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Abstract. In this paper, common fixed points of a finite family of asymptotically φ -demicontractive maps in

arbitrary Banach spaces are investigated. Strong convergence theorems of common fixed points are established.
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1. Introduction

Let K be a nonempty subset of an arbitrary real Banach space E and J the normalized duality

mapping from E into 2E∗ given by

J(x) = { f ∈ E∗ : 〈x, f 〉= ‖x‖2 : ‖x‖2 = ‖ f‖2},

where E∗ denotes the dual space of E and 〈,〉 denotes the generalized duality paring. If E∗

is strictly convex, then J is single-valued. In the sequel, we shall denote single-valued duality

mapping by j. A mapping T : K −→ K is said to be uniformly L− Lipschitian mapping with
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contant L ≥ 1 if ‖T nx−T ny‖ ≤ L‖x− y‖ ∀n ∈ N. T is r−strictly asymptotically pseudocon-

tractive ( See for example [1]) with sequence {kn}∞
n=1 ⊆ [1,∞), limn→∞ kn = 1 if ∀x,y ∈ K ∃

j(x− y) ∈ J(x− y) and a contant r ∈ (0,1) such that

〈(I−T n)x− (I−T n)y, j(x− y)〉 ≥ 1
2
(1− r)‖(I−T n)x− (I−T n)y‖2

−1
2
(k2

n−1)‖x− y‖2,∀n ∈ N.(1)

T is said be asymptotically demicontractive with sequence {kn}∞
n=1 ⊆ [1,∞), limn→∞ kn = 1 if

F(T ) = {x ∈ K : T x = x} 6= /0 and ∀x ∈ K, p ∈ F(T ), ∃ j(x− p) ∈ J(x− p) such that

〈x−T nx, j(x− p)〉 ≥ 1
2
(1− r)‖x−T nx‖2− 1

2
(k2

n−1)‖x− p‖2,∀n ∈ N.(2)

The class of r−strictly asymptotically pseudocontractive maps and the class of asymptotical-

ly demicontractive maps were first introduced in Hilbert spaces by Qihou [14]. Clearly, an

r−strictly asymptotically pseudocontractive map with a nonempty fixed point set is asymptot-

ically demicontractive. An example of a r−strictly asymptotically pseudocontractive map is

given in [13] while an example of an asymptotically demicontractive map is given in [12].

A mapping T : K−→K is said to be asymptotically φ−demicontractive with sequence {kn}∞
n=1⊆

[1,∞), limn→∞ kn = 1 if F(T ) 6= /0 and ∃ a strictly increasing continuous function φ : [0,∞)−→

[0,∞) with φ(0) = 0 such that

〈x−T nx, j(x− p)〉 ≥ φ (‖x−T nx‖)− 1
2
(k2

n−1)‖x− p‖2,∀x ∈ K, p ∈ F(T ),n ∈ N.(3)

The class of asymptotically φ−demicontractive maps was first introduced in arbitrary Banach

spaces by Osilike and Isiogugu [12]. In [12], it is shown that the class of asymptotically demi-

contractive map is a proper subclass of the class of asymptotically φ−demicontractive map-

s. Observe from (2) and (3) that every asymptotically demicontractive map is asymptotically

φ−demicontractive with φ : [0,∞)−→ [0,∞) given by

φ(t) =
1
2
(1− r)t.

These classes of operators have been studied by several authors (See for example [3, 4, 5, 6,

7, 10, 11, 12, 13, 14]. Osilike and Isiogugu proved the convergence of the modified averaging
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iteration process of Mann [8] to the fixed points of asymptotically φ−demicontractive maps.

Specifically they proved the following.

Theorem 1.1. [12] Let E be a real Banach space and K a nonempty closed convex subset

of E. Let T : K −→ K be a completely continuous uniformly L−Lipschitzian asymptotically

φ−demicontractive mapping with a sequence {an}∞
n=1 ⊆ [1,∞) 3 ∑(a2

n− 1) < ∞. Let {an} be

a real sequence satisfying (i) 0 < αn ≤ 1 (ii) ∑αn = ∞ (iii) ∑α2
n < ∞. Then the sequence

{xn}∞
n=1 generated from arbitrary x1 ∈ K by the modified averaging Mann iteration process

xn+1 = (1−αn)xn +αnT nxn,n≥ 1(4)

converges strongly to a common fixed point of T .

