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Abstract. The notion of quasi-partial b-metric spaces was introduced and fixed point and coupled fixed point

theorems on this space were studied. The present result is a continuation of the study of coupled fixed point

theorems on quasi-partial b-metric spaces and a new version of coupled fixed point theorems on this space.
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1. Introduction

The concept of b-metric spaces was introduced by Czerwik [3] as a generalization of metric

spaces. The partial metric space was introduced by Matthews [8] in 1994. Shukla [10] gen-

eralized both the concept of b-metric and partial-metric spaces by introducing partial b-metric

spaces. Motivated by this a modest attempt has been made to introduce the notion of quasi-

partial b-metric space [4] where we have proved fixed point theorems on it. Further, we proved
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coupled fixed point theorems on the same space [5]. The present result is a continuation of the

study of coupled fixed point theorems on quasi-partial b-metric spaces An example is provided

to support the main results.

2. Preliminaries

We begin the section with some basic definitions and concepts.

Definition 2.1. [10] A partial b-metric on a non-empty set X is a mapping pb : X ×X → R+

such that for some real numbers s≥ 1 and all x,y,z ∈ X ,

(Pb1) x = y if and only if pb(x,x) = pb(x,y) = pb(y,y),

(Pb2) pb(x,x)≤ pb(x,y),

(Pb3) pb(x,y) = pb(y,x),

(Pb4) pb(x,y)≤ s[pb(x,z)+ pb(z,y)]− pb(z,z).

A partial b-metric space is a pair (X , pb) such that X is a non-empty set and pb is a partial

b-metric on X . The number s is called the coefficient of (X , pb).

Definition 2.2. [6] A quasi-partial metric on a non-empty set X is a function q : X ×X → R+

which satisfies:

(QPM1) If q(x,x) = q(x,y) = q(y,y), the x = y,

(QPM2) q(x,x)≤ q(x,y),

(QPM3) q(x,x)≤ q(y,x),

(QPM4) q(x,y)+q(z,z)≤ q(x,z)+q(z,y) for all x,y,z ∈ X .

A quasi partial metric space is a pair (X ,q) such that X is a non-empty set and q is a quasi-

partial metric on X .

Let q be a quasi-partial metric on the set X . Then dq(x,y) = q(x,y)+q(y,x)−q(x,x)−q(y,y)

is a metric on X .

Lemma 2.3. [6] For a quasi-partial metric q on X, pq(x,y) =
1
2
[q(x,y)+q(y,x)], x,y ∈ X is a

partial metric on X.
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Lemma 2.4. [6] Let (X ,q) be a quasi-partial metric space. Let (X , pq) be the corresponding

partial metric space, and let (X ,dpq) be the corresponding metric space. Then the sequence

{xn} is Cauchy in (X ,q) iff the sequence {xn} is Cauchy in (X , pq) iff the sequence {xn} is

Cauchy in (X ,dpq).

Lemma 2.5. [6] Let (X ,q) be a quasi-partial metric space, let (X , pq) be the corresponding

partial metric space, and let (X ,dpq) be the corresponding metric space. Then (X ,q) is complete

iff (X , pq) is complete iff (X ,dpq) is complete. Moreover,

lim
n→∞

d pq(x,xn) = 0⇔ pq(x,x) = lim
n→∞

pq(x,xn) = lim
n,m→∞

pq(xn,xm)

⇔ q(x,x) = lim
n→∞

q(x,xn) = lim
n,m→∞

q(xn,xm)

= lim
n→∞

q(xn,x) = lim
n,m→∞

q(xm,xn) .

The concept of coupled fixed points for a metric space was introduced by Bhaskar and Lak-

shmikantham [2]. Later, the notion of a coupled coincidence point of mappings on a metric

space was given by Lakshmikantham and Ćirić [7].

Definition 2.6. [2] Let X be a nonempty set. An element (x,y) ∈ X×X , is a coupled fixed point

of the mapping F : X×X → X if F(x,y) = x and F(y,x) = y.

Definition 2.7. [7] An element (x,y) in X ×X is called a coupled coincidence point of the

mapping F : X×X → X and g : X → X if F(x,y) = gx and F(y,x) = gy.

