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Abstract. In this paper, the concept of set-valued quasi-contraction mappings in Menger spaces is introduced and

the proof of a set-valued fixed point theorem in this space is presented.
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1. Introduction

Probabilistic metric spaces originated in 1942 by Karl Menger [1]. The notion of Menger was

to replace non-negative real numbers with distribution functions as the values of the metric. An

analogy between probabilistic metric spaces and metric spaces can be drawn in a situation when

we only know probabilities of possible values of distances between two points and we are not

sure of the exact distance. Sehgal and Bharucha-Reid [2] introduced preliminary concepts and

definitions on the theory of probabilistic metric spaces and proved several fixed point theorems

in that space.
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2. Preliminaries

Definition 1.1. [3,4] A Triangular norm * also known as t-norm is a binary operation on the

unit interval [0,1] such that for all a,b,c,d ∈ [0,1], the following are satisfied

(i) a∗1 = a

(ii) a∗b = b∗a

(iii) a∗b≤ c∗d whenever a≤ c and b≤ d

(iv) a∗ (b∗ c) = (a∗b)∗ c.

Three popular examples of t-norms are

a∗b = ab, a∗b = min{a,b} and a∗b = max{a+b−1,0}.

Definition 1.2.[3, 4] A mapping F : R→ R+ is said to be a distribution function if it is non-

decreasing, left continuous, in f ?{F(x) : x ∈ R}= 0 and sup?{F(x) : x ∈ R}= 1.

Informally the distribution function or cumulative frequency function, describes the probability

that a variate X takes on a value less than or equal to x ∈ X .

Definition 1.3. A statistical measure that defines a probability distribution for a random vari-

able, denoted by f (x) is defined as the probability density function. The probability density

function when graphically portrayed, indicates by the area under the graph the interval under

which the variable falls.

Example 1.1 Flip an unbiased coin two times. Let H denote the outcome that a head is obtained,

T denote the outcome that a tail is obtained and the variate X be number of heads.

Clearly X = {0,1,2}.

Now F(0) = P(X ≤ 0) = P(X = 0) = P(T,T ) = 1
2 ×

1
2 = 1

4

F(1) = P(X ≤ 1) = P(H,T )+P(T,H)+P(T,T ) = (1
2 ×

1
2)+(1

2 ×
1
2)+(1

2 ×
1
2) =

3
4

F(2) = P(X ≤ 2) = P(T,T )+P(T,H)+P(H,T )+P(H,H) = 1
4 +

1
4 +

1
4 +

1
4 = 1
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Therefore,

F(x) =



1
4 , 0≤ x < 1

3
4 , 1≤ x < 2

1, 2≤ x

0, x < 0

Example 1.2 Given

f (x) =


2x, 0≤ x≤ 1

0, otherwise

we can find the distribution function by considering the three regions of f (x), namely x < 0,

0≤ x≤ 1 and x > 1 made obvious by a sketch of the graph of f(x) in Figure 1.1 below

For x < 0, F(x) = P(X ≤ x) =
∫ x
−∞

0dt = 0.

For 0≤ x≤ 1, F(x) = P(X ≤ x) =
∫ 0
−∞

0dt +
∫ x

0 2tdt = x2.

For x > 1, F(x) = P(X ≤ x) =
∫ 0
−∞

0dt +
∫ 1

0 2tdt +
∫ x

1 0dt = 1.

Therefore,

F(x) =


0, x < 0

x2, 0≤ x≤ 1

1, x > 1
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Definition 1.3 Let S be the set of all distribution functions on [−∞,∞]. The specific distribution

function L : R→ R+ is defined by

L(t) =


0, t ≤ 0

1, t > 0

Definition 1.4 Let X be a non-empty set and S the set of all distribution functions on [−∞,∞].

Then F : X ×X → S is called a probabilistic distance on X and for all x,y ∈ X , we write Fxy to

denote F(x,y).

