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Abstract. In this paper, we give a sufficient condition for a self-mapping T on X which has multiple fixed points

satisfying the Picard iteration {T nx} converges to a fixed point of T for every starting point in a subset of X .
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1. Introduction

In a complete metric space (X ,d), fixed point theorems were categorized by Suzuki [8] as

follows: let T be a self-mapping on X ,

(T1) Leader-type : T has a unique fixed point and {T nx} converges to the fixed point for all

x ∈ X .
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(T2) Unnamed-type : T has a unique fixed point and {T nx} does not necessarily converge to

the fixed point.

(T3) Subrahmanyam-type : T may have more than one fixed point and {T nx} converges to a

fixed point of T for all x ∈ X .

(T4) Caristi-type : T may have more one than fixed point and {T nx} does not necessarily

converge to a fixed point of T .

It is clear that (T1) implies (T3) and (T2) implies (T4). In particular, (T1) and (T3) are based

on the following Picard iteration: for a fixed x ∈ X ,

x0 = x, xn = T xn−1 (n = 1,2, . . .).

In this paper, we study convergence theorems concerned with the Picard iteration.

Many fixed point theorems of (T1) were studied, for example, see [1,2,3,4,6,9]. The most

famous fixed point theorem of (T1) is the following Banach contraction principle:

Theorem 1.1 (Banach, [1]). Let (X ,d) be a complete metric space, and let T be a self-mapping

on X. If T is a contraction, that is,

there exists r ∈ [0,1) such that for all x,y ∈ X , d(T x,Ty)≤ rd(x,y).

Then T has a unique fixed point and {T nx} converges to the fixed point for all x ∈ X.

Also the following theorem of (T1) is a well-known generalization of Theorem 1.1:

Theorem 1.2 (Meir and Keeler, [2]). Let (X ,d) be a complete metric space, and let T be a

self-mapping on X. If T is a weakly uniformly strict contraction, that is, for all ε > 0, there

exists δ > 0 such that for all x,y ∈ X,

ε ≤ d(x,y)< ε +δ implies d(T x,Ty)< ε.

Then T has a unique fixed point and {T nx} converges to the fixed point for all x ∈ X.

Finally, a necessary and sufficient condition for (T1) were given in 2008 as follows:

Theorem 1.3 (Suzuki, [8]). Let T be a mapping on a complete metric space (X ,d). Then (T1)

holds if and only if T satisfies the following two conditions:
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(1) For x,y ∈ X and ε > 0, there exist δ > 0 and v ∈ N such that

d(T ix,T jy)< ε +δ implies d(T i+vx,T j+vy)< ε

for all i, j ∈ N∪{0}.

(2) For x,y ∈ X, there exist v ∈ N and a sequence {αn} in (0,∞) such that

d(T ix,T jy)< αn implies d(T i+vx,T j+vy)<
1
n

for all i, j ∈ N∪{0} and n ∈ N.

On the other hand, there are a few fixed point theorems of (T3), see [5, 7, 8]. The following

is the most famous fixed point theorem in (T3) :

Theorem 1.4 (Subrahmanyam, [5]). Let (X ,d) be a complete metric space, and let T be a

self-mapping on X. Assume that there exists r ∈ [0,1) such that for all x ∈ X,

d(T 2x,T x)≤ rd(T x,x).

Then T may have more than one fixed point and {T nx} converges to a fixed point of T for all

x ∈ X.

Similar to (T1), a necessary and sufficient condition for (T3) were given as follows:

Theorem 1.5 (Suzuki, [9]). Let T be a mapping on a complete metric space (X ,d). Then (T3)

holds if and only if T satisfies the following two conditions:

(1) For x ∈ X and ε > 0, there exist δ > 0 and v ∈ N such that

d(T ix,T jx)< ε +δ implies d(T i+vx,T j+vx)< ε

for all i, j ∈ N∪{0}.

(2) For x,y ∈ X, there exist v ∈ N and a sequence {αn} in (0,∞) such that

d(T ix,T jy)< αn implies d(T i+vx,T j+vy)<
1
n

for all i, j ∈ N∪{0} and n ∈ N.

In the above theorems, sufficient conditions for a self-mapping T on X satisfying the Picard

iteration {T nx} converges to a fixed point of T for every starting point x in X , are given. In this
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paper, we give a sufficient condition for a self-mapping T on X which has multiple fixed points

satisfying the Picard iteration {T nx} converges to a fixed point of T for every starting point x in

a given subset of X .

2. Main results

Now we give a main result with respect to a sufficient condition for a self-mapping T on X

which has multiple fixed points satisfying the Picard iteration {T nx} converges to a fixed point

of T for every starting point x in a given subset of X .

Theorem 2.1. Let (X ,d) be a complete metric space, let T be a self-mapping on X, and let B

be a subset of X satisfies T (B)⊆ B. Assume that for all ε > 0, there exists δ > 0 such that

for all x,y ∈ B, ε ≤ d(x,y)< ε +δ implies d(T x,Ty)< ε. (2.1)

Then {T nx} converges to a fixed point of T for all x ∈ B.