Similarly, in [6] using the modified averaging implicit iteration scheme of Sun [16], gener-

ated from an x1 ∈ K, by xn = αnxn−1 +(1−αn)T k
i xn, n ≥ 1, where 1 ≤ n = (k− 1)N + i, i ∈

I = {1,2,3, ...,N}, Igbokwe and Udofia proved that under certain conditions on the iteration

sequence {αn}, the above iteration process {xn} converges strongly to the common fixed point

of the family {Ti}N
i=1 of N uniformly Li−Lipschitzian asymptotically φ−demicontractive self

maps of nonempty closed convex subset of a Banach space E.

Recently, Su and Li [15] introduced the following iteration scheme and called it Composite

Implicit Iteration Process. From x1 ∈ K, the sequence {xn}∞
n=1 is generated by

xn = αnxn−1 +(1−αn)Tiyn,

yn = βnxn−1 +(1−βn)T k
i xn,n≥ 1,

(5)

where {αn},{βn} ⊆ [0,1],Tn = TnmodN .

Motivated by the results of Su and Li [15], Igbokwe and Ini [4] modified the iteration process

(5) and applied the modified iteration process for the approximation of common fixed points

of a finite family of r−strictly asymptotically pseudocontractive maps. In compact form, the

modified composite implicit iteration process is expressed as follows:

xn = αnxn−1 +(1−αn)T k
i yn,

yn = βnxn−1 +(1−βn)T k
i xn,n≥ 1

(6)

where 1≤ n = (k−1)N + i, i = {1, 2, ..., N}, {αn},{βn} ⊆ [0,1].
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Observe that, if T : K −→K is uniformly L−Lipschitzian asymptotically φ−demicontractive

map with sequence {an}∞
n=1 ⊆ [1,∞) such that limn→∞ an = 1, then for every fixed u ∈ K

and t ∈ ( L
1+L ,1), the operator St,s,n : K −→ K defined for all x ∈ K by St,s,nx = tu + (1−

t)T n(su+(1− s)T nx) satisfies ‖St,s,nx−St,s,ny‖ ≤ (1− t)(1− s)L2‖x−y‖ ∀ x, y ∈ K. Thus, the

composite implicit iteration process (6) is defined in K for the family {Ti}N
i=1 of N uniformly

L-Lipschitzian asymptotically φ -demicontractive mappings of nonempty closed convex subset

K of a real Banach space provided that {αn},{βn} ⊆ (η ,1) for all n ≥ 1, where η = L
1+L and

L = max1≤i≤N{Li}.

2. Preliminaries

In this paper, we prove that the iteration process (6) converges to the common fixed points of

the finite family of N uniformly L−Lipschitzian asymptotically φ−demicontractive mappings

in arbitrary real Banach spaces. Our results generalize Theorem 1.1 and extend the recent result

of Igbokwe and Ini [4] from r−strictly asymptotically pseudocontractive maps to the much

more general class of asymptotically φ−demicontractive maps. Moreso, the theorem of Qihou

[14], a result of Osilike [9], Osilike and Aniagbsor [10] and several others in the literature are

special cases of our results.

In the sequel, we need the following.

Lemma 2.1 [11] Let {an}∞
n=1,{bn}∞

n=1 and {δn}∞
n=1 be sequences of nonnegative real num-

bers satisfying the inequality an+1 ≤ (1+ δn)an + bn,n ≥ 1. If ∑
∞
n=1 δn < ∞ and ∑

∞
n=1 bn <

∞, then limn→∞ an exists. If in addition {an}∞
n=1 has a subsequence which converges strongly

to zero, then limn→∞ an = 0.

Definition 2.1. Let K be a closed subset of a real Banach space E and T : K −→ K be a

mapping. T is said to be semicompact (see for example [1]) if for any bounded sequence {xn}

in K such that ‖xn−Tnxn‖ −→ 0 as n−→∞, there exists a subsequence {xnk} ⊆ {xn} such that

xnk −→ x∗ ∈ K.