The concept of w-compatible mappings was given by Abbas et al. [1] which is defined as:

Definition 2.8. [1] Let X be a nonempty set. The mapping F : X ×X → X and g : X → X are

w-compatible if gF(x,y) = F(gx,gy) whenever

gx = F(x,y) and gy = F(y,x).

3. Quasi-partial b-metric spaces

In [4], we introduced the concept of quasi-partial b-metric space and proved fixed point

theorem on it.
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Definition 3.1. [4] A quasi-partial b-metric on a non-empty set X is a mapping qpb : X ×X →

R+ such that for some real number s≥ 1 and all x,y,z ∈ X .

(QPb1) qpb(x,x) = qpb(x,y) = qpb(y,y)⇒ x = y,

(QPb2) qpb(x,x)≤ qpb(x,y),

(QPb3) qpb(x,x)≤ qpb(y,x), and

(QPb4) qpb(x,y)≤ s[qpb(x,z)+qpb(z,y)]−qpb(z,z).

A quasi-partial b-metric space is a pair (X ,qpb) such that X is a non-empty set and (X ,qpb)

is a quasi-partial b-metric on X . The number s is called the coefficient of (X ,qpb).

Let qpb be a quasi-partial b-metric on the set X . Then dqpb(x,y) = qpb(x,y)+ qpb(y,x)−

qpb(x,x)−qpb(y,y) is a b-metric on X .

Lemma 3.2. [4] Every quasi-partial metric space is a quasi-partial b-metric space. But the

converse may not be true.

Example 3.3. Let X = [0,1] and σ : X×X → R+ be defined by

σ(x,y) =


(x+ y)2, x < y

2, x > y

0, x = y.

First we prove condition (1) of the definition.

Let qpb(x,x) = qpb(x,y) = qpb(y,y). we claim x = y.

If x 6= y, then we have two cases.

Case 1: x < y.

Then qpb(x,x) = 0, qpb(x,y) = (x+ y)2 and qpb(y,y) = 0.

Then the above condition reduces to 0 = (x+ y)2 = 0.

Since x,y≥ 0 therefore x = y = 0 which is a contradiction to x < y.

Case 2: x > y.

Then the above condition reduces to 0 = 2 = 0 which is absurd.

Hence we must have x = y.

Next we prove condition (2) of the definition i.e., qpb(x,x)≤ qpb(x,y) for all x,y ∈ X .
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Case 1: x < y.

qpb(x,x) = 0≤ (x+ y)2 = qpb(x,y).

Case 2: x > y.

qpb(x,x) = 0 < 2 = qpb(x,y).

Case 3: x = y.

qpb(x,x) = 0 = qpb(x,y).

Similarly condition (3) of the definition holds.

Finally, we prove condition (4) of definition with s = 2. i.e.

qpb(x,y)≤ 2[qpb(x,z)+qpb(z,y)]−qpb(z,z)

2[qpb(x,z)+qpb(z,y)]−qpb(z,z)−qpb(x,y)≥ 0.

The following cases and subcases arise.

Case 1: x < y.

Subcase (i): z < x < y.

The above expression reduces to

2[2+(z+ y)2]−0− (x+ y)2 = 4+2z2 +2y2 +4zy− x2− y2−2xy

= 4+(z− x)[z+ x+2y]+ z2 + y2 +2zy.

Since x,y,z ∈ [0,1], one has

−1≤ z− x≤ 1 and 0≤ z+ x+2y≤ 3 .

Combining the two, we get

0≤ 4− (z+ x+2y)≤ 4+(z− x)(z+ x+2y)≤ 4+(z+ x+2y) .

Hence

4+(z− x)(z+ x+2y)≥ 0

⇒ 4+(z− x)[z+ x+2y]+ z2 + y2 +2zy≥ 0 .

Subcase (ii): x < z < y.
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The above expression reduces to

2[(x+ z)2 +(z+ y)2]−0− (x+ y)2 = 2x2 +2z2 +4xz+2z2 +2y2 +4zy− x2− y2−2xy

= (x+2z)2 + y2 +2zy+2y(z− x)≥ 0 since x < z.

Subcase (iii): x < y < z.

The above expression reduces to

2[(x+ z)2 +2]−0− (x+ y)2 = 2(x+ z)2 +4− (x+ y)2 ≥ 0 since y < z.

