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Abstract. In this paper, we introduced the notion of a cyclic (ψ,A,B,C)-contraction for the pair ( f ,g,h) of self-

mappings on the set X . We utilize our definition to introduce some common fixed point theorems for the three

mappings f , g and h under a set of conditions. As application of our results, we derive some fixed point theorems

of integral type.
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1. Introduction

One of the most important problems in mathematical analysis is to establish existence and

uniqueness theorems for some integral and differential equations. Fixed point theorems in (or-

dered) metric spaces are of great use in it. Mustafa and Sims [1] generalized the concept of a

metric space, which called G-metric space. In recent years many authors established important
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results in fixed point theory based on the notion of G-metric spaces (see [5, 6, 7, 8, 9, 11, 16]).

One of the popular topics in the fixed point theory is the cyclic contraction. Kirk et al. [3]

established the first result in this interesting area. Very recently, several authors proved many

important results in fixed point theory for cyclic mappings satisfying various nonlinear con-

tractive conditions (see [5-11]) in G-metric space. Some of contractive conditions are based on

functions which alter the distance between two points in a G-metric spaces. Such functions were

introduced by Khan et al. [12], Altun et al. [13, 14] introduced the notion of weakly increasing

mappings and proved some existing theorems. For some works in the theory of weakly increas-

ing mappings, we refer readers to [15, 16]. In 2013, Wasfi and Mihai [17] introduce the notion

of a cyclic (ψ,A,B)-contraction based on the notion of cyclic map, altering distance function

and weakly increasing map for the pair ( f ,T ) on the set X . And obtained some common fixed

point theorem for the two mappings f and T in ordered metric spaces. In this paper, we gener-

alized the concept of (ψ,A,B)-contraction for the pair ( f ,T ) to (ψ,A,B,C)-contraction for the

pair ( f ,g,h), and obtained some unique common fixed point theorem for three maps f , g and h

in partially ordered G-metric spaces. The purpose of this paper is to obtain common fixed point

results for three maps satisfying nonlinear contractive conditions of a cyclic form based on the

notion of an altering distance function in partially ordered G-metric spaces.

2. Preliminaries

We begin with the definition of the G-metric space.

Definition 2.1. [1] Let X be a nonempty set. A function G: X ×X ×X → [0,∞) is called G-

metric on X if it satisfy the following properties:

(G1) G(x,y,z) = 0 if x = y = z;

(G2) 0 < G(x,x,y) for all x,y ∈ X with x 6= y;

(G3) G(x,x,y)≤ G(x,y,z) for all x,y,z ∈ X with y 6= z;

(G4) G(x,y,z) = G(x,z,y) = G(y,z,x) = . . .(:symmetry in all three variables);

(G5) G(x,y,z)≤ G(x,a,a)+G(a,y,z) for all x,y,z,a ∈ X .
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Then the function G is called a generalized metric or, more specifically, a G−metric on X and

the pair (X ,G) is called a G−metric space.

This notion of G−metric was introduced by Mustafa and Sims [1]. It can be shown that if

(X ,d) is a metric space one can define G-metric on X by

G(x,y,z) = maxd(x,y),d(y,z),d(z,x) or G(x,y,z) = d(x,y)+d(y,z)+d(z,x).

Let X be a nonempty set. Then (X ,G,�) is called an partially ordered G−metric space if and

only if (X ,G) is a G-metric space and (X ,�) is a partially ordered set. Two elements x,y ∈ X

are called comparable if x� y or y� x.

Definition 2.2. [1] Let(X ,G) be a G-metric space and {xn} be a sequence in X . We say that

{xn} is G− convergent to a point x ∈ X or xn G− converges to x if, for any ε > 0, there exists

k ∈ N such that G(x,xn,xm)< ε for all m,n≥ k, that is, limn,m→+∞ G(x,xn,xm). In this case, we

write xn→ x or limn→+∞ xn = x.

