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Abstract. In this paper, we extended the idea of Presic type contraction for G-metric space to obtain a unique

common fixed point result for four maps. The result generalizes several well known comparable results in the

literature.
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1. Introduction

In 1922, Banach proved a fixed point theorem for contraction mapping in metric space. This

result has been extended and generalized for various settings (see, for instance [10], [12] and

the references therein). The study of fixed points of mappings satisfying certain contractive

condition has been at the centre of vigorous research activity. Mustafa and Sims [19] introduced

the new concept of G-metric space. Since then many authors have been studying fixed point
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results in G-metric spaces and subsequently many fixed point results on such spaces appeared

(see, for instance [1-6], [8], [18], [20-21], [27] and the references therein).

On the other hand, amongst the various generalization of Banach contraction principle, Presic

[22] in 1965 gave a contractive condition on finite product of metric spaces and proved a fixed

point theorem. Further Ciric- Presic [9], Gairola-Rawat [14], George - Khan [17] and Rao et.

al. [23-24] extended and generalized these results. Also with a view to generalize the fixed

point theorem for commuting maps, Sessa [25] introduced the concepts of weakly commuting

maps. Later on, Singh and Gairola [26] extended the notion of weakly commuting maps to co-

ordinatewise commuting and weakly commuting maps for two system of maps on finite product

of metric spaces and proved some fixed point theorems. Gairola and Jangwan [15], Singh

Gairola and [16] and Baillon and Singh [7] conceptualize co-ordinatewise R-weakly commuting

mappings and compatible maps. George and Khan [17] used the concept of weakly commuting

and coincidently commuting maps for k-tuples and generalized Presic type fixed point theorem

for two maps and then later on Rao et al. [23] extended this work for three maps using the

concept of 2k-weakly compatible pair.

The aim of this paper is to prove a Presic type common fixed point theorem for four mappings

in complete G-metric space which extend and unify the results of Ciric-Presic [9], Dhasmana

[11], Gairola-Dhasmana [13] and Rao et al. [23].

2. Definitions and propositions

We begin by briefly recalling some basic definitions and results will be needed in the sequel.

Let (X ,d) be a metric space, k a positive integer, T : Xk→ X and f : X → X be mappings. An

element x ∈ X is said be a coincidence point of f and T if f x = T (x,x, .....,x), x is a common

fixed point of f and T if x = f x = T (x,x.....,x). The set of coincidence point of f and T is

denoted by C( f ,T ).

Definition 2.1. [17] (see also [26]) Mappings f and T are said to be commuting if f (T (x,x....,x))=

T ( f x, f x, ...., f x) for all x ∈ X .

Definition 2.2. [17] (see also [26]) Mappings f and T are said to be weakly commuting if

d( f (T (x,x, ....,x)),T ( f x, f x, ...., f x))≤ d( f (x),T (x,x, ...,x)) for all x ∈ X .



398 U. C. GAIROLA, N. DHASMANA

Definition 2.3. [17] Mappings f and T are said to be coincidentally commuting if they commute

at their coincidence points.

Remark 2.4. [17] (see also [26]) For k = 1, above definitions reduce to the usual definition of

commuting and weakly commuting mappings in a metric space.

Remark 2.5. It is notable that the above Definitions 2.1, 2.2 and 2.3 are special cases of

definition 1 and 2 of Singh-Gairola [26]. See also the remarks of Gairola et al. [15-16].

Definition 2.6. [19] Let X be a nonempty set, and let G : X ×X ×X → R+, be a function

satisfying:

(G1)G(x,y,z) = 0; if x = y = z,

(G2)0 < G(x,x,y); for all x,y ∈ X with x 6= y

(G3)G(x,x,y)≤ G(x,y,z); for all x,y,z ∈ X with z 6= y.

(G4)G(x,y,z) = G(x,z,y) = G(y,z,x)=.... ; (symmetry in all three variables) and

(G5)G(x,y,z)≤ G(x,a,a)+G(a,y,z) for all x,y,z,a ∈ X (rectangle inequality).

Then the function G is called a generalized metric or more specifically a G-metric on X , and the

pair (X ,G) is called a G-metric space.

