
Available online at http://scik.org

Adv. Fixed Point Theory, 5 (2015), No. 3, 319-328

ISSN: 1927-6303

Fw-CONTRACTIONS IN A COMPLETE G-METRIC SPACE

NIDHI MALHOTRA ∗, BINDU BANSAL

Department of Mathematics, Hindu College, University of Delhi, Delhi-110007, India.

Copyright c© 2015 Malhotra and Bansal. This is an open access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we define a w-distance on a complete G-metric space. Also, we extend and generalize

the concept of the F-contraction to the Fw-contraction and prove a fixed point theorem for Fw-contractions in a

complete G-metric space.
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1. Introduction and preliminaries

The Banach fixed point theorem for contraction mappings has been generalized and extended

in many directions; see ([1], [2], [4], [5], [11], [12] and [13]) and the reference therein. In [6],

Dhage introduced the D-metric space as a generalization of the metric space and proved some

results in this setting. In 2005, Mustafa and Sims [10] proved that these results are not true

in topological structure and hence they introduced the G-metric space as a generalized form

of the metric space. Since then, many authors have been studying fixed points of nonlinear

operators in the framework of the G-metric space. In 2012, Wardowski [17] introduced a new

concept of the F-contraction and proved a fixed point theorem for such a map on a complete
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metric space which generalizes the Banach Contraction Principle in a different direction. In

[3], Batra and Vashistha generalized the concept of the F-contraction to the Fw-contraction and

proved a fixed point theorem for the Fw-contraction in a complete metric space. Recently, Gupta

[7] introduced the notion of the F-contraction in the G-metric space and proved a fixed point

theorem concerning the F-contraction.

In this paper, using the concept of the G-metric, we define a w-distance on a complete G-

metric space, which is a generalization of the concept of the w-distance due to Kada, Suzuki

and Takahashi [8]. Also, we introduce the concept of the Fw-contraction in a complete G-metric

space and extend the fixed point theorem due to Gupta.

Now, we recall the following definitions.

Definition 1.1. [10] Let X be a nonempty set and let G : X × X × X → R+ be a function

satisfying the following properties:

(G1) G(x,y,z) = 0 if x = y = z,

(G2) 0 < G(x,x,y) for all x,y ∈ X with x = y,

(G3) G(x,x,y)≤ G(x,y,z) for all x,y,z ∈ X with x 6= y,

(G4) G(x,y,z) = G(x,z,y) = G(y,z,x) = . . .(symmetry in all three variables),

(G5) G(x,y,z)≤ G(x,a,a)+G(a,y,z) for all x,y,z,a ∈ X (rectangle inequality).

Then the function G is called a generalized metric or a G-metric on X , and the pair (X ,G) is

called a G-metric space.

Definition 1.2. [10] Let (X ,G) be a G-metric space.

(1) A sequence {xn} in X , is said to be G-convergent to a point x ∈ X if for each ε > 0, there

exists n0 ∈ N such that, for all m,n≥ n0,

G(xm,xn,x)< ε;

(2) A sequence {xn} in X , is said to be G-Cauchy sequence if for each ε > 0, there exists n0 ∈N

such that, for all m,n, l ≥ n0,

G(xm,xn,xl)< ε .

Proposition 1.3. [10] Let (X ,G) be a G-metric space. Then the following are equivalent:

(1) The sequence {xn} is G-Cauchy.

(2) For every ε > 0, there is k ∈ N such that G(xn,xm,xm)< ε , for all n,m≥ k.
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Proposition 1.4. [10] Let (X ,G) be a G-metric space. Then the function G(x,y,z) is jointly

continuous in all three of its variables.

Definition 1.5. [17] Let F : R+→ R be a mapping satisfying:

(F1) F is strictly increasing. That is, α < β ⇒ F(α)< F(β ) for all α,β ∈ R+.

(F2) For every sequence {αn} in R+, we have lim
n→∞

αn = 0 if and only if lim
n→∞

F(αn) =−∞.

(F3) There exists a number k ∈ (0,1) such that lim
α→0+

αkF(α) = 0.

Definition 1.6. [7] Let (X ,G) be a G-metric space. A mapping T : X → X is said to be a

F-contraction if there exists a number τ > 0 such that

G(T x,Ty,T z)> 0⇒ τ +F(G(T x,Ty,T z))≤ F(G(x,y,z)) for all x,y,z ∈ X .