Proposition 2.1. [1] Let (X ,G) be a G-metric space. Then the following are equivalent:

(1) {xn} is G− convergent to x.

(2) G(xn,xn,x)→ 0 as n→+∞.

(3) G(xn,x,x)→ 0 as n→+∞.

(4) G(xn,xm,x)→ 0 as n,m→+∞.

Definition 2.3. [1] Let (X ,G) be a G-metric space and {xn} be a sequence in X . We say that

{xn} is a G−Cauchy sequence if, for any ε > 0, there exists k ∈ N such that G(xn,xm,xl) for all

m,n, l ≥ k, that is, G(xn,xm,xl)→ 0 as n,m, l→+∞.

Proposition 2.2 [1] Let (X ,G) be a G-metric space. Then the following are equivalent:

(1) The sequence xn is a G−Cauchy sequence.

(2) For any ε > 0, there exists k ∈ N such that G(xn,xm,xm)< ε) for all m,n≥ k.

Proposition 2.3. [1] Let (X ,G) be a G-metric space. Then, f : X → X is G− continuous at

x ∈ X if and only if it is G-sequentially continuous at x, that is, whenever {xn} is G-convergent

to x, f (xn) is G-convergent to f (x).
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Definition 2.4. [1] A G-metric space (X ,G) is called G−complete if every G-cauchy sequence

is G-convergent in (X ,G).

Based on the notion of G-metric space, Some very recent fixed point theorems regarding

cyclic maps in G-metric spaces are given in [5, 6]. The notion of cyclic map has been first

introduced by Kir-srinavasan-veevamani [3].

Definition 2.5. [3] Let X be a nonempty set and let Y =
⋃m

j=1 A j where {A j}m
j=1 is a family of

nonempty subsets of X . A map T : Y → Y is called cyclicmap if

T (A j)⊆ A j+1, j = 1, . . . ,m,whereAm+1 = A1.

In [4], Karapinar gave the following interesting theorem regarding cyclic maps in the G-metric

space.

Theorem 2.1. [4] Let (X ,G) be a G-complete G-metric space and {A j}m
j=1 be a family of

nonempty G-closed subsets of X . Let Y =
⋃m

j=1 A j and T : Y → Y be a map satisfying

T (A j)⊆ A j+1, j = 1, . . . ,m,where Am+1 = A1.

If there exists k ∈ (0,1) such that

G(T x,Ty,T z)≤ kG(x,y,z)

hold for all x ∈ A j and y,z ∈ A j+1, j = 1, . . .m, then T has a unique fixed point in
⋂m

j=1 A j.

Definition 2.6. [11] The function ψ: [0,+∞)→ [0,+∞) is called an altering distance f unction

if the following properties are satisfied:

(1) ψ is continuous and nondecreasing;

(2) ψ(t) = 0 if and only if t = 0.

Remark 2.7. [13] Let (X ,�) be a partially ordered set. Two mappings F,G : X → X are said to

be weakly increasing if Fx� GFx and Gx� FGx for all x ∈ X .

Remark 2.8. [17] Let (X ,�) be a partially ordered set and A, B be closed subsets of X with

X = A∪B. Let f , T : X → X be two mappings. The pair ( f ,T ) is said to be (A,B)−weakly

increasing if f x� T f x for all x ∈ A and T f x� f T x for all x ∈ B.
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3. Main results

We start with the following definition.

Definition 3.1. Let (X ,�) be a partially ordered set and A, B, C be closed ordered subsets of

X with X = A∪B∪C. Let f , g, h: X → X be three mappings. The pair ( f ,g,h) is said to be

(A,B,C)−weakly increasing if f x� g f x for all x ∈ A, gx� hgx for all x ∈ B and hx� f hx for

all x ∈C.