Definition 2.7. [19] Let (X ,G) be a G-metric space and let {xn} be a sequence of points of

X . We say that {xn} is G-convergent to x if limn,m→∞G(x,xn,xm) = 0; that is, for any ε > 0,

there exists N ∈ N such that G(x,xn,xm)< ε , for all n,m ≥ N. We refer to x as the limit of the

sequence {xn} and write xn
G−→ x.

Proposition 2.8. [19] Let (X ,G) be a G-metric space. The following statements are equivalent.

(1) {xn} is G-convergent to x.

(2) G(xn,xn,x)→ 0, as n→ ∞.

(3) G(xn,x,x)→ 0, as n→ ∞.

Definition 2.9. [19] Let (X ,G) be a G-metric space. A sequence {xn} is called G-Cauchy if giv-

en ε > 0, there is N ∈N such that G(xn,xm,xl)< ε , for all n,m, l≥N, that is, if G(xn,xm,xl)→ 0,

as n,m, l→ ∞.
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Proposition 2.10. [19] In a G-metric space (X ,G), the following two statements are equivalent.

(1) The sequence {xn} is G-Cauchy.

(2) For every ε > 0, there exists N ∈ N such that G(xn,xm,xm)< ε for all n,m≥ N.

Definition 2.11. [19] A G-metric space (X ,G) is said to be G-complete ( or a complete G-

metric space) if every G-Cauchy sequence in (X ,G) is G-convergent in (X ,G).

Definition 2.12. [19] A G-metric space (X ,G) is called symmetric if G(x,y,y) = G(y,x,x) for

all x,y ∈ X .

Proposition 2.13. [19] Let (X ,G) be a G-metric space. Then the function G(x,y,z) is jointly

continuous in all three of its variables.

Proposition 2.14. [19] Every G-metric space (X ,G) defines a metric space (X ,dG) by

dG(x,y) = G(x,y,y)+G(y,x,x) for all x,y ∈ X.

Note that if (X ,G) is a symmetric G-metric space, then

dG(x,y) = 2G(x,y,y) ∀x,y ∈ X.

3. Main results

Now we state our main result.

Theorem 3.1. Let (X ,G) be a G-metric space, k a positive integer and S,T,R : Xk→ X , f : X→

X be mappings satisfying the following conditions

(1) S(Xk)∪T (Xk)∪R(Xk)⊆ f (X)

G(S(x1,x2, ....,xk−1,xk),T (x2,x3, ....,xk,xk+1),(2)

R(x3,x4, ...,xk+1,xk+2)) ≤ λmax{G( f xi, f xi+1, f xi+2),1≤ i≤ k}

f or all x1,x2, ...,xk,xk+1,xk+2 in X

G(T (y1,y2, ...,yk−1,yk),R(y2,y3, ....,yk,yk+1),(3)

S(y3,y4, ...,yk+1,yk+2)) ≤ λmax{G( f yi, f yi+1, f yi+2),1≤ i≤ k}
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f or all y1,y2, ...,yk,yk+1,yk+2 in X

G(R(z1,z2, ...,zk−1,zk),S(z2,z3, ....,zk,zk+1),(4)

T (z3,z4, ...,zk+1,zk+2)) ≤ λmax{G( f zi, f zi+1, f zi+2),1≤ i≤ k}

f or all z1,z2, ...,zk,zk+1,zk+2 in X ,where 0≤ λ < 1,

d
(

S(u,u, ...u),T (v,v, ...v),R(w,w, ....w)
)

< G( f u, f v, f w),(5)

for all u,v,w∈X with u 6= v 6=w. Suppose that f (X) is complete and one of ( f ,S),( f ,T )or( f ,R)

is coincidently commuting pair. Then there exist a unique point p ∈ X such that f p = p =

S(p, p, ..., p) = T (p, p, ..., p) = R(p, p, ...., p).

Proof. Suppose x1,x2, ....,xk are arbitrary points in X and for n ∈ N and define

f xk+3n−2 = S(x3n−2,x3n−1, ....,x3n+k−3),

f xk+3n−1 = T (x3n−1,x3n, ...,x3n+k−2),

f xk+3n = R(x3n,x3n+1, ...,x3n+k−1).