Definition 1.5 Let X be a non-empty set and F be a probabilistic distance satisfying the follow-

ing conditions for all x,y,z ∈ X and t,s > 0:

(i) Fxy(t) = 1 if and only if x = y

(ii) Fxy(0) = 0

(iii) Fxy(t) = Fyx(t)

(iv) If Fxy(t) = 1, Fyz(s) = 1 then Fxz(t + s) = 1.

Then the pair (X ,F) is called a probabilistic metric space or a PM-space.

Informally based on Definition 1.5 we can infer that Fxy(t) is the probability that the distance

between x and y is less than t.

Definition 1.6 The triple (X ,F,∗) is called a Menger space if (X ,F) is a probabilistic metric

space, ∗ is a t-norm and for all x,y,z ∈ X with t,s > 0, Fxy(t + s)≥ Fxz(t)∗Fzy(s).

Definition 1.7 Let (X ,F,∗) be a Menger space and * be a continuous t-norm.

(i) A sequence xn in X is said to be convergent to x ∈ X if and only if for every ε > 0 and

λ ∈ (0,1), there exists an integer n0 = n0(ε,λ ) such that Fxnx(ε) > 1−λ for n ≥ n0 and

we write xn→ x as n→ ∞ or lim
n→∞

?xn = x.

(ii) A sequence xn in X is said to be a Cauchy sequence if for every ε > 0 and λ ∈ (0,1), there

exist an integer n0 = n0(ε,λ ) such that Fxnxn+p(ε)> 1−λ for n≥ n0 and p > 0.

(iii) A Menger space is said to be complete if every Cauchy sequence is convergent.
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The following theorem was proven by Singh and Jain [5].

Theorem 1.1 Let (X ,F,∗) be a Menger Space. If there exist k ∈ (0,1) such that for all x,y ∈ X

and t > 0, Fxy(kt)≥ Fxy(t), then x = y.

3. Main results

Before getting to the main result we must first define the following. Definitions 2.1 and 2.2

given below are analogous to the definitions defined by Sookoo and Gunakala [6, 7].

Definition 2.1 Let (X ,F,∗) be a Menger space. Then CBF(X) denotes the set of all non-empty

closed and bounded subsets of X in the Menger space (X ,F,∗).

Definition 2.2 Let A,B ∈CBF(X). Then the Hausdorff Menger distance between the two sets

A and B is denoted by MAB(α), where α ∈ R, and is defined as

MAB(α) = max{δ (A,B),δ (B,A)}

where δ (A,B) = sup{FaB(α) : a ∈ A}, δ (B,A) = sup{FAb(α) : b ∈ B},

with

FaB(α) = in f{Fab(α) : b ∈ B} and FAb(α) = in f{Fab(α) : a ∈ A}.

Informally MAB(α) is the greatest probability that the distance one must traverse to get from a

point on one set to the closest point in the other set is less than α .

Definition 2.3 Let (X ,F,∗) be a Menger space. The set valued mapping T : X → CBF(X) is

said to be a Menger q-set-valued quasi-contraction if for any x,y ∈ X , α > 0 and 1 < q < 2,

MT xTy(α)≤ (q−1)max{Fxy(α),FxT x(α),FyTy(α),FxTy(α),FyT x(α)}

We will now proceed to give our main result.

Theorem 3.1 Let (X ,F,∗) be a complete Menger space. If the set-valued mapping T : X →

CBF(X) is a Menger q-set-valued quasi-contraction mapping where 1 < q < 2, then T has a

fixed point in X. That is, there exist u ∈ X such that u ∈ Tu.
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Proof: T is given to be a Menger q-set-valued quasi-contraction mapping.

Therefore, for all x,y ∈ X we have,

MT xTy(α)≤ (q−1)max{Fxy(α),FxT x(α),FyTy(α),FxTy(α),FyT x(α)}.

Now let c > 0 be such that q < c < 2. This implies,

MT xTy(α)< (c−1)max{Fxy(α),FxT x(α),FyTy(α),FxTy(α),FyT x(α)}.