Definition 3.2. Let (X ,G,�) be an partially ordered G-metric space and A, B, C be nonempty

closed ordered subsets of X . Let f , g, h: X → X be three mappings. The pair ( f ,g,h) is called

a cyclic (ψ,A,B,C)− contraction if

(1) ψ is an altering distance function;

(2) A∪B∪C has a cyclic representation w.r.t the pair ( f ,g,h); that is, f A ⊆ B,gB ⊆C,hC ⊆ A

and X = A∪B∪C;

(3) There exists 0 < δ < 1 such that for three comparable elements x,y,z ∈ X with x ∈ A, y ∈ B

and z ∈C, we have

ψ(2G( f x,gy,hz))≤ δ (M(x,y,z)),

where M(x,y,z) = max{G(x,y,z),G(x, f x,gy),G(y,gy,hz),G(z,hz, f x),
1
4(G( f x,y,z)+G(x,gy,z)+G(x,y,hz))}).

From now on, by ψ we mean altering distance functions unless otherwise stated. In the rest of

this paper, N stands for the set of nonnegative integer numbers and M(x,y,z)=max{G(x,y,z),G(x, f x,gy),G(y,gy,hz),G(z,hz, f x), 1
4(G( f x,y,z)+

G(x,gy,z)+G(x,y,hz))}).

Theorem 3.1. Let (X ,G,�) be an partly ordered complete G-metric space and A, B, C be

nonempty closed ordered subsets of X. Let f , g, h: X → X be three mappings such that the pair

( f ,g,h) is (A,B,C)-weakly increasing. Assume the following:

(1) The pair ( f ,g,h) is a cyclic (ψ,A,B,C)-contraction;

(2) Two of f , g and h are continuous.

Then, at least, one of the mappings of f , g, or h has a fixed point, or, the maps f , g and h have

a unique common fixed point in A∩B∩C.
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Proof. Choose x0 ∈ A. Let x1 = f x0. Since f A⊆ B, we have x1 ⊆ B. Also, let x2 = gx1. Since

gB⊆C, we have x2 ⊆C. Let x3 = hx2. Since hC⊆ A, we have x3 ⊆ A. Continuing this process,

we can construct a sequence {xn} in X such x3n+1 = f x3n, x3n+2 = gx3n+1, x3n+3 = hx3n+2,

x3n ∈ A, x3n+1 ∈ B, x3n+2 ∈C. Since f , g and h are (A,B,C)-weakly increasing, we have

x1 = f x0 � g f x0 = x2 = gx1 � T gx1 = x3 � f T x2 = x4 � . . .

We divide our proof into the following cases.

Case 1: Suppose that xn = xn+1for some n ∈ N.

If x3n = x3n+1, then x3n is a fixed point of f . If x3n+1 = x3n+2, then x3n+1 is a fixed point of

g. If x3n+2 = x3n+3, then x3n+2 is a fixed point of h. Thus, at least, one of the mappings of f , g,

or h has a fixed point.

Case 2: xn 6= xn+1 for all n.

We divide our proof into the following steps.

Step 1. We will show that xn is a Cauchy sequence in (X ,G). Since x3n, x3n+1, x3n+2 are

comparable elements in X with x3n ∈ A, x3n+1 ∈ B, x3n+2 ∈ C, let dn = G(xn,xn+1,xn+2), we

obtain that

ψ(2d3n+1) = ψ(2G( f x3n,gx3n+1,hx3n+2))

≤ δψ(max{G(x3n,x3n+1,x3n+2),G(x3n, f x3n,gx3n+1)

G(x3n+1,gx3n+1,hx3n+2),G(x3n+2,hx3n+2, f x3n)

1
4
(G( f x3n,x3n+1,x3n+2)+G(x3n,gx3n+1,x3n+2)

+G(x3n,x3n+1,hx3n+2)})

= δψ(max{G(x3n,x3n+1,x3n+2),G(x3n+1,x3n+2,x3n+3),

1
4
(G(x3n+1,x3n+1,x3n+2)+G(x3n,x3n+2,x3n+2)

+G(x3n,x3n+1,x3n+3)}).

