
Available online at http://scik.org

Advances in Fixed Point Theory, 2 (2012), No. 1, 79-91

ISSN: 1927-6303

COMMON FIXED POINT THEOREMS IN 2-MENGER SPACES

R. A. RASHWAN AND SHIMAA I. MOUSTAFA∗

Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt
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1. Introduction

In 1963 Gahler[2, 3] introduced the concept of a 2-metric space. In his paper [3] he

claimed that the notion of a 2-metric is an extension of an idea of ordinary metric and

geometrically d(x, y, z) represents the area of a triangle formed by the points x, y and z

in X as its vertices.

Definition 1.1. Let X be a non empty set and R denote the set of all real numbers. A

function d : X × X × X → R is said to be a 2-metric on X if it satisfies the following

properties:

(1): For distinct points x, y ∈ X, there is a point z ∈ X such that d(x, y, z) 6= 0;

(2): d(x, y, z) = 0 if any two elements of the triplet x, y, z ∈ X are equal;
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(3): d(x, y, z) = d(y, x, z) = . . . (symmetry);

(4): d(x, y, z) ≤ d(x, y, a) + d(x, a, z) + d(a, y, z) for all x, y, z, a ∈ X.

A nonempty set X together with a 2-metric d is called a 2-metric space.

Definition 1.2.[10] A sequence {xn} in a 2-metric space (X, d) is said to be convergent

to a point x in X if d(xn, x, c)→ 0 as n→∞ for all c in X. The point x is called the

limit of the sequence {xn} in X.

Definition 1.3.[10] A sequence {xn} in (X, d) is said to be a Cauchy sequence if d(xm, xn, c)→

0 as n→∞ for all c in X.

Definition 1.4.[10] The space (X, d) is said to be complete if every Cauchy sequence in

X converges to a point of X.

Remark 1.5.[9] We note that, in a usual metric space a convergent sequence is a Cauchy

sequence and in a 2-metric space a convergent sequence need not be a Cauchy sequence

unless the 2-metric d is continuous on X.

Example 1.1.[11] Let R2 be the Euclidean space. Let d(x, y, z) denote the area of the

triangle formed by joining the three points x, y, z ∈ R2 .Then (R2, d) is a 2-metric space.

In fact, it is suitable to look upon the distance concept between two or more objects of

the set under considerations as statistical or probabilistic rather than deterministic one.

The advantage of a probabilistic approach is that it permits from the initial formulation

a greater flexibility rather than that offered by a deterministic approach and the prob-

abilistic metric spaces corresponds to the situations when we do not know the distance

between the points or this distance is inexact. So that, in 1989, Chang and Huang [1] gave

an analogue of a 2-metric space in probabilistic setting known as a probabilistic 2-metric

space.

Definition 1.5.[13] A probabilistic 2-metric space is an order pair (X,F) where X is

an arbitrary set and F is a mapping from X3 into the set of distribution functions L.

The distribution function Fx,y,z(t) will denote the value of Fx,y,z at the nonnegative real

number t. The function Fx,y,z are assumed to satisfy the following conditions:

(5): Fx,y,z(0) = 0 for all x, y, z ∈ X;
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(6): Fx,y,z(t) = 1 for all t > 0 iff at least two of the three points x, y, z are equal;

(7): For distinct points x, y ∈ X there exists a point z ∈ X such that Fx,y,z(t) < 1

for t > 0;

(8): Fx,y,z(t) = Fx,z,y(t) = . . . for all x, y, z ∈ X and t > 0;

(13): Fx,y,w(t1) = 1,Fx,w,z(t2) = 1 and Fw,y,z(t3) = 1 then Fx,y,z(t1 + t2 + t3) = 1,

for all x, y, z, w ∈ X and t1, t2, t3 > 0.

A particular type of 2-probabilistic metric space is probabilistic 2-Menger PM-space in

which the triangular inequality is postulated with the help of a t-norm.

