) ≤ h(t)‖x1(t)− x2(t)‖, ∀ x1(t),x2(t) ∈ H, t ∈Ω.

(ii) relaxed Lipschitz with respect to a random operator F : Ω×H → H, if there exists a

measurable function k : Ω→ (0,∞) such that

〈F(t,w1(t))−F(t,w2(t)),x1(t)− x2(t)〉 ≤ −k(t)‖x1(t)− x2(t)‖2,

∀ x1(t),x2(t) ∈ H,w1(t) ∈ S(t,x1(t)),w2(t) ∈ S(t,x2(t)), t ∈Ω.
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(iii) relaxed monotone with respect to a random operator G : Ω×H → H, if there exists a

measurable function c : Ω→ (0,∞) such that

〈G(t,w1(t))−G(t,w2(t)),x1(t)− x2(t)〉 ≥ −c(t)‖x1(t)− x2(t)‖2,

∀ x1(t),x2(t) ∈ H,w1(t) ∈ S(t,x1(t)),w2(t) ∈ S(t,x2(t)), t ∈Ω.

Proof of Theorem 3.1. By Lemma 2.3, it is sufficient to prove that there exists x?(t) ∈

H,u?(t)∈ M̃(t,x?(t)),w?(t)∈ S̃(t,x?(t)) and q?(t)∈ T̃ (t,x?(t)), ∀t ∈Ω satisfying (2.1). Define

a random operator A : Ω×H→ H by

A(t,x(t))= x(t)−g(t,x(t))+J∂φ(t,.,x(t))
ρ(t) [g(t,x(t))−ρ(t)(P(t,(h(t,u(t)))−(F(t,w(t))−G(t,q(t))))]

∀x(t) ∈ H, u(t) ∈ M̃(t,x(t)), w(t) ∈ S̃(t,x(t) and q(t) ∈ T̃ (t,x(t)) and

A(t,y(t))= y(t)−g(t,y(t))+J∂η φ(t,.,y(t))
ρ(t) [g(t,y(t))−ρ(t)(P(t,h(t, ū(t)))−(F(t, w̄(t))−G(t, q̄(t))))]

∀ x̄(t) ∈ H, ū(t) ∈ M̃(t,y(t)), w̄(t) ∈ S̃(t,y(t)) and q̄(t) ∈ T̃ (t,y(t)).

It follows that

‖A(t,x(t))−A(t,y(t))‖ ≤ ‖x(t)− y(t)− (g(t,x(t))−g(t,y(t)))‖

+‖J∂η φ(t,.,x(t))
ρ(t) [g(t,x(t))−ρ(t)(P(t,h(t,u(t)))

−(F(t,w(t))−G(t,q(t)))]− J∂η φ(t,.,y(t))
ρ(t) [g(t,y(t))

−ρ(t)(P(t,h(t, ū(t)))− (F(t, w̄(t))−G(t, q̄(t))))]‖.(3.3)

Since g is r-strongly monotone and s-Lipschitz continuous, it follows that

‖x(t)− y(t)− (g(t,x(t))−g(t,y(t))‖2 = ‖x(t)− y(t)‖2−2〈x(t)− y(t),g(t,x(t))−g(t,y(t))〉

+‖g(t,x(t))−g(t,y(t))‖2

≤ (1−2r(t)+ s2(t))‖x(t)− y(t)‖2.(3.4)

Since the operator J∂η φ

ρ(t) is nonexpansive and using (3.1), we have

‖J∂η φ(t,.,x(t))
ρ(t) [g(t,x(t))−ρ(t)(P(t,h(t,u(t)))− (F(t,w(t))−G(t,q(t))))]



202 SYED SHAKAIB IRFAN, ZEID IBRAHIM AL-MUHIAMEED

− J∂η φ(t,.,y(t))
ρ(t) [g(t,y(t))−ρ(t)(P(t,h(t, ū(t)))− (F(t, w̄(t))−G(t, q̄(t))))]‖

≤ ‖J∂η φ(t,.,x(t))
ρ(t) [g(t,x(t))−ρ(t)(P(t,h(t,u(t)))− (F(t,w(t))−G(t,q(t))))]