Case 2: If x > y.

Subcase (i): z < y < x.

The above expression reduces to 2[2+(z+ y)2]−0−2 = 2+2(z+ y)2 ≥ 0.

Subcase (ii): y < z < x.

The above expression reduces to 2[2+2]−0−2 = 6≥ 0.

Subcase (iii): y < x < z.

The above expression reduces to 2[(x+ z)2 +2]−0−2 = 2(x+ z)2 +2≥ 0.

Hence all the conditions of definition of quasi-partial b-metric space are satisfied. So, (X ,σ)

is a quasi-partial b-metric space with coefficient s = 2.

Definition 3.4. [4] Let (X ,qpb) be a quasi-partial b-metric. Then

(i) a sequence {xn} ⊂ X converges to x ∈ X if and only if

qpb(x,x) = lim
n→∞

qpb(x,xn) = lim
n→∞

qpb(xn,x) .

(ii) a sequence {xn} ⊂ X is called a Cauchy sequence if and only if

lim
n,m→∞

qpb(xn,xm) and lim
n,m→∞

qpb(xm,xn) exist (and are finite).

(iii) the quasi-partial b-metric space (X ,qpb) is said to be complete if every Cauchy sequence

{xn} ⊂ X converges with respect to τqpb to a point x ∈ X such that

qpb(x,x) = lim
n,m→∞

qpb(xm,xn) = lim
n,m→∞

qpb(xn,xm) .

Lemma 3.5. [4] Let (X ,qpb) be a quasi-partial b-metric space. Then the following hold.

(A) If qpb(x,y) = 0, then x = y.
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(B) If x 6= y, then qpb(x,y)> 0 and qpb(y,x)> 0.

Proof. It is similar as for the case of quasi-partial metric space [6].

Shatanawi [9] studied coupled fixed point theorems on quasi-partial metric space. Motivated

by this we have studied coupled fixed theorem on quasi-partial b-metric space [5]. Here we

prove a different version of coupled fixed point theorem on this space.

4. Main results

Theorem 4.1. Let (X ,qpb) be a complete quasi-partial b-metric space and let F : X ×X →

X, g : X → X be two mappings. Suppose that there exists a function φ : gX → R+ such

that qpb(gx,F(x,y))+qpb(gy,F(y,x))≤ φ(gx)+φ(gy)−φ(F(x,y))−φ(F(y,x)) holds for all

(x,y) ∈ X×X. Also, assume that the following hypotheses are satisfied.

(a) F(X×X)⊆ g(X);

(b) if G : X×X →R, G(x,y) = qpb(F(x,y),gx), then for each sequence (gxn,gyn)→ (u,v) we

have G(u,v)≤ k liminf
n→∞

G(xn,yn) for some k > 0. Then F and g have a coupled coincidence

point (u,v). In addition, qpb(gu,gu) = 0 and qpb(gv,gv) = 0.

Proof. Consider (x0,y0) ∈ X ×X . As F(X ×X) ⊆ g(X), there are x1 and y1 from X such that

gx1 = F(x0,y0) and gy1 = F(y0,x0). Again, since F(X ×X) ⊆ g(X), there are x2 and y2 from

X such that gx2 = F(x1,y1) and gy2 = F(y1,x1). By repeating this process, we construct two

sequences, {xn} and {yn} with gxn+1 = F(xn,yn) and gyn+1 = F(yn,xn). Let m and n be natural

numbers with m > n, then using (QPb4), we get

qpb(gxn,gxn+2)≤ s{qpb(gxn,gxn+1)+qpb(gxn+1,gxn+2)}−qpb(gxn+1,gxn+1)

≤ s{qpb(gxn,gxn+1)+qpb(gxn+1,gxn+2)}.

qpb(gxn,gxn+3)≤ s{qpb(gxn,gxn+2)+qpb(gxn+2,gxn+3)}−qpb(gxn+2,gxn+2)