Definition 1.6. A mapping t : [0, 1]× [0, 1]× [0, 1]→ [0, 1] is a T-norm if it is associative,

commutative, non-decreasing in each co-ordinate and t(a, 1, 1) = a for every a ∈ [0, 1].

An important T-norm t is t(a, b, c) = min{a, b, c} for all a, b, c ∈ [0, 1] and it is the

unique T-norm such that t(a, a, a) ≥ a for every a ∈ [0, 1].

Definition 1.7. [4] Let X be a non empty set and L the set of all left-continuous

distribution functions. A 2-Menger space is a triplet (X,F, t) , where t is a T-norm and

F is a mapping from X3 into L satisfying the following conditions, (we assign to every

x, y, z ∈ X a distribution function Fx,y,z and its value at t ≥ 0 is represented by Fx,y,z(t)):

(9): Fx,y,z(0) = 0;

(10): Fx,y,z(t) = 1 for all t > 0 iff at least two of x, y, z ∈ X are equal;

(11): Fx,y,z(t) = Fx,z,y(t) = . . . for all x, y, z ∈ X and t > 0;

(12): Fx,y,z(t) ≥ t(Fx,y,w(t1), Fx,w,z(t2), Fw,y,z(t3)) where t1, t2, t3 > 0, t1 + t2 + t3 = t

and x, y, z, w ∈ X.

Definition 1.8. Let (X,F, t) be a Menger space and t be a continuous t-norm.

(i): A sequence {xn} in X is said to converge to a point x inX if and only if for

every ε > 0, λ > 0, there exists M(ε, λ) such that

Fxn,x,a(ε) > 1− λ for all n ≥M ;
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(ii): A sequence {xn} in X is said to be a Cauchy sequence if and only if for each

ε > 0, λ > 0 there exists an integer M(ε, λ) such that

Fxn,xm,a(ε) > 1− λ for all n,m ≥M ;

(iii): A 2-Menger space in which every Cauchy sequence is convergent is said to be

complete.

2. Main results

Singh [12] considered a complete and bounded 2-metric space with two metrics ρ and

d, one of them is less than or equal the other. He obtained sufficient conditions for

the existence of unique fixed point for a mapping which is a contraction with respect to

one metric and continuous for the other. Here we extend and generalize this result in

probabilistic setting (2-Menger space).

If we define on X two non-negative metrics ρ, d:X × X × X → R, we can define

for all x, y, z ∈ X two distribution functions Fx,y,z and F ∗x,y,z and their values at t ≥ 0

are Fx,y,z(t) and F ∗x,y,z(t). We interpret that values as the probability that the distances

ρ(x, y, z) and d(x, y, z) be less than t. Before proving our main theorems, we need the

following lemmas.

Lemma 2.1. Let {xn} be a sequence in a 2-Menger space (X,F, t), where t is continuous

and t(a, a, a) ≥ a for all a ∈ [0, 1]. If there exist a constant k ∈ (0, 1) such that:

Fxn+1,xn+2,a(kt) ≥ Fxn,xn+1,a(t), forall n ∈ N and a ∈ X. (2.1)

Then {xn} is a Cauchy sequence in X.

Proof.

Fxn−1,xn,a(
(1− k)ε

2k
) ≥ Fxn−2,xn−1,a(

(1− k)ε

2k2
),

...

≥ Fx0,x1,a(
(1− k)ε

2kn
).
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Since k ∈ (0, 1), for ε > 0 and λ ∈ (0, 1) one can find a positive integer M(ε, λ) such that,

Fxn−1,xn,a(
(1− k)ε

2k
) > 1− λ forall n ≥M. (2.2)

In this position we must prove that for any ε > 0 and λ > 0 there exist M ∈ N such that:

Fxn,xm,a(ε) > 1− λ forall m > n > M. (2.3)

Let m = n+ p, at p = 1, (2.3) holds. Assume that (2.3) holds for all 1 < p ≤ q for some

q ∈ N , for p = q + 1:

Fxn,xn+q+1,a(ε) ≥ Fxn−1,xn+q ,a(
ε

k
),

≥ t(Fxn−1,xn+q ,xn(
(1− k)ε

2k
), Fxn−1,xn,a(

(1− k)ε

2k
), Fxn,xn+q ,a(ε)),

> t(1− λ, 1− λ, 1− λ),

≥ 1− λ.

