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Abstract. The aim of this work is to use resolvent operator technique to find the common solutions

for a system of generalized nonlinear relaxed cocoercive mixed variational inequalities and fixed point

problems for Lipschitz mappings in Hilbert spaces. The results obtained in this work may be viewed as

an extension, refinement and improvement of the previously known results.
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1.Introduction and Preliminaries

Let H be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉

and ‖.‖ respectively. Let K be a closed and convex set in H. Let T1, T2 : H × H → H

and g, h : H → H be four nonlinear different operators and φ : H → R ∪ {+ ∞} be a
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continuous function. We consider the problem of finding x∗, y∗ ∈ H such that

〈ρT1(y∗, x∗) + x∗ − g(y∗), g(x)− x∗〉 ≥ ρφ(g(x∗))− ρφ(g(x)), ∀x ∈ H : g(x) ∈ H, ρ > 0

(1.1a)

〈ηT2(x∗, y∗) + y∗ − h(x∗), h(x)− y∗〉 ≥ ρφ(h(y∗))− ρφ(g(x)), ∀x ∈ H : h(x) ∈ H, η > 0,

(1.1b)

which is called the system of generalized nonlinear relaxed cocoercive mixed variational

inequalities (SGMVID). Here the parameters ρ and η are constants and play an important

role in the study of the convergence analysis of proposed iterative methods. We now

discuss some special cases.

(I) If g = h = I, then problem SGMVID reduces to finding x∗, y∗ ∈ H such that,

〈ρT1(y∗, x∗) + x∗ − y∗, x− x∗〉 ≥ ρφ(x∗)− ρφ(x), ∀x ∈ H, ρ > 0 (1.2a)

〈ηT2(x∗, y∗) + y∗ − x∗, x− y∗〉 ≥ ρφ(y∗)− ρφ(x), ∀x ∈ H, η > 0, (1.2b)

which is called the system of nonlinear mixed variational inequalities (SMVID) and has

been considered and studied in [1].

(II) If T1, T2 : H → H are univariate mappings, then the SGMVID problem reduces to

finding x∗, y∗ ∈ H such that

〈ρT1(y∗)+x∗−g(y∗), g(x)−x∗〉 ≥ ρφ(g(x∗))−ρφ(g(x)), ∀x ∈ H : g(x) ∈ H, ρ > 0 (1.3a)

〈ηT2(x∗)+y∗−h(x∗), h(x)−y∗〉 ≥ ρφ(h(y∗))−ρφ(g(x)), ∀x ∈ H : h(x) ∈ H, η > 0, (1.3b)

which appears to be a new system of generalized relaxed cocoercive mixed variational

inequalities (SGMVI).

(III) If φ is an indicator function of a closed convex set K in H, then the SGMVID reduces

to finding x∗, y∗ ∈ K such that

〈ρT1(y∗, x∗) + x∗ − g(y∗), g(x)− x∗〉 ≥ 0, ∀x ∈ K : g(x) ∈ K, ρ > 0 (1.4a)

〈ηT2(x∗, y∗) + y∗ − h(x∗), h(x)− y∗〉 ≥ 0, ∀x ∈ K : h(x) ∈ K, η > 0, (1.4b)

which is called the system of general variational inequalities (SGHVID) and has been

considered and studied in [2].
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In this paper, we generalize the results of Chang and Noor recent works [1,2,3], by using

resolvent operator technique. We consider the convergence criteria of an algorithm under

some mild conditions to find the common element of the solution of the system of general-

ized nonlinear relaxed cocoercive mixed variational inequalities problems (SGMVID) and

fixed point problems of nonlinear Lipschitz mapping in Hilbert spaces. Results presented

in this work also improve and generalize many known results of this field, see [1-13].

Definition 1.1. If φ is an indicator function of a closed convex set K in H, then Jφ = PK

i.e.

φ(u) =

 0, u ∈ K,

+∞, otherwise,

Definition 1.2. For any maximal operator T , the resolvent operator associated with T ,

for any ρ > 0, is defined as

JT (u) = (I + ρT )−1(u) ∀ u ∈ H.

It is well-known that an operator T is maximal monotone if and only if its resolvent

operator JT is defined everywhere. It is single-valued and non-expansive.

If φ(.) is a proper, convex and lower-semicontinuous function, then its subdifferential

∂φ(.) is a maximal monotone operator. In this case, we define the resolvent operator

Jφ(u) = (I + ρT )−1(u), ∀ u ∈ H,

associated with subdifferential ∂φ(.).

Definition 1.3. A mapping T : H → H is called r-strongly monotone if there exists a

constant r > 0 such that

〈Tx− Ty, x− y〉 ≥ r‖x− y‖2, ∀x, y ∈ H.