Now we note that for each A,B ∈CBF(X), with a ∈ A there exist b ∈ B such that

Fab(α)≤MAB(α).

Let x1 ∈ T x0 and x2 ∈ T x1. Therefore we have,

Fx1x2(α)≤MT x0T x1(α)< (c−1)max{Fx0x1(α),Fx0T x0(α),Fx1T x1(α),Fx0T x1(α),Fx1T x0(α)}

Similarly, it follows by induction that we have {xn} in X such that xn+1 ∈ T xn. This implies,

Fxn−1xn(α)≤MT xn−2T xn−1(α)< (c−1)max

 (Fxn−2xn−1(α),Fxn−2T xn−2(α),Fxn−1T xn−1(α)

Fxn−2T xn−1(α),Fxn−1T xn−2(α)


Using the first condition of Definition 1.5 and taking α = ( t

p +
s
p) where t,s, p > 0, we get,

Fxn−1xn

(
t
p
+

s
p

)
< (c−1)max

 (Fxn−2xn−1(
t
p +

s
p),Fxn−2T xn−2(

t
p +

s
p),Fxn−1T xn−1(

t
p +

s
p)

Fxn−2T xn−1(
t
p +

s
p),Fxn−1T xn−2(

t
p +

s
p)


= (c−1)Fxn−1xn−1

(
t
p
+

s
p

)
= (c−1)

For n = 1, and using the fact that c≤ c
c−1 for 1 < q < c < 2, we have,

Fx0x1

(
t
p
+

s
p

)
< (c−1)Fx0x0

(
t
p
+

s
p

)
= (c−1)≤ c

c−1
−1

Now by induction we will show that for n > 1,

(1) Fxn−1xn

(
t
p
+

s
p

)
<

(
c

c−1

)n−1

−1

Now, Fxn−1xn

( t
p +

s
p

)
< (c−1)Fxn−1xn−1

( t
p +

s
p

)
< (c−1)2Fxn−2xn−2

( t
p +

s
p

)
< (c−1)3Fxn−3xn−3

( t
p +

s
p

)
< ... < (c−1)n−1Fx0x0

( t
p +

s
p

)
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Since we know that (c−1)n−1 < cn−1−1 for 1 < q < c < 2, we have

Fxn−1xn

(
t
p
+

s
p

)
< cn−1−1≤

(
c

c−1

)n−1

−1

Hence equation (1) holds.

We now proceed to show that {xn} is a Cauchy sequence.

From equation (1) with p > 0, it follows that

−Fxn−1xn

( t
p +

s
p

)
> 1−

( c
c−1

)n−1

Now by Definition 1.6,

Fxnxn+p(t + s)> Fxnxn+1

( t
p +

s
p

)
∗Fxn+1xn+2

( t
p +

s
p

)
∗ ...∗Fxn+p−1xn+p

( t
p +

s
p

)
≥−Fxnxn+1

( t
p +

s
p

)
∗−Fxn+1xn+2

( t
p +

s
p

)
∗ ...∗−Fxn+p−1xn+p

( t
p +

s
p

)
>
(
1− ( c

c−1)
n)∗ (1− ( c

c−1)
n+1)∗ ...∗ (1− ( c

c−1)
n+p−1)

= (1−λ1)∗ (1−λ2)∗ ...∗ (1−λp)

≥ 1−λ

where λi = ( c
c−1)

n+i−1 for i = 1,2, , p and λ = min{λi : i = 1,2, , p}.

Hence, Fxnxn+p(t + s)> (1−λ ). This implies {xn} is a Cauchy sequence.

Now (X ,F,∗) is complete. This implies that there exist u ∈ X such that lim
n→∞

?xn = u.

Now for t > 0, we can conclude

FuTu(t)≤ 1 = Fuu(kt) with k ∈ (0,1)

= lim
n→∞

Fxnxn+1(kt)≤ lim
n→∞

FxnT xn(kt) = FuTu(kt)

Therefore by Theorem 1.1 we have that u = Tu. Hence u is a fixed point in X .
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