Let

αn = G( f xn, f xn+1, f xn+2).(6)

Let θ = λ
1
k and K = max{α1

θ 1 ,
α2
θ 2 , ....,

αk
θ k }. Claim αn ≤ Kθ n for all n ∈ N. By selection of K we

have αn ≤ Kθ n for n = 1,2, ....,k. Now,

αk+1 = G( f xk+1, f xk+2, f xk+3)

= G(S(x1,x2, ...,xk),T (x2,x3, ....,xk+1),R(x3,x4, ...,xk+2))

≤ λmax{G( f xi, f xi+1, f xi+2) : i = 1,2, ....k} by (2)

= λmax{α1,α2, ....,αk−1,αk}

≤ λmax{Kθ
1,Kθ

2, ...,Kθ
k−1,Kθ

k}

= λKθ = θ
kKθ as θ = λ

1
k .
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Thus αk+1 ≤ Kθ k+1. Similarly, we have

αk+2 = G( f xk+2, f xk+3, f xk+4)

= G(T (x2,x3, ...,xk+1),R(x3,x4, ....,xk+2),S(x4,x5, ...,xk+3))

≤ λmax{G( f xi, f xi+1, f xi+2) : i = 2,3....k+1} by (3)

= λmax{α2,α3, ....,αk,αk+1}

≤ λmax{Kθ
2,Kθ

3, ...,Kθ
k,Kθ

k+1}

= λKθ
2 = θ

kKθ
2 as θ = λ

1
k = Kθ

k+2.

Thus αk+2 ≤ Kθ k+2. Also,

αk+3 = G( f xk+3, f xk+4, f xk+5)

= G(R(x3,x4, ...,xk+2),S(x4,x5, ....,xk+3),T (x5,x6, ...,xk+4))

≤ λmax{G( f xi, f xi+1, f xi+2) : i = 3,4....k+2} by (4)

= λmax{α3,α4, ....,αk+1,αk+2}

≤ λmax{Kθ
3,Kθ

4, ...,Kθ
k+1,Kθ

k+2}

= λKθ
3 = θ

kKθ
3 as θ = λ

1
k = Kθ

k+3.

Thus αk+3 ≤ Kθ k+3. Hence the claim is true.

Now, by claim, for l,n, p with l > n > p and the recangular inequality of G-metric space, we

have

G( f xn, f xp, f xl) ≤ G( f xn, f xn+1, f xn+1)+G( f xn+1, f xn+2, f xn+2)+ ....+G( f xl−1, f xl, f xl)

≤ G( f xn, f xn+1, f xn+2)+G( f xn+1, f xn+2, f xn+3)+ ...+G( f xl−2, f xl−1, f xl)

= αn +αn+1 + ...+αl−2

≤ Kθ
n +Kθ

n+1 + ...+Kθ
l−2

≤ K[θ n +θ
n+1 + ...+θ

l−2 + ..]

= K
θ n

1−θ
→ 0 as n→ ∞.
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Hence { f xn} is a G-Cauchy sequence. Since f (X) is a G-complete and there exists z in f (X)

such that z = lim f xn. There exist p ∈ X such that z = f p. Then for any integer n, using (2), (3)

and (4) we have

G(S(p, p, ..., p), f xk+3n−2, f xk+3n−2)

= G
(

S(p, p, ..., p),S(x3n−2,x3n−1, ...,xk+3n−3),S(x3n−2,x3n−1, ...,xk+3n−3)
)

≤ G
(

S(p, p, ..., p),T (p, p, ...,x3n−2),T (p, p, ...,x3n−2)
)

+ G
(

T (p, p, ...,x3n−2),R(p, p, ...,x3n−1),R(p, p, ...,x3n−1)
)

+ G
(

R(p, p, ...,x3n−1,S(p, p, ..,x3n),S(p, p, ...,x3n)
)

+ G
(

S(p, p, ..,x3n),T (p, p, ...,x3n+1),T (p, p, ...,x3n+1)
)

+ ...

+ G
(

T (p, p,x3n−2, ...,xk+3n−5),R(p,x3n−2, ...,xk+3n−4),R(p,x3n−2, ...,xk+3n−4)
)

+ G
(

R(p,x3n−2, ...,xk+3n−4),S(x3n−2, ...,xk+3n−3),S(x3n−2, ...xk+3n−3)
)

≤ G
(

S(p, p, ..., p),T (p, p, ...,x3n−2),R(p, p, ..,x3n−1)
)

+ G
(

T (p, p...,x3n−2),R(p, p, ...,x3n−1),S(p, p, ...,x3n)
)

+ G
(

R(p, p, ...,x3n−1),S(p, p, ...,x3n),T (p, p, ...,x3n+1)
)

+ G
(

S(p, p, ..,x3n),T (p, p, ...,x3n+1),R(p, p, ...,x3n+2)
)

+ ...