Hence (2.3) holds for all m,n > M . Therefore, xn is Cauchy sequence in X.

Lemma 2.2. Let {xn} be a sequence in a 2-Menger space (X,F, t) with continuous t-norm

and two distribution functions F and F ∗ satisfying Fx,y,z(t) ≥ F ∗x,y,z(t) for all x, y, z ∈ X

and t ≥ 0. If there exists a constant k ∈ (0, 1) such that:

F ∗xn+1,xn+2,a
(kt) ≥ F ∗xn,xn+1,a

(t),

for all n ∈ N and a ∈ X, then {xn} is a Cauchy sequence in X with respect to F .

Proof. Since,

Fxn+1,xn+2,a(kt) ≥ F ∗xn+1,xn+2,a
(kt),

≥ F ∗xn,xn+1,a
(t),

≥ F ∗xn−1,xn,a(
t

k
),

...

Fxn+1,xn+2,a(kt) ≥ F ∗x0,x1,a
(
t

kn
)→ 1 as n→∞. (2.4)
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Then, for all m > n, we have:

Fxn,xm,a(kt) ≥ t(Fxn,xn+1,a(k1t), Fxn+1,xm,a(k2t), Fxn,xm,xn+1(k3t)), k = k1 + k2 + k3.

Letting n→∞ and using the continuity of t gets,

lim
n→∞

Fxn,xm,a(kt) ≥ t( lim
n→∞

Fxn,xn+1,a(k1t), lim
n→∞

Fxn+1,xm,a(k2t), lim
n→∞

Fxn,xm,xn+1(k3t)),

= t(1, lim
n→∞

Fxn+1,xm,a(k2t), 1).

Similarly,

lim
n→∞

Fxn+1,xm,a(k2t) ≥ t(1, lim
n→∞

Fxn+2,xm,a(ḱ2t), 1).

Continuing this procedure to obtain,

lim
n→∞

Fxm−2,xm,a(k4t) ≥ t(1, lim
n→∞

Fxm−1,xm,a(ḱ4t), 1).

By using (2.4) we have limn→∞ Fxm−1,xm,a(ḱ4t) = 1.

Finally, using the back substitution yields:

lim
n→∞

Fxm−2,xm,a(k4t) = 1,

↓

lim
n→∞

Fxn,xm,a(kt) = 1.

Thus, {xn} is Cauchy sequence with respect to the distribution function F .

We now prove a fixed point theorem in a complete 2-Menger space with two distribution

functions.

Theorem 2.1. Let (X,F, t) be a complete 2-Menger space with continuous t-norm and

t(a, a, a) ≥ a for all a ∈ [0, 1]. We define for all x, y, z ∈ X two distribution functions

Fx,y,z and F ∗x,y,z such that Fx,y,z(t) ≥ F ∗x,y,z(t) for all x, y, z ∈ X and t ≥ 0. Suppose that

T is a continuous self mapping on X into itself satisfying the following conditions:

αF ∗x,Tx,a(kt) + βF ∗y,Ty,a(kt) ≥ (1− γ)F ∗x,y,a(t) (2.5)
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and

αFx,Tx,a(kt)Fy,Ty,a(kt)

FTx,Ty,a(kt)
+ βFTx,Ty,a(kt) ≥ γFx,y,a(t), (2.6)

for all x, y, a ∈ X, t ≥ 0 and some k ∈ (0, 1), where, 0 < α, β, γ < 1, α + β + γ = 1 and

1
2
≤ α + β < 1. Then T has a unique fixed point in X.