≤ s2qpb(gxn,gxn+1)+ s2qpb(gxn+1,gxn+2))+ sqpb(gxn+2,gxn+3).
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It follows that

qpb(gxn,gxm)≤ sm−n−1{qpb(gxn,gxn+1)+qpb(gxn+1,gxn+2)}

+ sm−n−2{qpb(gxn+2,gxn+3)}+ · · ·+ s{qpb(gxm−1,gxm)}

=
m−1

∑
i=n+1

sm−i{qpb(gxi,gxi+1)}+ sm−n−1{qpb(gxn,gxn+1)}

=
m−1

∑
i=n

sm−i{qpb(gxi,gxi+1)}+ sm−n−1{qpb(gxn,gxn+1)}− sm−n{qpb(gxn,gxn+1)}

=
m−1

∑
i=n

sm−i{qpb(gxi,gxi+1)}− sm−n{qpb(gxn,gxn+1)}
(

1− 1
s

)

≤
m−1

∑
i=n

sm−i{qpb(gxi,gxi+1)}.

(4.1)

Similarly,

qpb(gyn,gym)≤
m−1

∑
i=n

sm−1{qpb(gyi,gyi+1)}. (4.2)

Adding (4.1) and (4.2), we get

qpb(gxn,gxm)+qpb(gyn,gym)≤
m−1

∑
i=n

sm−i{qpb(gxi,gxi+1)+qpb(gyi,gyi+1)}

=
m−1

∑
i=n

sm−i{qpb(gxi,F(xi,yi))+qpb(gyi,F(yi,xi))}

=
m−1

∑
i=n

sm−i{φ(gxi)+φ(gyi)−φ(F(xi,yi))−φ(F(yi,xi))}

(4.3)

= sm−n{φ(gxn)+φ(gyn)−φ(gxn+1)−φ(gyn+1)}

+ sm−n−1{φ(gxn+1)+φ(gyn+1)−φ(gxn+2)−φ(gyn+2)}+ · · ·

+ s{φ(gxm−1)+φ(gym−1)−φ(gxm)−φ(gym)}

≤ sm−n
φ(gxn)+ sm−n

φ(gyn)− sm−n−1
φ(gxn+1)(s−1)

− sm−n−1
φ(gyn+1)(s−1)−·· ·− sφ(gxm)− sφ(gym)

qpb(gxn,gxm)+qpb(gyn,gym)≤ sm−n[φ(gxn)+φ(gyn)]− s[φ(gxm)+φ(gym)]. (4.4)
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Consider zn(x) =
n
∑

i=0
[qpb(gxi,gxi+1)+qpb(gyi,gyi+1)]. Inequality (4.4) implies that

zn(x)≤
n

∑
i=0

s{φ(gxi)+φ(gyi)−φ(gxi+1)−φ(gyi+1)}

≤ s{φ(gx0)+φ(gy0)−φ(gxn+1)−φ(gyn+1)}

≤ s{φ(gx0)+φ(gy0)}.

Hence the non-decreasing sequence {zn} is bounded, so it is convergent. Taking the limit as

n,m→+∞ in (4.3), we conclude

lim
n,m→∞

qpb(gxn,gxm) = lim
n,m→∞

qpb(gyn,gym) = 0 .

Using similar arguments, it can be proved that

lim
n,m→∞

qpb(gxm,gxn) = lim
n,m→∞

qpb(gym,gyn) = 0 .

As {gxn} and {gyn} are Cauchy sequences in the complete quasi-partial b-metric space (X ,qpb),

there are u, v in X such that u = lim
n→∞

gxn and v = lim
n→∞

gyn.

Now considering hypotheses (b), the following relations hold true:

0≤ qpb(F(u,v),gu)

= G(u,v)

≤ k liminf
n→∞

G(xn,yn)

= k liminf
n→∞

qpb(F(xn,yn),gxn)

= k liminf
n→∞

qpb(gxn+1,gxn) = 0 .

We get qpb(F(u,v),gu) = 0 and by Lemma 3.5, it follows that F(u,v) = gu. Similarly, it can

be proved that F(v,u) = gv. To conclude, (u,v) is a coupled coincidence point of the mappings

F and g, and qpb(gu,gu) = 0 and qpb(gv,gv) = 0.