Remark 1.7. Clearly Definition 1.6 and (F1) implies that G(T x,Ty,T z) < G(x,y,z) for all

x,y,z ∈ X with T x 6= Ty 6= T z. Hence every F- contraction mapping is continuous.

Next we give the notion of w-distance with some properties and examples.

Definition 1.8. Let (X ,G) be a G-metric space. A function p : X ×X ×X → [0,∞) is called a

w-distance on X if the following conditions hold:

(w1) p(x,y,z)≤ p(x,a,a)+ p(a,y,z) for all x,y,z,a ∈ X ;

(w2) for any x,y ∈ X , p(x,y, .), p(x, .,y) : X → [0,∞) are lower semicontinuous;

(w3) for each ε > 0, there exists δ > 0 such that p(a,x,x)≤ δ and p(a,y,z)≤ δ imply G(x,y,z)≤

ε.

Example 1.9. Let (X ,G) be a G-metric space. Then p = G is a w-distance on X.

Proof. (w1) and (w2) are obvious. We show (w3). Let ε > 0 be given and put δ = ε/2. If

G(a,x,x)≤ δ and G(a,y,z)≤ δ , we have, G(a,a,x)≤ δ , which imply that G(x,y,z)≤ 2δ = ε.

Example 1.10. Let X = [0,∞) and G : X3→ [0,∞) be defined by G(x,y,z) = 1
3(| x−y |+ | y−z |

+ | x− z |) for all x,y,z ∈ X . Then (X ,G) is a G-metric space and the function p : X3→ [0,∞)

defined by p(x,y,z) = max{y,z} for all x,y,z ∈ X is a w-distance on X.

Proof. The proofs of (w1) and (w2)are immediate. To show (w3), for any ε > 0, put δ = ε/2.

Then if p(a,x,x) ≤ δ and p(a,y,z) ≤ δ , we have | x− y |≤ 2δ , | y− z |≤ 2δ and | x− z |≤ 2δ ,

which imply G(x,y,z)≤ ε.
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Example 1.11. In X = R, we consider the G-metric G defined by

G(x,y,z) = 1
3(| x− y |+ | y− z |+ | x− z |) for all x,y,z ∈ X .

Then the function p : R3→ [0,∞) defined by p(x,y,z) = 1
3(|z− x|+ |x− y|) for all x,y,z ∈ R

is a w-distance on R.

Proof. The proofs of (w1) and (w2) are immediate. We show (w3). Let ε > 0 be given and put

δ = ε/5. If p(a,x,x) ≤ δ and p(a,y,z) ≤ δ , we have, respectively, |x− a| ≤ 3δ , |a− z| ≤ 3δ

and |y−a| ≤ 3δ , which imply that G(x,y,z)≤ 5δ = ε.

Lemma 1.12. Let X be a G-metric space with metric G and p be a w-distance on X. Let

{xn},{yn} be sequences in X, {αn} and {βn} be sequences in [0,∞) converging to zero and let

x,y,z,a ∈ X . Then we have the following:

(1) If p(xn,y,y)≤ αn and p(xn,y,z)≤ βn for n ∈ N, then G(y,y,z)< ε and hence y = z;

(2) If p(xn,yn,yn)≤αn and p(xn,ym,z)≤ βn for any m> n∈N, then G(yn,ym,z)→ 0 and hence

yn→ z;

(3) If p(xn,xm,xl)≤ αn for any l,n,m ∈ N with n≤ m≤ l, then {xn} is a G-Cauchy sequence;

(4) If p(a,xn,xn)≤ αn for any n ∈ N, then {xn} is a G-Cauchy sequence.

Proof. We first prove (2). Let ε > 0 be given. From the definition of w-distance, there exists a

δ > 0 such that p(a,u,u)≤ δ and p(a,v,w)≤ δ imply G(u,v,w)≤ ε . Choose n0 ∈ N such that

αn ≤ δ and βn ≤ δ for every n ≥ n0.Then we have, for any m > n ≥ n0, p(xn,yn,yn) ≤ αn ≤

δ , p(xn,ym,z)≤ βn ≤ δ , and hence G(yn,ym,z)≤ ε , so that {yn} converges to z. It follows from

(2) that (1) holds. Let us now prove (3). Let ε > 0 be given. As in the proof of (2), choose δ > 0

and then n0 ∈ N.Then, for any l ≥ m ≥ n ≥ n0, p(xn−1,xn,xn) ≤ αn−1 ≤ δ , p(xn−1,xm,xl) ≤

αn−1 ≤ δ , and hence G(xn,xm,xl)≤ ε . This implies that {xn} is a G-Cauchy sequence. Condi-

tion (4) is a special case of (3).