Proof. Define a sequence xn = Txn−1. Using inequality (2.5) with x = xn and y = xn+1:

αF ∗xn,Txn,a(kt) + βF ∗xn+1,Txn+1,a
(kt) ≥ (1− γ)F ∗xn,xn+1,a

(t),

αF ∗xn,xn+1,a
(kt) + βF ∗xn+1,xn+2,a

(kt) ≥ (1− γ)F ∗xn,xn+1,a
(t),

αF ∗xn,xn+1,a
(t) + βF ∗xn+1,xn+2,a

(kt) ≥ (1− γ)F ∗xn,xn+1,a
(t),

F ∗xn+1,xn+2,a
(kt) ≥ 1− α− γ

β
F ∗xn,xn+1,a

(t),

F ∗xn+1,xn+2,a
(kt) ≥ F ∗xn,xn+1,a

(t).

By Lemma (2.1) and (2.2), {xn} is a Cauchy sequence in X w.r.t F and F ∗. Since X is

complete, then xn converges to a point u ∈ X.

Under the continuity of T , we have

Tu = T lim
n→∞

xn = lim
n→∞

Txn = lim
n→∞

xn+1 = u,

which shows that u is a fixed point of T . For the proof of uniqueness, we use (2.6) with

x = u and y = v (another fixed point for T ).

αFu,Tu,a(kt)Fv,Tv,a(kt)

FTu,Tv,a(kt)
+ βFTu,Tv,a(kt) ≥ γFu,v,a(t),

α + β(Fu,v,a(kt))
2 ≥ γ(Fu,v,a(t))

2,

(Fu,v,a(kt))
2 ≥ α

γ − β
≥ 1.

Thus, u = v and u is the unique fixed point of T .

Now we extend the above theorem for two continuous mappings.

Theorem 2.2. Let (X,F, t) be a complete 2-Menger space with continuous t-norm ,

t(a, a, a) ≥ a for all a ∈ [0, 1] and two distribution functions F and F ∗ such that Fx,y,z(t) ≥
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F ∗x,y,z(t) for all x, y, z ∈ X and t ≥ 0. Suppose that S and T are two continuous self

mappings on X into itself satisfying the following conditions:

αF ∗x,Sx,a(kt) + βF ∗y,Ty,a(kt) ≥ (1− γ)F ∗x,y,a(t) (2.7)

and

αFx,Sx,a(t)Fy,Ty,a(t)

FSx,Ty,a(t)
+ βFSx,Ty,a(t) ≥ γFx,y,a(t), (2.8)

for all x, y, a ∈ X, t ≥ 0 and some k ∈ (0, 1), where, 0 < α, β, γ < 1 , α+ β + γ = 1 and

1
2
≤ α + β < 1. Then S and T have a unique fixed point.

Proof. Define a sequence {xn} as x2n+1 = Sx2n and x2n+2 = Tx2n+1, n = 0, 1, 2, . . ..

Using inequality (2.7) with x = x2n and y = x2n+1 gives:

αF ∗x2n,Sx2n,a
(kt) + βF ∗x2n+1,Tx2n+1,a

(kt) ≥ (1− γ)F ∗x2n,x2n+1,a
(t),

αF ∗x2n,x2n+1,a
(kt) + βF ∗x2n+1,x2n+2,a

(kt) ≥ (1− γ)F ∗x2n,x2n+1,a
(t),

αF ∗x2n,x2n+1,a
(t) + βF ∗x2n+1,x2n+2,a

(kt) ≥ (1− γ)F ∗x2n,x2n+1,a
(t),

F ∗x2n+1,x2n+2,a
(kt) ≥ 1− α− γ

β
F ∗x2n,x2n+1,a

(t),

F ∗x2n+1,x2n+2,a
(kt) ≥ F ∗x2n,x2n+1,a

(t),

which shows {xn} be Cauchy sequence in X w.r.t F and F ∗. Since X is complete ,then

{xn} and all its subsequences converge to a point u ∈ X.