Let

ω =
1
4
(G(x3n+1,x3n+1,x3n+2)+G(x3n,x3n+2,x3n+2)+G(x3n,x3n+1,x3n+3)).
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Then we have

G(x3n+1,x3n+1,x3n+2)≤ G(x3n+1,x3n+2,x3n+3) = d3n+1,

G(x3n,x3n+2,x3n+2)≤ G(x3n,x3n+1,x3n+2) = d3n = d3n,

G(x3n,x3n+1,x3n+3)≤ G(x3n,x3n+1,x3n+2)+G(x3n+2,x3n+2,x3n+3)

< d3n +d3n+1

< 2max(d3n,d3n+1).

Thus, we have

4ω < d3n +d3n+1 +22max(d3n,d3n+1)⇒ ω < max(d3n,d3n+1).

Then we have

ψ(2d3n+1)≤ δψ(max(d3n,d3n+1)).

If max(d3n,d3n+1) = d3n+1, then ψ(2d3n+1) ≤ δψ(d3n+1), which is a contradiction. Thus

max(d3n,d3n+1) = d3n. Therefore, we have

ψ(d3n+1)≤ ψ(2d3n+1)≤ δψ(d3n). (3.1)

Also, we have

ψ(2d3n+2) = ψ(2G( f x3n+3,gx3n+1,hx3n+2))

≤ δψ(max{G(x3n+3,x3n+1,x3n+2),G(x3n+3, f x3n+3,gx3n+1)

G(x3n+1,gx3n+1,hx3n+2),G(x3n+2,hx3n+2, f x3n+3,)

1
4
(G( f x3n+3,x3n+1,x3n+2)+G(x3n+3,gx3n+1,x3n+2)

+G(x3n+3,x3n+1,hx3n+2)})

= δψ(max{G(x3n+3,x3n+1,x3n+2),G(x3n+3,x3n+4,x3n+2),

1
4
(G(x3n+4,x3n+1,x3n+2)+G(x3n+3,x3n+2,x3n+2)

+G(x3n+3,x3n+1,x3n+3)})

= δψ(max(d3n+1,d3n+2)).
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If max(d3n+1,d3n+2) = d3n+2, then ψ(d3n+2) ≤ δψ(d3n+2), which is a contradiction. Thus

max(d3n+1,d3n+2) = d3n+1. Therefore, we have

ψ(d3n+2)≤ δψ(d3n+1). (3.2)

Similarly, we can obtain

ψ(d3n+3)≤ δψ(d3n+2). (3.3)

From (3.1), (3.2) and (3.3), we have

ψ(dn+1)≤ δψ(dn). (3.4)

Since ψ is an altering distance function, we have {dn} is a bounded nonincreasing sequence.

Thus there exists r≥ 0 such that limn→∞ dn = r. Letting n→∞ in (3.4), we have ψ(r)≤ δψ(r).

Since 0 < δ < 1, we have ψ(r) = 0 and hence r = 0. Thus

lim
n→∞

dn = lim
n→∞

G(xn,xn+1,xn+2) = 0. (3.5)

Since xn+1 6= xn+2 for every n, so by property (G3), we obtain

G(xn,xn+1,xn+1)≤ G(xn,xn+1,xn+2).

Hence,

lim
n→∞

G(xn,xn+1,xn+1) = 0 (3.6)

Also, by proposition 2.1, we have

lim
n→∞

G(xn,xn,xn+1) = 0 (3.7)

Now, we prove that {xn} is a G-Cauchy sequence. For this aim, it is sufficient to show that the

subsequence {x3n} is G-Cauchy in X . Assume on contrary that {x3n} is not G-Cauchy sequence.