−J∂η φ(t,.,x(t))
ρ(t) [g(t,y(t))−ρ(t)(P(t,h(t, ū(t)))− (F(t, w̄(t))−G(t, q̄(t))))]‖

+‖J∂η φ(t,.,x(t))
ρ(t) [g(t,y(t))−ρ(t)(P(t,h(t, ū(t)))− (F(t, w̄(t))−G(t, q̄(t))))]

−J∂η φ(t,.,y(t))
ρ(t) [g(t,y(t))−ρ(t)(P(t,h(t, ū(t)))− (F(t, w̄(t))−G(t, q̄(t))))]‖

≤ τ(t)[‖x(t)− y(t)− (g(t,x(t))−g(t,y(t)))‖+‖x(t)− y(t)

+ρ(t)(F(t,w(t))−F(t, w̄(t)))−ρ(t)(G(t,q(t))−G(t, q̄(t)))‖

+ρ(t)‖P(t,h(t,u(t)))−P(t,h(t, ū(t)))‖].(3.5)

Since M̃, S̃ and T̃ are H -Lipschitz continuous and h,F,G and P are Lipschitz continuous, we

get

‖P(t,h(t,u(t)))−P(t,h(t, ū(t)))‖ ≤ σ(t)α(t)‖u(t)− ū(t)‖ ≤ σ(t)α(t)γ(t)‖x(t)− y(t)‖

‖F(t,w(t))−F(t, w̄(t))‖ ≤ ξ (t)‖w(t)− w̄(t)‖ ≤ ξ (t)h(t)‖x(t)− y(t)‖

‖G(t,q(t))−G(t, q̄(t))‖ ≤ λG(t)‖q(t)− q̄(t)‖ ≤ λG(t)d(t)‖x(t)− y(t)‖. (3.6)

Further, since S̃ is relaxed Lipschitz and T̃ is relaxed monotone, we have

‖x(t)− y(t)+ρ(t)(F(t,w(t))−F(t, w̄(t)))−ρ(t)(G(t,q(t))−G(t, q̄(t)))‖2

= ‖x(t)− y(t)‖2 +2ρ(t)〈F(t,w(t))−F(t, w̄(t)),x(t)− y(t)〉−2ρ(t)〈G(t,q(t))

−G(t, q̄(t)),x(t)− y(t)〉+ρ(t)2‖F(t,w(t))−F(t, w̄(t))− (G(t,q(t))−G(t, q̄(t)))‖2

≤ [1−2ρ(t)(k(t)− c(t))+ρ(t)2(1+1/n)2(ξ (t)h(t)+λG(t)d(t))2]‖x(t)− y(t)‖2. (3.7)

Using (3.4)-(3.7), (3.3) becomes

‖A(t,x(t))−A(t,y(t))‖ ≤ θ(t)‖x(t)− y(t)‖, (3.8)

where

θ(t)= χ(t)+τ(t)[χ(t)+(1−2ρ(t)(k(t)−c(t))+ρ
2(t)(ξ (t)h(t)+λG(t)d2(t)))1/2+σ(t)α(t)γ(t))
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θ(t) = ρ(t)σ(t)α(t)γ(t)+µ(t)χ(t)[(1−2ρ(t)(k(t)− c(t))+ρ
2(t)(ξ (t)h(t)+η(t)d(t))2]1/2

and χ(t) = [1−2r(t)+ s2(t)]1/2. (3.9)

It follows from (3.2) that θ(t) < 1. Hence A is a contraction mapping and it has a fixed point

x?(t)∈H, it follows by the definition of A that u?(t)∈ M̃(t,x?(t)),w?(t)∈ S̃(t,x?(t)) and q?(t)∈

T̃ (t,x?(t)), ∀t ∈Ω such that (x?(t),u?(t),w?(t),q?(t)) is a solution of (1.1). This completes the

proof.