Proof At first, we prove that

for all x,y ∈ B with x 6= y, d(T x,Ty)< d(x,y).

If not, there exist x0,y0 ∈ B with x0 6= y0 such that d(T x0,Ty0)≥ d(x0,y0). Put ε0 = d(x0,y0)>

0, then there exists δ0 > 0 such that (2.1) holds by the assumption. From ε0 = d(x0,y0)< ε0+δ0,

we have d(T x0,Ty0)< ε0 = d(x0,y0). This is a contradiction. Next, for any given x ∈ B, define

a sequence {xn} as

x0 = x, xn = T xn−1 (n = 1, 2, . . .).

If xn = xn−1 holds, xn−1 is the fixed point. Then we may assume that xn 6= xn−1 for all n. Put

cn = d(xn,xn−1) for all n ∈ N. Since cn ≥ 0 and

cn+1 = d(xn+1,xn) = d(T xn,T xn−1)< d(xn,xn−1) = cn,

{cn} is a lower bounded and decreasing sequence. Then there exists c ∈ [0,∞) such that cn→ c.

We show c = 0. If c > 0, by putting ε1 = c, there exists δ1 > 0 such that (2.1) holds. From

c ≤ cn for all n ∈ N and cn→ c, we have c ≤ cn < c+ δ1 for sufficiently large n. Since ε1 ≤

d(xn,xn−1)< ε1+δ1, then cn+1 = d(T xn,T xn−1)< ε1 = c and this is a contradiction. Therefore
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c = 0. Now we show that {xn} is a Cauchy sequence. If not, there exists ε2 > 0 such that for all

N ∈ N, there exist l,m ≥ N such that d(xl,xm) > 2ε2 and l < m. Also there exists δ2 > 0 such

that (2.1) holds. Put δ ′ = min{ε2,δ2}. We have ε2 ≤ d(x,y)< ε2 +δ ′ implies d(T x,Ty)< ε2.

Form cn→ 0, there exists M ∈N such that cn < δ ′/3, for all n≥M. Put N = M, then there exist

l,m≥M such that l < m and d(xl,xm)> 2ε2. Also we have, for all j ∈ {l, l +1, . . . ,m},

|d(xl,x j)−d(xl,x j+1)| ≤ d(x j,x j+1) = c j <
δ ′

3
.

From this and

cl = d(xl,xl+1)<
δ ′

3
< ε2 +

2
3

δ
′ < ε2 +δ

′
≤ 2ε2 < d(xl,xm),

there exists k ∈ N such that ε2 +2δ ′/3 < d(xl,xk)< ε2 +δ ′. Then we have d(xl+1,xk+1)< ε2,

and then

d(xl,xk)≤ d(xl,xl+1)+d(xl+1,xk+1)+d(xk+1,xk)

< cl + ε2 + ck

< ε2 +
2
3

δ
′.

This is a contradiction. So {xn} is a Cauchy sequence. Since X is a complete metric space,

there exists x̄ ∈ X such that xn→ x̄. Next, we prove that T nx→ x̄ for all x ∈ B. Assume that

there exist x0,y0 ∈ B such that T nx0 → x̄ and T ny0 → ȳ where x̄ 6= ȳ. Put ε3 = d(x̄, ȳ) > 0,

then there exists δ3 > 0 such that (2.1) holds. From {d(T nx0,T ny0)} is a lower bounded and

decreasing sequence, we have ε3 ≤ d(T nx0,T ny0) for all n ∈ N. Since T nx→ x̄ and T ny→ ȳ,

we have d(T nx0, x̄)< δ3/2 and d(T ny0, ȳ)< δ3/2 for sufficiently large n. Using (2.1), we have

d(T n+1x0,T n+1y0)< ε3. This is a contradiction. Finally, we prove that x̄ ∈ F(T ). Assume that

x̄ /∈ F(T ).

0 < d(x̄,T x̄)≤ d(x̄,T nx)+d(T nx,T x̄)

< d(x̄,T nx)+d(T n−1x, x̄)

→ 0.

This is a contradiction.
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In the above theorem, if B is closed then Theorem 2.1 is equivalent to Theorem 1.2, however

B may not be closed. In the following example, we give a map T to which Theorem 2.1 can be

applied but Theorems from 1.1 to 1.3 can not be applied.

Example 2.1. Let (Rn,d), and let T be defined as follows:

T x =


1
2

x x ∈ (0,∞)n,

2x x /∈ (0,∞)n.

Then we can apply Theorem 2.1 for open set B = (0,∞)n. Indeed, for all ε > 0, by putting

δ = ε , for all x, y ∈ B satisfying ε ≤ d(x,y)< ε +δ ,

d(T x,Ty) = ‖T x−Ty‖=
∥∥∥∥1

2
x− 1

2
y
∥∥∥∥

=
1
2
‖x− y‖

=
1
2

d(x,y)<
1
2
(ε +δ ) = ε.

So T holds the condition of Theorem 2.1. Therefore T may have more than one fixed point and

{T nx} converges to a fixed point of T for all x ∈ B. However, Theorems from 1.1 to 1.3 can not

be applied because {T nx} does not converge when x ∈ X \ (B∪{0}) and also B is not closed.