Definition 2.2. [1]: A bounded convex subset K of a real Banach space E is said to have normal

structure if every nontrivial convex subset C of K contains at least one nondimetrial point. That
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is, there exists x0 ∈ E such that sup{‖x0− x‖ : x ∈C}< sup{‖y− x‖ : x,y ∈C = d(C)} where

d(C) is the diameter of C.

Every uniformly convex Banach space and every compact convex subset K of a Banach space

E has normal structure. For the definition of modulus of convexity of E and the characteristic

of convexity ε0 of E, see [1].

Theorem 2.1. [13] Let E be a real Banach space with normal structure N(E) > max(1,ε0),

ε0 > 0, K a nonempty closed convex subset of E and T : K −→ K a uniformly L−Lipschitzian

mapping with L < α,α > 1. Then T has a fixed point.

3. Main results

Lemma 3.1. Let E be a normed space and K a nonempty convex subset of E. Let {Ti}N
i=1

be N uniformly Li−Lipschitzian self mappings of K such that L = max{Li},Li the Lipschitzian

constant of Ti, i = 1,2, ...,N. Let {αn},{βn} be sequences in (0,1] such that (i) ∑
∞
n=1(1−αn) =

+∞ (ii) ∑
∞
n=1(1−αn)

2 < +∞ (iii) ∑
∞
n=1(1− βn) < +∞. For arbitrary x1 ∈ K, generate the

sequence {xn} by yn = βnxn−1 +(1−βn)T k
i xn, xn = αnxn−1 +(1−αn)T k

i yn, n ≥ 1, where 1 ≤

n = (k−1)N + i, i = {1, 2, ..., N}. Then ‖Tixn− xn‖ ≤ 2[1+L2 +2L3(2+L)]‖T k
i xn− xn‖+

2L‖T k−1
i xn−1− xn−1‖+4(1−αn)L2[1+2L(1+L)]‖xn− xn−1‖.

Proof. Putting λin = ‖xn−T k
i xn‖, we have

‖xn−Tixn‖ ≤ λin +αnLλin−1 +(1−αn)L2‖T k
i yn−T k

i xn +T k
i xn− xn−1‖

+(1−αn)L2‖Tiyn−Tixn +Tixn− xn−1‖

≤ λin +αnLλin−1 +2(1−αn)L3‖yn− xn‖+(1−αn)L2‖T k
i xn− xn + xn− xn−1‖

+(1−αn)L2‖Tixn− xn + xn− xn−1‖

≤ [1+(1−αn)L2]λin +Lλin−1 +2(1−αn)L2‖xn− xn−1‖

+(1−αn)L2‖Tixn− xn‖+2(1−αn)L3‖yn− xn‖,
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[1− (1−αn)L2]‖Tixn− xn‖ ≤ [1+L2]λin +Lλin−1 +2(1−αn)L2‖xn− xn−1‖

+2(1−αn)L3‖yn− xn‖.(7)

Observe that

‖yn− xn‖ ≤ αn‖xn−1− yn‖+(1−αn)‖T k
i yn− yn‖

≤ αn‖xn−1− yn‖+(1−αn)‖T k
i yn− xn−1‖+(1−αn)‖yn− xn−1‖

≤ (1−βn)‖T k
i xn− xn−1‖+(1−αn)‖T k

i yn− xn−1‖

≤ (1−βn)‖T k
i xn− xn‖+(1−βn)‖xn− xn−1‖+(1−αn)L‖yn− xn−1‖

+(1−αn)‖T k
i xn−1− xn−1‖

≤ (1−βn)λin +(1−βn)‖xn− xn−1‖+(1−αn)(1−βn)L‖T k
i xn− xn + xn− xn−1‖

+(1−αn)‖T k
i xn−1−T k

i xn +T k
i xn− xn−1‖

≤ (1−βn)λin +(1−βn)‖xn− xn−1‖+(1−αn)(1−βn)Lλin

+(1−αn)(1−βn)L‖xn− xn−1‖+(1−αn)L‖xn− xn−1‖+(1−αn)‖T k
i xn− xn−1‖

≤ (1−βn)λin +(1−βn)‖xn− xn−1‖+(1−αn)(1−βn)Lλin

+(1−αn)(1−βn)L‖xn− xn−1‖+(1−αn)L‖xn− xn−1‖+(1−αn)λin

+(1−αn)‖xn− xn−1‖

≤ λin +(1−βn)‖xn− xn−1‖+Lλin

+(1−βn)L‖xn− xn−1‖+(1−αn)L‖xn− xn−1‖+λin +(1−αn)‖xn− xn−1‖

≤ (2+L)λin +2(1+L)‖xn− xn−1‖.(8)
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Substituting (8) into (7), we have