Then there exists ε > 0 for which we can find subsequences {x3mk} and {x3nk} of {x3n} such

that mk is the smallest index for which 3mk > 3nk > k and

G(x3nk ,x3mk ,x3mk)≥ ε (3.8)

This means that

G(x3nk ,x3mk−3,x3mk−3)< ε. (3.9)
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Since x3nk , x3mk−2 and x3mk−1 are comparable elements in X with x3nk ∈ A, x3mk−2 ∈ B and

x3mk−1 ∈C, we have

ψ(2G(x3nk+1,x3mk−1,x3mk))

= ψ(2G( f x3nk ,gx3mk−2,hx3mk−1))

≤ δψ(max{G(x3nk ,x3mk−2,x3mk−1),G(x3nk , f x3nk ,gx3mk−2),

G(x3mk−2,gx3mk−2,hx3mk−1),G(x3mk−1,hx3mk−1, f x3nk),

1
4
(G( f x3nk ,x3mk−2,x3mk−1)+G(x3nk ,gx3mk−2,x3mk−1)

+G(x3nk ,x3mk−2,hx3mk−1})

= δψ(max{G(x3nk ,x3mk−2,x3mk−1),G(x3nk ,x3nk+1,x3mk−1,

G(x3mk−2,x3mk−1,x3mk),G(x3mk−1,x3mk ,x3nk+1,

1
4
(G(x3nk+1,x3mk−2,x3mk−1)+G(x3nk ,x3mk−1,x3mk−1)

+G(x3nk ,x3mk−2,x3mk)})

Note that

2ε ≤ 2G(x3nk ,x3mk ,x3mk)

≤ 2G(x3nk ,x3nk+1,x3nk+1)+2G(x3nk+1,x3mk ,x3mk)

≤ 2G(x3nk ,x3nk+1,x3nk+1)+2G(x3nk+1,x3mk ,x3mk−1).

Taking the upper limit as k→ ∞ and from (3.6), we have

2ε ≤ limsup
k→∞

2G(x3nk+1,x3mk ,x3mk−1) (3.10)

Using (G5), we obtain that

G(x3nk ,x3mk−2,x3mk−1)≤ G(x3nk ,x3mk−3,x3mk−3)+G(x3mk−3,x3mk−2,x3mk−1).

Taking the upper limit as k→ ∞ and using (3.5) and (3.9) we obtain that

limsup
k→∞

G(x3nk ,x3mk−2,x3mk−1)≤ ε. (3.11)
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Also, from (G5) we have

G(x3nk ,x3nk+1,x3mk−1)

≤ G(x3mk−1,x3mk−3,x3mk−3)+G(x3mk−3,x3nk ,x3nk+1)

≤ G(x3mk−1,x3mk−3,x3mk−3)+G(x3mk−3,x3nk ,x3nk)

+G(x3nk ,x3nk ,x3nk+1)

≤ G(x3mk−1,x3mk−3,x3mk−3)+2G(x3nk ,x3mk−3,x3mk−3)

+G(x3nk ,x3nk ,x3nk+1).

Taking the upper limit as k→ ∞ and from (3.5)-(3.7) and (3.9) we obtain that

limsup
k→∞

G(x3nk ,x3nk+1,x3mk−1)≤ 2ε. (3.12)

On the other hand, from (G5) we have

G(x3mk−1,x3mk ,x3nk+1)

≤ G(x3nk+1,x3nk ,x3nk)+G(x3nk ,x3mk ,x3mk−1)

≤ G(x3nk+1,x3nk ,x3nk)+G(x3nk ,x3mk−3,x3mk−3)

+G(x3mk−3,x3mk ,x3mk−1).

By taking the upper limit as k→ ∞ and using (3.5)-(3.7) and (3.9) we have

limsup
k→∞

G(x3mk−1,x3mk ,x3mk+1)≤ ε. (3.13)

Using (G5) we have

G(x3nk+1,x3mk−2,x3mk−1)

≤ G(x3nk+1,x3mk−3,x3mk−3)+G(x3mk−3,x3mk−2,x3mk−1)

≤ G(x3nk ,x3mk−3,x3mk−3)+G(x3nk ,x3nk ,x3nk+1)

+G(x3mk−3,x3mk−2,x3mk−1)

Taking the upper limit as k→ ∞ and using (3.5)-(3.7) and (3.9), we have
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limsup
k→∞