Under the continuity of S and T , we have:

Su = S lim
n→∞

x2n = lim
n→∞

Sx2n = lim
n→∞

x2n+1 = u

and

Tu = T lim
n→∞

x2n+1 = lim
n→∞

Tx2n+1 = lim
n→∞

x2n+2 = u,
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which shows that u is a common fixed point of S and T . For the uniqueness, we use (2.8)

with x = u and y = v (another common fixed point):

αFu,Su,a(t)Fv,Tv,a(t)

FSu,Tv,a(t)
+ βFSu,Tv,a(t) ≥ γFu,v,a(t),

αFu,u,a(t)Fv,v,a(t)

Fu,v,a(t)
+ βFu,v,a(t) ≥ γFu,v,a(t),

α + β(Fu,v,a(t))
2 ≥ γ(Fu,v,a(t))

2,

(Fu,v,a(t))
2 ≥ α

β − γ
≥ 1

Thus u = v and u is the unique common fixed point of the two mappings.

Now, we state a common fixed point theorem for two self mappings under new contrac-

tion condition which can be proved similarly as theorem (2.2).

Theorem 2.3. Let S, T be continuous self mappings on a complete 2-Menger space

(X,F, t) with continuous t-norm and t(a, a, a) ≥ a for all a ∈ [0, 1]. Suppose that there

exists functions αi, i = 1, 2 of X ×X ×X into [0,∞) such that:

(i): γ ≡ inf{α1(x, y, z) + 2α2(x, y, z) : x, y, z ∈ X} ≥ 1;

(ii): There exists k ∈ (0, 1) such that:

FSx,Ty,a(kt) ≥ a1Fx,y,a(kt) + a2[FSx,x,a(t) + FTy,y,a(t)], (2.9)

for all x, y ∈ X and t > 0, where ai = αi(x, y, z).

Then S and T have a unique common fixed point in X. Finally, we prove a fixed point

theorem for non-self mappings considering two 2-Menger spaces.

Theorem 2.4. Let (X,F, t1) and (Y,F∗, t2) be two complete 2-Menger spaces. If T is a

mapping of X into Y and S from Y into X satisfying the inequalities:

F ∗Tx,TSy,u(kt) ≥ min{Fx,Sy,Su(t), F ∗Tx,y,u(t), F ∗TSy,y,u(t)} (2.10)

and

FSy,STx,v(kt) ≥ min{F ∗y,Tx,Tv(t), FSy,x,v(t), FSTx,x,v(t)} (2.11)
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for some k ∈ (0, 1) and all x, v ∈ X and y, u ∈ Y . then ST has a unique fixed point z in

X and TS has a unique fixed point w in Y . Further, Tz = w and Sw = z.

Proof. For a fixed x ∈ X, define two sequences xn and yn as:

xn = (ST )nx , yn = Txn−1 , n = 1, 2, ....

Putting x = xn and y = yn in inequality (2.11) gives:

FSyn,STxn,v(kt) ≥ min{F ∗yn,Txn,T v(t), FSyn,xn,v(t), FSTxn,xn,v(t)}.

Since, Syn = STxn−1 = ST (ST )n−1x = (ST )n = xn and STxn = ST (ST )nx =

xn+1,then:

Fxn,xn+1,v(kt) ≥ min{F ∗yn,yn+1,T v(t), Fxn,xn,v(t), Fxn+1,xn,v(t)}

≥ min{F ∗yn,yn+1,T v(t), Fxn+1,xn,v(t)}.