We now define the notion of the Fw-contraction in a G-metric space and give some examples.

Definition1.13. Let (X ,G) be a G-metric space and p be a w-distance on X . Let F be a mapping

as defined in Definition 1.5. A mapping T : X → X is said to be a Fw-contraction if

(i) p(x,y,z) = 0⇒ p(T x,Ty,T z) = 0;

(ii) There exists a number τ > 0 such that
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τ +F(p(T x,Ty,T z))≤ F(p(x,y,z)) for all x,y,z ∈ X

with p(T x,Ty,T z)> 0.

Remark 1.14. Clearly, (ii) of Definition 1.13 implies that

p(T x,Ty,T z)< p(x,y,z) for all x,y,z ∈ X with p(T x,Ty,T z)> 0.

Example 1.15. Define F : R+→ R by F(α) = lnα . Then F satisfies (F1), (F2) and (F3) (for

all k ∈ (0,1)) of Definition 1.5. A mapping T : X → X satisfies

p(T x,Ty,T z)≤ λ p(x,y,z), (1.1)

for all x,y,z ∈ X and some λ ∈ [0,1) if and only if T is a Fw-contraction. Let us start with a

mapping T : X → X satisfying (1.1). If λ = 0 then (i) and (ii) in Definition 1.13 are vacuously

satisfied. For 0 < λ < 1, (i) is obvious and (ii) is satisfied for τ = ln 1
λ

. Thus T is a Fw-

contraction.

Conversely, if T : X → X is a Fw-contraction then (ii) of Definition 1.13 implies that

p(T x,Ty,T z) ≤ e−τ p(x,y,z) for all x,y,z ∈ X with p(T x,Ty,T z) > 0. Clearly it is satisfied

even for p(T x,Ty,T z) = 0. Thus p(T x,Ty,T z)≤ λ p(x,y,z) for all x,y,z ∈ X , where λ = e−τ ∈

[0,1).

Example 1.16. Consider H(α) = lnα +α for all α > 0. Then H satisfies (F1), (F2) and (F3)

of Definition 1.5. A mapping T : X → X is a Hw-contraction if and only if

p(T x,Ty,T z)e{p(T x,Ty,T z)−p(x,y,z)} ≤ λ p(x,y,z), (1.2)

for all x,y,z ∈ X and λ = e−τ ∈ [0,1). (Reason is similar to above example)

Example 1.17. Consider K(α) = ln(α2 +α) for all α > 0. Then K satisfies (F1), (F2) and

(F3) of Definition 1.5. A mapping T : X → X is a Kw-contraction if and only if

p(T x,Ty,T z)(p(T x,Ty,T z)+1)
p(x,y,z)(p(x,y,z)+1)

≤ λ , (1.3)

for all x,y,z ∈ X and λ = e−τ ∈ [0,1).

Remark 1.18. Let F,H : R+ → R be mappings satisfying (F1), (F2) and (F3) of Definition

1.5 together with F(α) ≤ H(α) for all α > 0 . Let K = H−F be nondecreasing. Then every
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Fw-contraction T : X→ X is a Hw-contraction. Indeed for any x,y,z∈ X with p(T x,Ty,T z)> 0,

we have,

τ +H(p(T x,Ty,T z)) =τ +F(p(T x,Ty,T z))+K(p(T x,Ty,T z))

≤ F(p(x,y,z))+K(p(x,y,z)) = H(p(x,y,z)).

Example 1.19. Let X = [0,∞) and G(x,y,z) = 1
3(| x−y |+ | y− z |+ | x− z |) for all x,y,z ∈ X .

Then (X ,G) is a complete G-metric space. Define p : X×X×X→R+ by p(x,y,z) = max{y,z}

for all x,y,z ∈ X. Then p is a w-distance on X. Define a mapping T : X → X by

T x =


x2

2 , if 0≤ x≤ 1,

0, if x > 1.