G(x3nk+1,x3mk−2,x3mk−1)≤ ε (3.14)

Similarly, we obtain

limsup
k→∞

G(x3nk ,x3mk−2,x3mk)≤ ε (3.15)

On the other hand, we obtain from (G3) and (3.11)

limsup
k→∞

G(x3nk ,x3mk−1,x3mk−1)≤ limsup
k→∞

G(x3nk ,x3mk−2,x3mk−1)≤ ε. (3.16)

From (3.14), (3.15) and (3.16) we have

limsup
k→∞

{1
4

G(x3nk+1,x3mk−2,x3mk−1)+G(x3nk ,x3mk−1,x3mk−1)+G(x3nk ,x3mk−2,x3mk)}≤
3
4

ε < ε.

(3.17)

Taking the upper limit as k→ ∞ and using (3.10)-(3.13) and (3.17), we have

ψ(2ε) ≤ ψ(limsup
k→∞

2G(x3nk+1,x3mk−1,x3mk))

= ψ(limsup
k→∞

2G( f x3nk ,gx3mk−2,hx3mk−1))

≤ δψ(limsup
k→∞

max{G(x3nk ,x3mk−2,x3mk−1),G(x3nk ,x3nk+1,x3mk−1),

G(x3mk−2,x3mk−1,x3mk),G(x3mk−1,x3mk ,x3nk+1),

1
4
(G(x3nk+1,x3mk−2,x3mk−1)+G(x3nk ,x3mk−1,x3mk−1)

+G(x3nk ,x3mk−2,x3mk)

≤ δψ(2ε))}).

Since 0 < δ < 1 and ψ is an altering distance function, we have ψ(2ε) = 0 and hence ε = 0, a

contradiction.Thus {x3n} is a G-Cauchy sequence in (X ,G).

Step 2. Existence of a common fixed point.

Since (X ,G) is complete and {xn} is a G-Cauchy sequence in X , we have {xn} G-converges

to some u ∈ X , Therefore

lim
n→∞

x3n+1 = lim
n→∞

f x3n = lim
n→∞

x3n+2

= lim
n→∞

gx3n+1 = lim
n→∞

x3n+3 = lim
n→∞

hx3n+2 = u.
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Since x3n is a sequence in A, A is closed and x3n→ u, we have u ∈ A. Since x3n+1 is a sequence

in B, B is closed and x3n+1→ u, we have u∈ B. Also, since x3n+2 is a sequence in C, C is closed

and x3n+2→ u, we have u ∈C. Thus, u ∈ A∩B∩C. Now, we show that u is a common fixed

point of f , g and h. Without loss of generality, we may assume f and g are continuous, since

x3n→ u, we get x3n+1 = f x3n→ f u. By the uniqueness of limit, we have u = f u. Similarly, we

obtain u = gu. Now, we show that u = hu. Since u � u � u with u ∈ A, u ∈ B and u ∈C, we

have

ψ(2G(u,u,hu)) = ψ(G( f u,gu,hu))

≤ δψ(max{G(u,u,u),G(u, f u,gu),

G(u,gu,hu),G(u,hu, f u)),

1
4
(G( f u,u,u)+G(u,gu,u)+G(u,u,hu))})

= δψ(G(u,u,hu)).

Since 0 < δ < 1 and ψ is an altering distance function, we get that G(u,u,hu) = 0 and hence

u = hu. Now, we show that the common fixed point of f , g and h is unique. Assume on contrary

that v is another fixed point of f , g and h i.e., f v=gv=hv=v, since X = A∪B∪C, it is easy to see

v ∈ A∩B∩C. And from the proof above we know u ∈ A∩B∩C, since A, B and C are ordered

subsets of X , we have, u and v are comparable with u ∈ A, u ∈ B and v ∈C, then we have

ψ(2G(u,u,v)) = ψ(2G( f u,gu,hv))

≤ δψ(max{G(u,u,v),G(u, f u,gu),G(u,gu,hv),

G(v,hv, f u),
1
4
(G( f u,u,v)+G(u,gu,v)+G(u,u,hv))})

= δψ(max{G(u,u,v),G(v,v,u)}).