+ G
(

S(p, p, ...,xk+3n−6),T (p, p, ...,xk+3n−5),R(p,x3n−2, ...,xk+3n−4)
)

+ G
(

T (p, p,x3n−2, ..,xk+3n−5),R(p,x3n−2, ..,xk+3n−4),S(x3n−2, ...,xk+3n−3)
)

≤ λG( f p, f x3n−2, f x3n−1)

+ λmax{G( f p, f x3n−2, f x3n−1),G( f x3n−2, f x3n−1, f x3n)}

+ λmax{G( f p, f x3n−2, f x3n−1),G( f x3n−2, f x3n−1, f x3n),G( f x3n−1, f x3n, f x3n+1)}



A COMMON FIXED POINT THEOREM OF PRESIC TYPE 403

+ λmax{G( f p, f x3n−2, f x3n−1),G( f x3n−2, f x3n−1, f x3n), ...,G( f x3n, f x3n+1, f x3n+2)}

+ ...

+ λmax{G( f p, f x3n−2, f x3n−1), ...,G( f xk+3n−6, f xk+3n−5, f xk+3n−4)}

+ λ max{G( f p, f x3n−2, f x3n−1), ...,G( f xk+3n−5, f xk+3n−4, f xk+3n−3)}.

Taking limit as n→ ∞, we get G(S(p, p, ..., p), f p, f p)≤ 0 so that

S(p, p, ..., p) = f p.(7)

Consider,

G( f p,T (p, p, .., p),T (p, p, ...., p)) = G(S(p, p, .., p),T (p, p, ..., p),T (p, p, ..., p))≤ λ (0) = 0.

Thus

T (p, p, .., p) = f p.(8)

Also

G( f p,R(p, p, ..., p),R(p, p, ..., p))=G(T (p, p, ..., p),R(p, p, ...., p),R(p, p, ...., p))≤ λ (0)= 0.

Thus

R(p, p, ..., p) = f p.(9)

Now suppose that ( f ,S) is a coincidentally commuting pair. Then we have

f (S(p, p, ..., p)) = S( f p, f p, ..., f p),

f 2 p = f ( f (p)) = f (S(p, p, .., p)) = S( f p, f p, ..., f p).

Suppose f p 6= p

G( f 2 p, f p, f p) = G(S( f p, f p, ..., f p),T (p, p, .., p),R(p, p, ..., p))< d( f 2 p, f p, f p).

It is a contradiction. Therefore f p = p. Now from (7), (8) and (9) we have

f p = p = S(p, p, ..., p) = T (p, p, ...p) = R(p, p, ..., p).
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Uniqueness of p: Suppose there exists a point q 6= p in X such that

f q = q = S(q,q, ...,q) = T (q,q, ...,q) = R(q,q, ...,q).

Consider from (5)

G( f p, f q, f q) = G(S(p, p, ..., p),T (q,q, ...,q),R(q,q, ...,q))< G( f p, f q, f q).

It is a contradiction. Therefore q = p.

Now we can get the following result of Gairola-Dhasmana [13] as a corollary.

Corollary 3.2. Let (X ,G) be a G-metric space, k a positive integer and T : Xk→ X , f : X → X

be mappings satisfying the following conditions

(10) T (Xk)⊆ f (X)

G(T (x1,x2, ....,xk−1,xk),T (x2,x3, ....,xk,xk+1),(11)

T (x3,x4, ...,xk+1,xk+2)) ≤ λmax{G( f xi, f xi+1, f xi+2),1≤ i≤ k}

f or all x1,x2, ...,xk,xk+1,xk+2 in X

G
(

T (u,u, ...u),T (v,v, ...v),T (w,w, ....w)
)

< G( f u, f v, f w),(12)

for all u,v,w ∈ X with u 6= v 6= w. Suppose that f (X) is G-complete and ( f ,T ) is coincidently

commuting pair. Then there exist a unique point p ∈ X such that f p = p = T (p, p, ..., p).

Proof. Putting S = R = I (Identity map) in Theorem 3.1 we can get the required proof.

Remark 3.3. If f = I (Identity map) in Corollary 3.2, we get the main Theorem of [11].
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