Since T is not continuous, therefore it is not a F-contraction for any mapping F as described

in Definition 1.5. Now consider the mapping F as described in Example 1.15. We note that

p(T x,Ty,T z) = max{Ty,T z}> 0 if and only if 0≤ y≤ 1 or 0≤ z≤ 1.

Now we have the following cases:

For x,y,z ∈ X with 0 < y≤ 1 < z, we have p(T x,Ty,T z)
p(x,y,z) = y2/2

z ≤
1
2 .

For x,y,z ∈ X with 0 < z≤ 1 < y, we have p(T x,Ty,T z)
p(x,y,z) = z2/2

y ≤
1
2 .

For x,y,z ∈ X with 0≤ y < z≤ 1, we have p(T x,Ty,T z)
p(x,y,z) = z2/2

z = z
2 ≤

1
2 .

For x,y,z ∈ X with 0≤ z < y≤ 1, we have p(T x,Ty,T z)
p(x,y,z) = y2/2

y = y
2 ≤

1
2 .

So p satisfies (1.1) for all x,y,z ∈ X and for λ = 1
2 . Thus T is a Fw -contraction which is not a

F-contraction for any F.

2. Main results

Theorem 2.1. Let (X ,G) be a complete G-metric space and p be a w-distance on X. Let

T : X → X be a Fw-contraction. Then T has a unique fixed point x∗ in X and for every x0 ∈ X,

there is a sequence {T nx0} in X that converges to x∗. Further p(x∗,x∗,x∗) = 0.

Proof. For any two fixed points x∗ and y∗ of T in X with p(T x∗,Ty∗,Ty∗)> 0, we have

τ ≤ F(p(x∗,y∗,y∗))−F(p(T x∗,Ty∗,Ty∗)) = 0.
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Thus p(T x∗,Ty∗,Ty∗) = p(x∗,y∗,y∗) = 0 for any two fixed points x∗ and y∗ of T in X . In

particular, p(T x∗,T x∗,T x∗) = p(x∗,x∗,x∗) = 0. By Lemma 1.12 (1), we obtain x∗ = y∗ for any

two fixed points x∗ and y∗ of T in X . Hence fixed point x∗ of T if exists is unique and satisfies

p(x∗,x∗,x∗) = 0.

Now we show the existence of a fixed point of T . Let x0 ∈ X be arbitrary. Define a sequence

{xn} in X by xn = T xn−1 for all n ∈ N. Let pn = p(xn−1,xn,xn) for all n ∈ N. If there exist-

s k ∈ N with p(xk−1,xk,xk) = 0 then, by (i) of Definition 1.13, p(T xk−1,T xk,T xk) = 0, that

is, p(xk,xk+1,xk+1) = 0. Therefore p(xk−1,xk+1,xk+1)≤ p(xk−1,xk,xk)+ p(xk,xk+1,xk+1) = 0.

By Lemma 1.12 (1) we have xk = xk+1. Inductively, we have xk = xk+i for all i ∈ N. This

implies T i(xk) = xk for all i ∈ N and in particular, for i = 1,T (xk) = xk. Also lim
n→∞

T n(x0) =

lim
i→∞

T k+i(x0) = lim
i→∞

T i(xk) = xk. Thus we can take x∗ = xk in this case and settle the proof.

Now assume that pn = p(xn−1,xn,xn) > 0 for all n ∈ N. Then by (ii) of Definition 1.13 we

get

F(pn)≤ F(pn−1)− τ ≤ F(pn−2)−2τ ≤ ...≤ F(p0)−nτ. (2.1)

From (2.1), we get lim
n→∞

F(pn) =−∞. By (F2) of Definition 1.5, we have

lim
n→∞

pn = 0. (2.2)

Now, by (F3) of Definition 1.5, we find that there exists k ∈ (0,1) such that

lim
n→∞

pk
nF(pn) = 0. (2.3)

By (2.1), we find that following holds for all n ∈ N.

pk
nF(pn)− pk

nF(p0) = pk
n(F(pn)−F(p0))≤?npk

nτ. (2.4)

Letting n→ ∞ in (2.4) and using (2.2) and (2.3), we have

lim
n→∞

npk
n = 0. (2.5)

By (2.5), there exists a positive integer n0 such that npk
n < 1 for all n ≥ n0. Consequently, we

have

pn <
1

n
1
k
∀n≥ n0. (2.6)
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Since the series Σ∞
n=1

1

n
1
k

is convergent, therefore, by (2.6), the series Σ∞
n=1 pn is also convergent.