[1− (1 − αn)L2]‖Tixn− xn‖ ≤ [1+L2]λin +Lλin−1 +2(1−αn)L2‖xn− xn−1‖

+2(1−αn)L3 {(2+L)λin +2(1+L)‖xn− xn−1‖}

≤ [1+L2]λin +Lλin−1 +2(1−αn)L2‖xn− xn−1‖

+2L3(2+L)λin +4(1−αn)L3(1+L)‖xn− xn−1‖,

‖Tixn− xn‖ ≤
1

[1− (1−αn)L2]

{
[2L3(2+L)+(1+L2)]‖T k

i xn− xn‖

+ L‖T k−1
i xn−1− xn−1‖+2(1−αn)L2[1+2L(1+L)]‖xn− xn−1‖

}
.

From condition (ii) limn→∞(1−αn) = 0, we find that there exists an N1 > 0 such that ∀n≥ N1,

1− (1−αn)L2 ≥ 1
2 . Therefore,

‖Tixn− xn‖ ≤ 2[1+L2 +2L3(2+L)]‖T k
i xn− xn‖

+ 2L‖T k−1
i xn−1− xn−1‖+4(1−αn)L2[1+2L(1+L)]‖xn− xn−1‖.

This completes the proof.

Theorem 3.1. Let E be a real Banach space with normal structure N(E)> max(1,ε0), ε0 > 0,

and K a nonempty closed convex subset of E. Let {Ti}N
i=1 be N uniformly Li−Lipschitzian

asymptotically φ−demicontractive self maps of K with sequence {ain}∈ [1,∞) such that ∑
∞
n=1(ain−

1)< ∞ for all i∈ I and F =
⋂N

i=1 F(Ti) 6= /0 where F(Ti) = {x∈K : Tix = x}. Let one member of

the family {Ti}N
i=1 be semicompact. Let {αn} ⊂ (0,1),{βn} ⊂ (0,1] be two real sequences sat-

isfying the conditions; (i) ∑
∞
n=1(1−αn) = +∞ (ii) ∑

∞
n=1(1−αn)

2 <+∞ (iii) ∑
∞
n=1(1−βn)<

+∞. (1−αn)(1−βn)L2 < 1 ∀n ≥ 1 where L ≥ 1 is the common Lipschitz constant of {Ti}N
i=1.

For x1 ∈ K, let {xn}∞
n=1 be the modified implicit iteration sequence defined by

xn = αnxn−1 +(1−αn)T k
i yn,

yn = βnxn−1 +(1−βn)T k
i xn,n≥ 1,

(9)

where n = (k− 1)N + i, i = {1, 2, ..., N}, then (a) limn→∞ ‖xn− p‖ exists for all p ∈ F. (b)

liminfn→∞ ‖xn− Tixn‖ = 0. (c) {xn}∞
n=1 converges strongly to a common fixed point p of the

mapping {Ti}N
i=1 if there is a subsequence {xn j}∞

j=1 of {xn}∞
n=1 which converges strongly to p.
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Proof. It is well known (See, for example, Chang [2]) that the inequality