Thus, we have

ψ(2G(u,u,v))≤ δψ(max{G(u,u,v),G(v,v,u)}). (3.18)

Similarly, we obtain

ψ(2G(v,v,u))≤ δψ(max{G(u,u,v),G(v,v,u)}). (3.19)
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If max{G(u,u,v),G(v,v,u)}= G(u,u,v), we have from (3.18) ψ(2G(u,u,v))≤ δψ(G(u,u,v)).

Since 0< δ < 1, we get that G(u,u,v)= 0, and hence u= v. Similarly, if max{G(u,u,v),G(v,v,u)}=

G(v,v,u), we also can obtain u = v. Thus, we have f , g and h have a unique common fixed in

A∩B∩C.

Theorem 3.1 can be proved without assuming the continuity of f , g or h. For this instance,

we assume that X satisfies the following property.

(P) [17] If {xn} is a nondecreasing sequence in X with xn→ x, then xn � x.

Now, we state and prove the following result.

Theorem 3.2. Let (X ,G,�) be an partly ordered complete G-metric space and A, B, C be

nonempty closed ordered subsets of X. Let f , g, h: X → X be three mappings such that the pair

( f ,g,h) is (A,B,C)-weakly increasing. Assume the following:

(1) The pair ( f ,g,h) is a cyclic (ψ,A,B,C)-contraction;

(2) X satisfies the property (P).

Then, at least, one of the mappings of f , g and h has a fixed point, or, the mappings f , g and h

have a unique common fixed point in A∩B∩C.

Proof. We follow the proof of Theorem 3.1 step by step to construct a nondecreasing sequence

{xn} in X with x3n ∈ A, x3n+1 ∈ B, x3n+2 ∈C and xn→ u for some u∈ A∩B∩C. Using property

(P), we get xn � u for all n ∈ N. Since x3n ∈ A, x3n+1 ∈ B, u ∈C, we have

ψ(2G(x3n+1,x3n+2,hu)) ≤ δψ(max{G(x3n,x3n+1,u),G(x3n, f x3n,gx3n+1),

G(x3n+1,gx3n+1,hu),G(u,hu, f x3n),

1
4
(G( f x3n,x3n+1,u)+G(x3n,gx3n+1,u)

+G(x3n,x3n+1,hu))})

= δψ(max{G(x3n,x3n+1,u),G(x3n,x3n+1,x3n+2),

G(x3n+1,gx3n+1,hu),G(u,hu,x3n+1),

1
4
(G(x3n+1,x3n+1,u)+G(x3n,x3n+2,u)

+G(x3n,x3n+1,hu))}).



306 JING LIU, MEIMEI SONG

Letting n→ ∞ in the above inequality, we get ψ(2G(u,u,hu)) ≤ δψ(G(u,u,hu)). Since 0 <

δ < 1 and ψ is an altering distance function, we get (G(u,u,hu)) = 0, hence u = hu. Similarly,

we may show that u = f u and u = gu. Thus u is a common fixed point of f , g and h. And follow

the proof of Theorem 3.1, we have, u ∈ A∩B∩C is the unique fixed point of f , g and h.

Taking ψ = I[0,+∞) (the identity function) in Theorem 3.1, we have the following result.

Corollary 3.1. Let (X ,G,�) be an partly ordered complete G-metric space and A, B, C be

nonempty closed ordered subsets of X. Let f , g, h: X → X be three mappings such that the pair

( f ,g,h) is (A,B,C)-weakly increasing and A∩B∩C has a cyclic representation with respect

to the pair ( f ,g,h). Suppose that there exists 0 < δ < 1 such that for any three comparable

elements x,y,z ∈ X with x ∈ A, y ∈ B and z ∈C, we have 2G( f x,gy,hz) ≤ δ (M(x,y,z)). If two

of f , g and h are continuous, then, at least one of the mappings f , g and h has a fixed point, or,

the mappings f , g and h have a unique common fixed point in A∩B∩C.