Corollary 4.2. Let (X ,qpb) be a complete quasi-partial b-metric space and let F : X ×X → X

be a mapping. Suppose that there exists a function φ : X → R+ such that

qpb(x,F(x,y))+qpb(y,F(y,x))≤ φ(x)+φ(y)−φ(F(x,y))−φ(F(y,x))

holds for all (x,y) ∈ X×X. Also assume that the following hypotheses are satisfied:
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(i) F(X×X)⊆ X;

(ii) if G : X ×X → R, G(x,y) = qpb(F(x,y),x), then for each sequence (xn,yn)→ (u,v), we

have G(u,v)≤ k liminf
n→∞

G(xn,yn) for some k > 0.

Then F has a coupled coincidence point (u,v). In addition, qpb(u,v) = 0 and qpb(v,u) = 0.

Proof. If follows from Theorem 4.1 by taking g = IX (the identity mapping).

Example 4.3. Let X = [0,+∞). Define

qpb : X×X → R+, qpb(x,y) = |x− y|+ y .

Also, define

F : X×X → X , F(x,y) = 2x, g : X → X , gx = 4x, φ : X → R+, φ(x) = 2x .

Then

(i) (X ,qpb) is a complete quasi-partial b-metric space.

(ii) F(X×X)⊆ g(X).

(iii) For any x,y ∈ X , we have

qpb(gx,F(x,y))+qpb(gy,F(y,x))≤ φ(gx)+φ(gy)−φ(F(x,y))−φ(F(y,x)) .

(iv) Let G : X ×X → R+ be defined by G(x,y) = qpb(F(x,y),gx). If (gxn) and (gyn) are two

sequences in X with (gxn,gyn)→ (u,v), then

G(u,v)≤ 4liminf
n→∞

G(xn,yn) .

Proof. To verify (i) we proceed by observing that qpb(x,y) = |x− y|+ y is a quasi-partial b-

metric with s = 1. Hence a quasi-partial metric. By Lemma 2.5, (X ,qpb) is complete if and

only if (X ,dpqpb
) is complete.
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Here,

pqpb(x,y) =
1
2
[qpb(x,y)+qpb(y,x)]

= |x− y|+ x+ y
2

.

dpqpb
(x,y) = 2pqpb(x,y)− pqpb(x,x)− pqpb(y,y)

= 2|x− y|+ x+ y− x− y

= 2|x− y| .

Clearly, (X ,dpqpb
) is a complete metric space being a compact space.

Now, we verify (ii).

Let F(x,y) be an arbitrary element of F(X×X). We need to show

F(x,y) ∈ g(X) = {g(x) : x ∈ X}

= {4x : x ∈ [0,∞)}

= [0,∞).

F(x,y) = 2x ∈ [0,∞) = g(X).

Hence, F(X×X)⊆ g(X).

To verify (iii), given x,y ∈ X , gx = 4x, gy = 4y, F(x,y) = 2x, F(y,x) = 2y, φ(x) = 2x and

φ(y) = 2y. Thus

qpb(gx,F(x,y))+qpb(gy,F(y,x)) = qpb(4x,2x)+qpb(4y,2y)

= 4x+4y

= 8x+8y−4x−4y

= φ(4x)+φ(4y)−φ(2x)−φ(2y)

= φ(gx)+φ(gy)−φ(F(x,y))−φ(F(y,x)) .

To verify (iv), let g(xn) and g(yn) be two sequences in X such that (gxn,gyn)→ (u,v) for some

u,v ∈ X . Then gxn→ u and gyn→ v. Thus,

qpb(gxn,u) = qpb(4xn,u)→ qpb(u,u)
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and

qpb(u,gxn) = qpb(u,4xn)→ qpb(u,u) .

Therefore, |4xn− u|+ u→ u and |u− 4xn|+ 4xn → u Hence |4xn− u| → 0. It follows that

xn→
1
4

u in R+. Now

G(u,v) = qpb(F(u,v),u)

= qpb(2u,u)

≤ 8
(

1
4

u
)

= 8liminf
n→∞

(xn)

= 8liminf
n→∞

G(xn,xn)

= 8liminf
n→∞

G
(

1
2

F(xn,yn),xn

)
= 4liminf

n→∞
G(F(xn,yn),xn) .

So F and g satisfy all the hypotheses of Theorem 4.1.

Hence, F and g have a coupled coincidence point. Here (0,0) is the coupled coincidence

point of F and g.
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