‖x+ y‖2 ≤ ‖x‖2 +2〈y, j(x+ y)〉(10)

holds for all x,y ∈ E and j(x− y) ∈ J(x− y). The existence of fixed points for each Ti follows

from Theorem 1.2. Let p ∈ F , then, using (9) and (10), we have

‖xn− p‖2 ≤ α
2
n‖xn−1− p‖2 +2(1−αn)〈T k

i yn− p, j(xn− p)〉

= α
2
n‖xn−1− p‖2 +2(1−αn)〈T k

i yn−T k
i xn, j(xn− p)〉

+2(1−αn)〈T k
i xn− p, j(xn− p)〉

≤ α
2
n‖xn−1− p‖2 +2L(1−αn)‖yn− xn‖‖xn− p‖+2(1−αn)〈xn− p, j(xn− p)〉

+2(1−αn)〈T k
i xn− xn, j(xn− p)〉

= α
2
n‖xn−1− p‖2 +2L(1−αn)‖yn− xn‖‖xn− p‖+2(1−αn)‖xn− p‖2

−2(1−αn)〈xn−T k
i xn, j(xn− p)〉.(11)

Now, Ti : K −→ K is asymptotically φ−demicontractive. For each Ti, we have

〈xn−T k
i xn, j(xn− p)〉 ≥ φi(‖xn−T k

i xn‖)−
1
2
(a2

in−1)‖xn− p‖2.

Choosing φ(t) = min1≤i≤N{φi(t)} so that

‖xn− p‖2 ≤ α
2
n‖xn−1− p‖2 +2L(1−αn)‖yn− xn‖‖xn− p‖+2(1−αn)‖xn− p‖2

−2(1−αn){φ(‖xn−T k
i xn‖)−

1
2
(a2

in−1)‖xn− p‖2},(12)

‖yn− xn‖ ≤ βn(1−αn)‖T k
i yn− xn−1‖+(1−βn)‖xn−T k

i xn‖,(13)

and

‖T k
i yn− xn−1‖ ≤ ‖T k

i yn− p‖+‖xn−1− p‖

≤ L‖(βn(xn−1− p)+(1−βn)(T k
i xn− p)‖+‖xn−1− p‖

≤ (Lβn +1)‖xn−1− p‖+L2(1−βn)‖xn− p‖.(14)
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Substituting (14) into (13), we obtain

‖yn− xn‖ ≤ βn(1−αn){(Lβn +1)‖xn−1− p‖+L2(1−βn)‖xn− p‖}

+(1−βn)‖xn−T k
i xn‖

= βn(1−αn)(Lβn +1)‖xn−1− p‖+L2
βn(1−αn)(1−βn)‖xn− p‖

+(1−βn)‖xn−T k
i xn‖

≤ βn(1−αn)(Lβn +1)‖xn−1− p‖+[βn(1−αn)(1−βn)L2

+(1−βn)(L+1)]‖xn− p‖.(15)

Substituting (15) into (12), we obtain

‖xn− p‖2 ≤ α
2
n‖xn−1− p‖2 +2L(1−αn){βn(1−αn)(Lβn +1)‖xn−1− p‖

+[βn(1−αn)(1−βn)L2 +(1−βn)(L+1)]‖xn− p‖}‖xn− p‖

+2(1−αn)‖xn− p‖2−2(1−αn){φ(‖xn−T k
i xn‖)−

1
2
(a2

in−1)‖xn− p‖2}

= α
2
n‖xn−1− p‖2 +2Lβn(1−αn)

2(Lβn +1)‖xn−1− p‖‖xn− p‖+

+[2βn(1−αn)
2(1−βn)L3 +2(1−αn)(1−βn)(L+1)L

+2(1−αn)+(1−αn)(a2
in−1)]‖xn− p‖2−2(1−αn)φ(‖xn−T k

i xn‖),

[1−2βn(1−βn)
2(1−βn)L3−2(1−αn)(1−βn)(L+1)L−2(1−αn)

−(1−αn)(a2
in−1)]‖xn− p‖2 ≤ α

2
n‖xn−1− p‖2

+2Lβn(1−αn)
2(Lβn +1)‖xn−1− p‖‖xn− p‖−2(1−αn)φ(‖xn−T k

i xn).(16)

‖xn− p‖2 ≤ α2
n

κn
‖xn−1− p‖2 +

2Lβn(1−αn)
2(Lβn +1)

κn
‖xn−1− p‖‖xn− p‖

−2(1−αn)

κn
φ(‖xn−T k

i xn‖),
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where κn = 1−2βn(1−αn)
2(1−βn)L3−2(1−αn)(1−βn)(L+1)L−2(1−αn)−(1−αn)(a2

in−

1),

‖xn− p‖2 ≤ (1+
λn

κn
)‖xn−1− p‖2 +

2Lβn(1−αn)
2(Lβn +1)