By taking f = g = h in Theorem 3.1, we have the following result.

Corollary 3.2. Let (X ,G,�) be an partly ordered complete G-metric space and A, B, C be

nonempty closed ordered subsets of X. Let f : X → X be a map such that f x � f ( f x) for

all x ∈ X. Suppose that there exists 0 < δ < 1 such that for any three comparable elements

x,y,z ∈ X with x ∈ A, y ∈ B and z ∈C, we have

ψ(2G( f x, f y, f z))≤ δψ(max{G(x,y,z),G(x, f x, f y),G(y, f y, f z),G(z, f z, f x),
1
4(G( f x,y,z)+G(x, f y,z)+G(x,y, f z))})

Assume the following:

(1) f is a cyclic map;

(2) f is continuous.

Then f has a unique fixed point in A∩B∩C.

Taking A = B =C = X in Theorem 3.1, we have the following result.

Corollary 3.3. Let (X ,G,�) be an partially ordered complete G-metric space. Let f , g, h:

X → X be three weakly increasing mappings. Suppose that there exists 0 < δ < 1 such that for

any three comparable elements x,y,z ∈ X, we have ψ(2G( f x,gy,hz)) ≤ δψ(M(x,y,z)). If two
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of f , g and T are continuous, then at least, one of the mappings f , g or h has a fixed point, or,

the mappings f , g and h have a unique common fixed point.

4. Applications

Denote by Λ the set of functions µ : [0,+∞)→ [0,+∞) satisfying the following hypotheses:

(h1) µ is a Lebesgue-integrable mapping on each compact of [0,+∞);

(h2) For every ε > 0,we have
∫

ε

0 µ(t)dt > 0.

Theorem 4.1. Let (X ,G,�) be an partly ordered complete G-metric space and A, B, C be

nonempty closed ordered subsets of X. Let f ,g,h : X → X be three mappings such that the pair

( f ,g,h) is (A,B,C)-weakly increasing and A∩B∩C has a cyclic representation with respect

to the pair ( f ,g,h). Suppose that there exists 0 < δ < 1 such that for any three comparable

elements x,y,z∈ X with x∈ A, y∈ B and z∈C, we have
∫ 2G( f x,gy,hz)

0 µ(s)ds≤ δ
∫ M(x,y,z)

0 µ(s)ds.

If two of f , g and h are continuous, then, at least, one of the mappings f , g or h has a fixed

point, or, the mappings f , g and h have a unique common fixed point in A∩B∩C.

By taking f = g = h in Theorems 4.1, we have the following results.

Corollary 4.1. Let (X ,G,�) be an partly ordered complete G-metric space and A, B, C be

nonempty closed ordered subsets of X. Let f : X → X be a map such that f x � f ( f x) for

all x ∈ X. Suppose that there exists 0 < δ < 1 such that for any three comparable elements

x,y,z ∈ X with x ∈ A, y ∈ B and z ∈C, we have
∫ 2G( f x, f y, f z)

0 µ(s)ds≤ δ
∫ M(x,y,z)

0 µ(s)ds. Assume

the following:

(1) f is a cyclic map;

(2) f is continuous.

Then f has a unique fixed point in A∩B∩C.

Taking A = B =C = X in Theorem 4.1, we have the following result.

Corollary 4.2. Let (X ,G,�) be an partially ordered complete G-metric space. Let f ,g,h : X→

X be three weakly increasing mappings. Suppose that there exists 0 < δ < 1 such that for any

three comparable elements x,y,z ∈ X, we have
∫ 2G( f x,gy,hz)

0 µ(s)ds ≤ δ
∫ M(x,y,z)

0 µ(s)ds. If two
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of f , g and h are continuous,then, at least, one of the mappings f , g or h has a fixed point, or,

the mappings f , g and h have a common fixed point.
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