In the following example, we can see (T3) holds for a self-mapping T which holds the con-

dition of Theorem 2.1:

Example 2.2. Let (R2,d), and let T be defined as follows:

T x =
1
2
(x+PA(x)),

where A = [−1,1]2, PA(x) = {y ∈ A | d(x,y)≤ d(x,z) for all z ∈ A}. Let F(T ) be the set of all

fixed points of T , then we can see F(T ) = A, that is, T has multiple fixed points. Since

T nx =
1
2n x+

(
1− 1

2n

)
PA(x)→ PA(x) ∈ A = F(T )

for all x ∈ X , (T3) holds for T . Let B(1,1) := {x ∈ R2 | T nx→ (1,1)}. Then we can check that

the condition of Theorem 2.1 for B = B(1,1) holds. Indeed, for all ε > 0, by putting δ = ε , for
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all x,y ∈ B(1,1), PA(x) = PA(y) = (1,1). Therefore

ε ≤ d(x,y)< ε +δ ⇒ d(T x,Ty) = d
(

1
2
(x+PA(x)),

1
2
(y+PA(y))

)
=

∥∥∥∥1
2
(x+PA(x))−

1
2
(y+PA(x))

∥∥∥∥
=

1
2
‖x− y‖

=
1
2

d(x,y)

<
1
2
(ε +δ ) = ε.

Also we have T nx→ (1,1) for all x ∈ B(1,1) and B(1,1) = [1,∞)2. In a similar way, for each

z∈ A, let Bz := {x∈R2 | T nx→ z}, then we have the condition of Theorem 2.1 for B = Bz holds

and T nx→ PA(x) ∈ A = F(T ) for all x ∈ Bz.

On the other hand, since (T3) holds, the conditions of Theorem 1.3 also hold. However it

seems that it is hard to know the limit lim
n→∞

T nx by using Theorem 1.3.

Motivated by Example 2.2, we give a result of (T3) from Theorem 2.1 by putting a certain

subset B of X . For A⊂ X and n ∈ N, denote that T−nA := (T n)−1A and T 0A := A.

Corollary 2.1. Let (X ,d) be a complete metric space, and let T be a self-mapping on X. Assume

that for all ε > 0, there exists δ > 0 such that for all x,y ∈ X \
⋃

n∈N∪{0}
T−n(F(T )),

ε ≤ d(x,y)< ε +δ implies d(T x,Ty)< ε.

Then {T nx} converges to a fixed point of T for all x ∈ X.

Proof Let

B = X \
⋃

n∈N∪{0}
T−n(F(T )).

We show T (B) ⊂ B. If there exists y ∈ T (B) such that y 6∈ B, then there exists x ∈ B such that

y = T x. Since y = T x 6∈ B, T x∈
⋃

n∈N∪{0}
T−n(F(T )), and this shows T x∈ T−n0(F(T )) for some

n0 ∈ N∪{0}, that is,

x ∈ T−n0−1(F(T ))⊂
⋃

n∈N∪{0}
T−n(F(T )).
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This contradicts to x ∈ B. Using Theorem 2.1 {T nx} converges to a fixed point of T for all

x ∈ B. On the other hand, when x 6∈ B, since

x ∈
⋃

n∈N∪{0}
T−n(F(T )),

there exists n0 ∈ N∪{0} such that T n0x ∈ F(T ), that is, T nx = T n0x hold for all n ≥ n0. This

means {T nx} converges to a fixed point of T . This completes the proof.

In the end of the paper, we give an observation between our result and the previous ones.

Define a binary relation ∼ on X by for every x,y ∈ X ,

x∼ y if and only if T nx→ z and T ny→ z for some z ∈ X or

both {T nx} and {T ny} do not converge.

Then ∼ is an equivalence relation on X , that is, for all x,y and z ∈ X ,

(1) x∼ x,

(2) if x∼ y then y∼ x, and

(3) if x∼ y and y∼ z then x∼ z.

Let the equivalence class of x and the quotient set be

[x] = {y ∈ X | x∼ y} and X/∼= {[x] | x ∈ X},

respectively, and define a function ϕ : (X/∼)\{N(T )}→ X by

ϕ(x) = lim
n→∞

T nx,

where N(T ) = {x | {T nx} does not converge}. By using the notations, fixed point theorems can

be categorized as follows:

(1) N(T ) = /0, |F(T )|= 1, and ϕ(X/∼)⊂ F(T ),

(2) N(T ) = /0, F(T ) 6= /0, and ϕ(X/∼)⊂ F(T ), and

(3) N(T )∩B = /0, F(T ) 6= /0, and ϕ(B/∼)⊂ F(T ),

where B/∼= {[x] | x ∈ B}. We can see that (1) is equivalent to (T1), (2) is equivalent to (T3),

and (3) is equivalent to the result of Theorem 2.1. If B = X then (3) coincide with (T3), and

if B = X = Bz then (3) coincide with (T1) where z ∈ X . As we have seen in Examples 2.1 and
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2.2, including the situation N(T ) 6= /0, Theorem 2.1 is useful to observe the limits of the Picard

iteration.
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