Theorem 3.2. Let g,h,η ,F,G,P,M̃, S̃, T̃ and φ be same as in Theorem 3.1 and for each n≥ 0,

φn : Ω×H×H→ R∪{+∞} be such that for each fixed y(t)∈H, φn(t, .,y(t)) is a proper convex

lower-semicontinuous functional on H and g(H)∩dom∂φn(t, .,y(t)) 6= φ . Assume that

lim
n→∞
‖J∂η φn(t,.,y(t))

ρ(t) (z)− J∂φ(t,.,y(t))
ρ(t) (z)‖= 0, ∀ y(t),z(t) ∈ H, t ∈Ω.

Suppose that {χn(t)}n≥0, { fn(t)}n≥0 and {sn(t)}n≥0 are any bounded sequences in H and

{αn(t)}n≥0, {βn(t)}n≥0, {γn(t)}n≥0, {α ′n(t)}n≥0, {β ′n(t)}n≥0, {γ ′n(t)}n≥0, {α ′′n (t)}n≥0, {β ′′n (t)}n≥0

and {γ ′′n (t)}n≥0 are sequences in [0,1] satisfying the following conditions:

αn(t)+βn(t)+ γn(t) = α
′
n(t)+β

′
n(t)+ γ

′
n(t)

= α
′′
n (t)+β

′′
n (t)+ γ

′′
n (t) = 1,

γn(t) = αn(t)βn(t), for all n≥ 0 (3.10)

lim
n→∞

γ
′
n(t) = lim

n→∞
γ
′′
n (t) = lim

n→∞
an(t) = 0 (3.11)

∞

∑
n=0

βn(t) = ∞. (3.12)

If there exists a positive constant ρ(t) satisfying (3.2), then problem (1.1) has a solution

(x?(t),u?(t),w?(t),q?(t)) and the sequences {xn(t)}n≥0, {un(t)}n≥0, {wn(t)}n≥0 and {qn(t)}n≥0

defined by Algorithm 2.1 converges strongly to x?(t),u?(t),w?(t) and q?(t), respectively.
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Proof. It follows that Theorem 3.1 that (1.1) has a solution (x?(t),u?(t),w?(t),q?(t)) and for all

n≥ 0

x?(t) = α ′′n (t)x
?(t)+β ′′n (t)[x

?(t)−g(t,x?(t))+ J∂η φ(t,.,x?(t))
ρ(t) {g(t,x?(t))

−ρ(t)(P(t,h(t,u?(t)))− (F(t,w?(t))−G(t,q?(t))))}]+ γ ′′n (t)x
?(t)

= αn(t)x?(t)+βn(t)[x?(t)−g(t,x?(t))+ J∂η φ(t,.,x?(t))
ρ(t) {g(t,x?(t))

−ρ(t)(P(t,h(t,u?(t)))− (F(t,w?(t))−G(t,q?(t))))}]+ γn(t)x?(t).

Using the same arguments as in the proof of Theorem 3.1, we have

‖xn(t)− x?(t)− (g(t,xn(t))−g(t,x?(t))‖ ≤
√

1−2r(t)+ s2(t))‖xn(t)− x?(t)‖.

By Algorithm 2.1, assumptions on φ ,φn and the non-expansiveness of the resolvant operator

J∂η φ

ρ(t) , we have

‖zn(t)− x?(t)‖ = ‖α ′′n (t)xn(t)+β
′′
n (t)[xn(t)−g(t,xn(t))+ J∂η φn(t,.,xn(t))

ρ(t) {g(t,xn(t))

−ρ(t)(P(t,h(t,un(t)))− (F(t,wn(t))−G(t,qn(t))))}]+ γ
′′
n (t)χn(t)

−{α ′′n (t)x?(t)+β
′′
n (t)[x

?(t)−g(t,x?(t))− J∂η φ(t,.,x?(t))
ρ(t) {g(t,x?(t))

−ρ(t)(P(t,h(t,u?(t)))− (F(t,w?(t))−G(t,q?(t))))}]+ γ
′′
n (t)x

?(t)‖

≤ α
′′
n (t)‖xn(t)− x?(t)‖+β

′′
n (t)‖xn(t)− x?(t)− (g(t,xn(t))−g(t,x?(t)))‖

+β
′′
n (t)‖J

∂η φn(t,.,xn(t))
ρ(t) {g(t,xn(t))−ρ(t)(P(t,h(t,un(t)))