κn
‖xn−1− p‖‖xn− p‖

− 2(1−αn)

κn
φ(‖xn−T k

i xn‖),(17)

where λn = α2
n −1+2βn(1−αn)

2(1−βn)L3 +2(1−αn)(1−βn)(L+1)L+2(1−αn)+ (1−

αn)(a2
in− 1). Since 1− 2βn(1−αn)

2(1− βn)L3− 2(1−αn)(1− βn)(L+ 1)L− 2(1−αn)−

(1−αn)(a2
in− 1) = 1− (1−αn)[2βn(1−αn)(1−βn)L3 + 2(1−βn)(L+ 1)L+ 2+(a2

in− 1)],

and condition (ii), we have limn→∞(1−αn) = 0. So there exists a natural number N2 such that

∀ n ≥ N2,

1−2βn(1−αn)
2(1−βn)L3−2(1−αn)(1−βn)(L+1)L−2(1−αn)− (1−αn)(a2

in−1)≥ 1
2
.

It follows that

‖xn− p‖2 ≤ [1+2[α2
n −1+2βn(1−αn)

2(1−βn)L3

+2(1−αn)(1−βn)(L+1)L+2(1−αn)+(1−αn)(a2
in−1)]]‖xn−1− p‖2

+4Lβn(1−αn)
2(Lβn +1)‖xn−1− p‖‖xn− p‖−2(1−αn)φ

(
‖xn−T k

i xn‖
)

= [1+2[(1−αn)
2 +2βn(1−αn)

2(1−βn)L3

+2(1−αn)(1−βn)(L+1)L+(1−αn)(a2
in−1)]]‖xn−1− p‖2

+4Lβn(1−αn)
2(Lβn +1)‖xn−1− p‖‖xn− p‖−2(1−αn)φ

(
‖xn−T k

i xn‖
)
.(18)

Considering the second term on the right hand side of (18), we have

‖xn− p‖2 = αn〈xn−1− p, j(x− p)〉+(1−αn)〈T k
i yn− p, j(x− p)〉

= αn〈xn−1− p, j(x− p)〉+(1−αn)〈T k
i yn−T k

i xn, j(x− p)〉

+(1−αn)〈T k
i xn− p, j(x− p)〉

≤ αn‖xn−1− p‖‖xn− p‖+L(1−αn)‖yn− xn‖‖xn− p‖

+L(1−αn)‖xn− p‖2.(19)
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Substituting (15) into (19), we obtain

‖xn− p‖2

≤ αn‖xn−1− p‖‖xn− p‖+L(1−αn){βn(1−αn)(Lβn +1)‖xn−1− p‖

+[βn(1−αn(1−βn)L2 +(1−βn)(L+1)]‖xn− p‖}|‖xn− p‖+L(1−αn)‖xn− p‖2

= αn‖xn−1− p‖‖xn− p‖+Lβn(1−αn)
2(Lβn +1)‖xn−1− p‖‖xn− p‖

+[L3
βn(1−αn)

2(1−βn)+L(1−αn)(1−βn)(L+1)+L(1−αn)]‖xn− p‖2,

[1−L3
βn(1−αn)

2(1−βn)−L(1−αn)(1−βn)(L+1)−L(1−αn)]‖xn− p‖2 ≤

αn‖xn−1− p‖‖xn− p‖+Lβn(1−αn)
2(Lβn +1)‖xn−1− p‖‖xn− p‖,

and

[1−L3
βn(1−αn)

2(1−βn)−L(1−αn)(1−βn)(L+1)−L(1−αn)]‖xn− p‖2 ≤

{αn +Lβn(1−αn)
2(Lβn +1)}‖xn−1− p‖‖xn− p‖.

Hence, we have

‖xn− p‖2 ≤ αn +Lβn(1−αn)
2(Lβn +1)

wn
‖xn−1− p‖‖xn− p‖,(20)

where

wn = 1−L3
βn(1−αn)

2(1−βn)−L(1−αn)(1−βn)(L+1)−L(1−αn).