If min{F ∗yn,yn+1,T v(t), Fxn+1,xn,v(t)} = Fxn+1,xn,v(t), then Fxn,xn+1,v(kt) ≥ Fxn+1,xn,v(t), which

contradicts the fact that F is a non-decreasing function and kt < t for all k ∈ (0, 1). Thus,

Fxn,xn+1,v(kt) ≥ F ∗yn,yn+1,T v(t). (2.12)

Using inequality (2.10) with x = xn−1, y = yn and u = Tv yields:

F ∗Txn−1,TSyn,T v(kt) ≥ min{Fxn−1,Syn,STv(t), F
∗
Txn−1,yn,T v(t), F

∗
TSyn,yn,T v(t)}

F ∗yn,yn+1,T v(kt) ≥ min{Fxn−1,xn,STv(t), F
∗
yn,yn,T v(t), F

∗
yn,yn+1,T v(t)}.

Therefore,

F ∗yn,yn+1,T v(kt) ≥ Fxn−1,xn,STv(t). (2.13)
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From inequalities (2.12) and (2.13) we find:

Fxn,xn+1,v(kt) ≥ F ∗yn,yn+1,T v(t)

≥ Fxn−1,xn,STv(
t

k
)

≥ Fxn−2,xn−1,(ST )2v(
t

k2
)

...

≥ Fx0,x1,(ST )nv(
t

kn
)→ 1 as n→∞.

Then {xn} is a Cauchy sequence in X which is complete, thus {xn} converges to z ∈ X.

Similarly from inequalities (2.13) and (2.12) we have:

F ∗yn,yn+1,T v(kt) ≥ Fxn−1,xn,STv(t)

≥ F ∗yn−1,yn,TSTv(
t

k
)

...

≥ F ∗y0,y1,(TS)nTv(
t

kn
)→ 1 as n→∞.

Then {yn} is a Cauchy sequence in Y which is complete, thus {yn} converges to some

w ∈ Y .

Using (2.10) with x = z and y = yn−1, we gets:

F ∗Tz,TSyn−1,u
(kt) ≥ min{Fz,Syn−1,Su(t), F ∗Tz,yn−1,u

(t), F ∗TSyn−1,yn−1,u
(t)}

F ∗Tz,yn,u(kt) ≥ min{Fz,xn−1,Su(t), F ∗Tz,yn−1,u
(t), F ∗yn,yn−1,u

(t)}.

Letting n→∞, gives:

F ∗Tz,w,u(kt) ≥ min{Fz,z,Su(t), F ∗Tz,w,u(t), F ∗w,w,u(t)}

Therefore,

F ∗Tz,w,u(kt) ≥ F ∗Tz,w,u(t). forall t ≥ 0, (2.14)

which means that Tz = w. By a similar way one can prove Sw = z.
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Consequently, STz = Sw = z and TSw = Tz = w.Thus, z is a fixed point of ST and

w is a fixed point of TS.

For uniqueness, let ź be another fixed point for ST ,i.e., ST ź = ź.

Putting y = Tz and x = ź in (2.11) to obtain:

FSTz,ST ź,v(kt) ≥ min{F ∗Tz,T ź,Tv(t), FSTz,ź,v(t), FST ź,ź,v(t)}

Fz,ź,v(kt) ≥ min{F ∗Tz,T ź,Tv(t), Fz,ź,v(t), Fź,ź,v(t)}.

By (2.10):

F ∗T ź,TSTz,Tv(kt) ≥ min{Fź,STz,STv(t), F
∗
T ź,T z,Tv(t), F

∗
TSTz,Tz,Tv(t)}

F ∗T ź,TSTz,Tv(kt) ≥ Fź,z,STv(t).

Thus,

Fz,ź,v(kt) ≥ F ∗Tz,T ź,Tv(t)

≥ Fz,ź,STv(
t

k
)

...

≥ Fz,ź,(ST )nv(
t

kn
)→ 1 as n→∞.

Therefore z = ź and z is the unique fixed point of ST in X. Also w is the unique fixed

point of TS in Y .
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