−(F(t,wn(t))−G(t,qn(t))))}− J∂η φn(t,.,x?(t))
ρ(t) {g(t,x?n(t))

−ρ(t)(P(t,h(t,u?n(t))− (F(t,w?
n(t))−G(t,q?n(t))))}‖

+‖J∂η φn(t,.,x?n(t))
ρ(t) {g(t,x?n(t))−ρ(t)(P(t,h(t,u?n(t)))

−(F(t,w?
n(t))−G(t,q?n(t)))

−J∂η φ(t,.,x?(t))
ρ(t) {g(t,x?(t))−ρ(t)(P(t,h(t,u?(t)))

−(F(t,w?(t))−G(t,q?(t))))}‖+ γ
′′
n (t)‖χn(t)− x?(t)‖

≤ α
′′
n (t)‖xn(t)− x?(t)‖+β

′′
n (t)θ(t)‖xn(t)− x?(t)‖

+β
′′
n (t)Mn(t)+Mγ

′′
n (t), (3.13)
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where

M(t) = sup{‖χn(t)− x?(t)‖, ‖ fn(t)− x?(t)‖, ‖sn(t)− x?(t)‖, n≥ 0}

and

Mn(t) = ‖J∂φn(t,.,x?(t))
ρ(t) {g(t,x?(t))−ρ(t)(P(t,h(t,u?(t)))− (F(t,w?(t))−G(t,q?(t))))}

− J∂φ(t,.,x?(t))
ρ(t) {g(t,x?(t))−ρ(t)(P(t,h(t,u?(t)))− (F(t,w?(t)−G(t,q?(t))))}‖

for all n≥ 0 and θ(t) is defined by (3.9). Similarly we can obtain

‖yn(t)− x?(t)‖ ≤ α
′
n(t)‖xn(t)− x?(t)‖+β

′
n(t)θ(t)‖zn(t)− x?(t)‖+β

′
n(t)Mn(t)+M(t)γ ′n(t)

(3.14)

and

‖xn+1(t)− x?(t)‖ ≤ αn(t)‖xn(t)− x?(t)‖+βn(t)θ(t)‖yn(t)− x?(t)‖+βn(t)Mn(t)+M(t)γn(t)

(3.15)

for all n≥ 0. Using (3.13) and (3.14), (3.15) becomes

‖xn+1(t)− x?(t)‖ ≤ [αn(t)+θ(t)βn(t)(α ′n(t)+θ(t)β ′n(t)(α
′′
n (t)+θ(t)β ′′n (t))]‖xn(t)− x?(t)‖

+Mn(t)βn(t)(1+θ(t)β ′n(t)+θ
2(t)β ′n(t)β

′′
n (t))

+M(t)θ(t)βn(t)(γ ′n(t)+θ(t)β ′n(t)γ
′′
n (t))+M(t)γn(t)

≤ (1− (1−θ(t))βn(t))‖xn(t)− x?(t)‖

+[3Mn(t)+M(t)(γn(t)+ γ
′′
n (t)+an)(t)]βn(t)

for all n ≥ 0. It follows from Lemma 1.1 and (3.9)-(3.11) that xn(t)→ x?(t) as n→ ∞. By the

Lipschitz continuity of M̃, S̃ and T̃ , we have un(t)→ u?(t), wn(t)→ w?(t) and qn(t)→ q?(t).

This completes the proof.

4. Conclusion

We introduced completely generalized random variational inclusion problem for random

fuzzy mappings. By using the resolvant operator technique, we constructed an iterative algo-

rithm and prove existence and convergence result for completely generalized random variational

inclusion problem for random fuzzy mappings.
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To deal with the problems in mathematical sciences a further attention is needed for the study

of relationship between fuzzy sets, fuzzy variational inclusions and random sets. It may provide

an useful mathematical tools.
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