Since limn→∞(1−αn) = 0, we see that there exists a natural number N3 such that ∀ n ≥ N3,

1−L3
βn(1−αn)

2(1−βn)−L(1−αn)(1−βn)(L+1)−L(1−αn) =

1− (1−αn){L3
βn(1−βn)+L(1−βn)(L+1)+L} ≥ 1

2
.

It follows that

‖xn− p‖ ≤ 2{αn +Lβn(1−αn)
2(Lβn +1)}‖xn−1− p‖.(21)
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Substituting (22) into (18), we obtain

‖xn− p‖2 ≤ [1+2[(1−αn)
2 +2βn(1−αn)

2(1−βn)L3

+2(1−αn)(1−βn)(L+1)L+(1−αn)(a2
in−1)]]‖xn−1− p‖2

+4Lβn(1−αn)
2(Lβn +1)‖xn−1− p‖{2{αn +Lβn(1−αn)

2(Lβn +1)}‖xn−1− p‖}

−2(1−αn)φ
(
‖xn−T k

i xn‖
)

= [1+2[(1−αn)
2 +2βn(1−αn)

2(1−βn)L3 +2(1−αn)(1−βn)(L+1)L

+(1−αn)(a2
in−1)]]‖xn−1− p‖2

+8Lβn(1−αn)
2(Lβn +1){αn +Lβn(1−αn)

2(Lβn +1)}‖xn−1− p‖2

−2(1−αn)φ
(
‖xn−T k

i xn‖
)

= [1+2[(1−αn)
2 +2βn(1−αn)

2(1−βn)L3 +2(1−αn)(1−βn)(L+1)L

+(1−αn)(a2
in−1)

+4Lβn(1−αn)
2(Lβn +1){αn +Lβn(1−αn)

2(Lβn +1)}]]‖xn−1− p‖2

−2(1−αn)φ
(
‖xn−T k

i xn‖
)
,(22)

‖xn− p‖2 ≤ [1+δin]‖xn−1− p‖2−2(1−αn)φ
(
‖xn−T k

i xn‖
)
,(23)

where

δin = 2[(1−αn)
2 +2βn(1−αn)

2(1−βn)L3 +2(1−αn)(1−βn)(L+1)L

+(1−αn)(a2
in−1)+4Lβn(1−αn)

2(Lβn +1){αn +Lβn(1−αn)
2(Lβn +1)}].

From conditions (ii) and (iii), we have ∑
∞
n=1 δin < ∞. Thus using Lemma 2.1, it follows that

lim
n→∞
‖xn− p‖ exists and {xn} is bounded. This completes the proof of (a). Since {xn} is bound-

ed, we have there exists M > 0 such that ‖xn− p‖2 ≤M ∀n≥ 1. It follows from (24) that
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2(1−αn)φ
(
‖xn−T k

i xn‖
)
≤ [1+δin]‖xn−1− p‖2−‖xn− p‖2

2
∞

∑
j=1

(1−α j)φ
(
‖x j−T k

j x j‖
)
≤

∞

∑
j=1

[‖x j−1− p‖2−‖x j− p‖2]+
∞

∑
j=1

δi j‖x j− p‖2

2
∞

∑
j=N+1

(1−α j)φ
(
‖x j−T k

j x j‖
)
≤ ‖xN− p‖2 +M

∞

∑
j=N+1

δi j < ∞

∞

∑
n=1

(1−αn)φ
(
‖xn−T k

j xn‖
)
< ∞.

Condition (i) implies liminf
n→∞

φ(‖xn−T k
i xn‖) = 0. Since φ is an increasing and continuous func-

tion, then liminf
n→∞

‖xn−T k
i xn‖= 0. Since {xn}⊆ (0,1), lim

n→∞
‖xn− p‖ exists and {xn} is bounded,

by Lemma 3.1, liminf
n→∞

‖xn−Tixn‖ = 0. Thus completing the proof of (b). Since one member

of the family {Ti}N
i=1 is semicompact, {xn}∞

n=1 has a subsequence {xn j}∞
j=1 which converges

strongly to p and since lim
n→∞
‖xn− p‖ exists also, then by Lemma 2.1 lim

n→∞
‖xn− p‖ = 0. This

completes the proof.