Now for any m > n we have

p(xn,xm,xm)≤ pn+1 + pn+2 + · · ·+ pm < αn, (2.7)

where αn = Σ∞
i=n+1 pi → 0 as n→ ∞. By Lemma 1.12 (3), {xn} is a Cauchy sequence in X .

By the completeness of X , there exists x∗ ∈ X such that lim
n→∞

xn = x∗. From (2.7) and (ii) of

Definition 1.8, we get

p(xn,x∗,x∗)≤ αn. (2.8)

Now for p(T xn−1,T x∗,T x∗)> 0, we find from Remark 1.14 and (2.8) that

p(xn,T x∗,T x∗) = p(T xn−1,T x∗,T x∗)< p(xn−1,x∗,x∗)≤ αn−1. (2.9)

Clearly (2.9) is satisfied even for p(T xn−1,T x∗,T x∗) = 0. Thus

p(xn,T x∗,T x∗)≤ αn−1 ∀n ∈ N. (2.10)

From (2.8), (2.10) and Lemma 1.12 (1), we get T x∗ = x∗. Also we have seen above that x∗ =

lim
n→∞

xn = lim
n→∞

T n(x0).

Example 2.2. Consider the Fw-contraction T defined in Example 1.19. We note that x = 0 is

the unique fixed point of T and p(0,0,0) = 0.

Remark 2.3. From Example 1.9 it is clear that Theorem 2.9 of [7] is a particular case of our

Theorem 2.1.

Now, since every contraction T : X → X satisfying (1.1) is a Fw-contraction for F(α) =

lnα,α > 0,F(α)< lnα +α = H(α) for all α > 0 and H−F is non decreasing, therefore, by

Remark 1.18, T is a Hw-contraction and hence satisfies (1.2). In the following example we shall

present a mapping T : X → X which is a Hw-contraction but not a Fw-contraction and hence

satisfies (1.2) but not (1.1). Thus our theorem deals with the fixed points of a more general class

of contractions.

Example 2.4. Consider the sequence an = n(n−1)
2 for n ∈ N. Let X = {an : n ∈ N} and

G(x,y,z) = 1
3(| x− y | + | y− z | + | x− z |) for all x,y,z ∈ X . Then (X ,G) is a complete G-

metric space. Define p : X ×X ×X → R+ by p(x,y,z) = max{y,z} for all x,y,z ∈ X. Then p is
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a w-distance on X. Define a mapping T : X → X by Ta1 = a1, Tan = an−1 for n > 1. Take F

as in Example 1.15 and H as in Example 1.16. T is not a Fw-contraction as lim
n→∞

p(Ta1,Tan,Tan)
p(a1,an,an)

=

lim
n→∞

an−1
an

= 1. But T is a Hw-contraction. We first observe that p(Tam,Tan,Tar)> 0⇔ Tan > 0

or Tar > 0⇔ n > 2 or r > 2. Now we have the following cases:

For n > 2 > r, we have

p(Tam,Tan,Tar)

p(am,an,ar)
ep(Tam,Tan,Tar)−p(am,an,ar) =

an−1

an
ean−1−an

= (1− 2
n
)e1−n < e1−n < e−1.

For r > 2 > n, we have

p(Tam,Tan,Tar)

p(am,an,ar)
ep(Tam,Tan,Tar)−p(am,an,ar) =

ar−1

ar
ear−1−ar

= (1− 2
r
)e1−r < e1−r < e−1.

For n > r > 2, we have

p(Tam,Tan,Tar)

p(am,an,ar)
ep(Tam,Tan,Tar)−p(am,an,ar) =

an−1

an
ean−1−an

= (1− 2
n
)e1−n < e1−n < e−1.

For r > n > 2, we have

p(Tam,Tan,Tar)

p(am,an,ar)
ep(Tam,Tan,Tar)−p(am,an,ar) =

ar−1

ar
ear−1−ar

= (1− 2
r
)e1−r < e1−r < e−1.

Thus T is an Hw-contraction for τ = 1. Clearly a1 = 0 is a fixed point of T , p(a1,a1,a1)= a1 = 0

and for any am ∈ X, lim
n→∞

T nam = lim
n→∞

T n+mam = lim
n→∞

T n(T mam) = lim
n→∞

T na1 = a1.
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