Remark. (1) Our results complement and generalize the result of Su and Li [12].

(2) Setting βn = 1, the iteration scheme (6) takes the non-implicit form:

xn = αnxn−1 +(1−αn)T k
i xn−1.(24)

In the case of N = 1, (24) becomes the modified Mann iteration process in [8] given by

xn = αnxn−1 +(1−αn)T kxn−1.

In such case, the results of Osilike and Isiogugu [12] become special cases of our results.

(3) Theorem 3.1 extends the result of Igbokwe and Ini [4] from r−strictly asymptotically pseu-

docontractive maps to the much more general class of asymptotically φ−demicontractive maps.

(4) In general, Theorem 3.1 extends several results in the literature from asymptotically demi-

contractive maps to the more general class of asymptotically φ -demicontractive maps (see for

example [3, 9, 10, 11, 14]).

Conflict of Interests

The authors declare that there is no conflict of interests.



CONSTRUCTION OF COMMON FIXED POINTS 149

REFERENCES

[1] L. C. Cang, H. K. Xu and J. C. Yao, Uniformly normal structure and uniformly Lipschitzian semigroup,

Nonlinear Anal. Doi.10.10616/j.na 2010.07044.

[2] S. S. Chang, Some problems and results in the study of nonlinear analysis, Nonlinear Anal. 30 (1997) 4197–

4208.

[3] D. I. Igbokwe, Approximation of fixed points of asymptotically demicontrative mappings in arbitrary Banach

spaces, J. Inequal. Pure Appl. Math. 3 (2002), 1–11.

[4] D. I. Igbokwe and O. Ini, Modified averaging composite implicit iteration process for common fixed points of

a finite family of k-strictly asymptotically pseudocontractive mappings, Adv. Pure Math. 1 (2011), 204–209.

[5] D. I. Igbokwe and U. E. Udofia, Approximation of fixed points of a finite family of asymptotically demicon-

tractive maps by an implicit iteration process, World J. Appl. Sci. Tech. 2 (2010), 26–33.

[6] D. I. Igbokwe and U. E. Udofia, Implicit iteration method for common fixed points of a finite family of

asymptotically φ -demicontractive mappings, J. Nigerian Math. Soc. 30 (2011), 53–62.

[7] D. I. Igbokwe, and X. Udo-Utun, Composite implicit iteration process for common fixed points of a finite

family of asymptotically pseudocontractive maps, J. Pure Appl. Math. 3 (2010), 105–121.

[8] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953) 506–510.

[9] M. O. Osilike, Iterative approximation of fixed points of asymptotically demicontractive mappings, Indian J.

Pure Appl. Math. 29 (1998), 1291–1300.

[10] M. O. Osilike and S. C. Aniagbosor, Fixed points of asymptotically demicontractive mappings in arbitrary

Banach spaces, Indian J. Pure Appl. Math. 32 (2001) 1519–1539.

[11] M. O. Osilike, S. C. Aniagbosor and B. G. Akuchu, Fixed points of asymptotically demicontractive mappings

in arbitrary Banach spaces, PanAmer. Math. J. 12 (2002), 77–88.

[12] M. O. Osilike and F. O. Isiogugu, Fixed points of asymptotically demiconcentrative mappings in arbitary

Banach spaces, PanAmer. Math. J. 15 (2005), 59–69.

[13] M. O. Osilike, A. Udomene, D. I. Igbokwe and B. G. Akuchu, Demiclosedness principle and convergence

theorem for k-strictly asymptotically pseudocontractive maps, J. Math. Anal. Appl. 326 (2007), 1334–1345.

[14] L. Qihou, Convergence theorems of the sequence of iterates for asymptotically demicontarcive and hemicon-

tractive mappings, Nonlinear Anal. 26 (1996), 1835–1842.

[15] Y. Su and S. Li, Composite implicit iteration process for common fixed points of a finite family of strictly

pseudocontarctive maps, J. Math. Anal. Appl. 320 (2006), 882–891.

[16] Z. H. Sun, Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-

nonexpensive mappings, J. Math. Anal. Appl. 286 (2003), 351–358.