Definition 1.4. A mapping T : H → H is called relaxed γ-cocoercive if there exists a

constant γ > 0 such that

〈Tx− Ty, x− y〉 ≥ −γ‖Tx− Ty‖2, ∀x, y ∈ H.
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Definition 1.5. A mapping T : H → H is called relaxed (γ, r)-cocoercive if there exist

constants γ > 0, r > 0 such that

〈Tx− Ty, x− y〉 ≥ −γ‖Tx− Ty‖2 + r‖x− y‖2, ∀x, y ∈ H.

The class of relaxed (γ, r)-cocoercive mappings is more general than the class of strongly

monotone mappings.

Definition 1.6. A mapping T : H → H is called µ-Lipschitzian if there exists a constant

µ > 0 such that

‖Tx− Ty‖ ≤ µ‖x− y‖, ∀x, y ∈ H.

2. Main Results

In this section, we suggest some explicit iterative algorithms for solving the system of

generalized nonlinear relaxed cocoercive mixed variational inequalities (SGMVID). First

of all, we establish the equivalence between the system of generalized nonlinear relaxed

cocoercive mixed variational inequalities and fixed point problems with the resolvent op-

erator technique. This alternative formulation enables us to suggest and analyze resolvent

operator technique for solving (1.1). For this, we recall some well-known concepts and

results.

Lemma 2.1. For a given z ∈ H, u ∈ H satisfies the inequality

〈u− z, v − u〉 ≥ ρφ(f(u))− ρφ(f(v)), v ∈ H : f(v) ∈ H,

if and only if u = Jφ(z) where Jφ = (1 + ρ∂φ)−1 is the resolvent operator.

It is well known that the resolvent operator Jφ is nonexpansive, that is,

‖Jφu− Jφv‖ ≤ ‖u− v‖, ∀u, v ∈ H.

Using Lemma 2.1, we can easily show that finding the solution (x∗, y∗) ∈ H of

SGMVID is equivalent to finding x∗, y∗ ∈ H such that

x∗ = Jφ[g(y∗)− ρT1(y∗, x∗)], (2.1a)
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y∗ = Jφ[h(x∗)− η T2(x∗, y∗)]. (2.1b)

We use this alternative equivalent formulation to suggest the following explicit iterative

method for solving the system of generalized nonlinear relaxed cocoercive mixed varia-

tional inequalities (SGMVID).

Algorithm 2.1. For arbitrarily chosen initial points x0, y0 ∈ H, compute the sequences

{xn} and {yn} by

xn+1 = (1− an)xn + anJφ[g(yn)− ρT1(yn, xn)] (2.2a)

yn+1 = Jφ[h(xn+1)− η T2(xn+1, yn)], (2.2b)

where an ∈ [0, 1] for all n ≥ 0.

If g = h = I, then Algorithm 2.1 reduces to the following iterative method for solving

the system of nonlinear mixed variational inequalities (SMVID).

Algorithm 2.2. For arbitrarily chosen initial points x0, y0 ∈ H, compute the sequences

{xn} and {yn} by

xn+1 = (1− an)xn + anJφ[yn − ρT1(yn, xn)] (2.3a)

yn+1 = Jφ[xn+1 − η T2(xn+1, yn)], (2.3b)

where an ∈ [0, 1] for all n ≥ 0.

If T1, T2 : H → H are univariate mappings, then Algorithm 2.1 reduces to the following

iterative method for solving the system of generalized nonlinear relaxed cocoercive mixed

variational inequalities (SGMVI).

Algorithm 2.3. For arbitrarily chosen initial points x0, y0 ∈ H, compute the sequences

{xn} and {yn} by

xn+1 = (1− an)xn + anJφ[g(yn)− ρT1(yn)] (2.4a)

yn+1 = Jφ[h(xn+1)− η T2(xn+1)], (2.4b)

where an ∈ [0, 1] for all n ≥ 0.
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If φ is an indicator function of a closed set K in H, then Jφ = PK , the projection of

H onto the closed convex set K. Then Algorithms 2.1 collapse to the following iterative

projection method for solving a system of general variational inequalities (SGHVID).

Algorithm 2.4. For arbitrarily chosen initial points x0, y0 ∈ H, compute the sequences

{xn} and {yn} by

xn+1 = (1− an)xn + anPK [g(yn)− ρT1(yn, xn)] (2.5a)

yn+1 = PK [h(xn+1)− η T2(xn+1, yn)], (2.5b)

where an ∈ [0, 1] for all n ≥ 0.

Lemma 2.2. ([13]) Suppose {δ∞}∞n=0 is a nonnegative sequence satisfying the following

inequality:

δn+1 ≤ (1− λn) δn + σn, ∀ n ≥ 0,

with λn ∈ [0, 1],
∑∞

n=0 λn =∞, and σn = o(λn). Then limn→∞δn = 0.

Theorem 2.1. Let (x∗, y∗) be the solution of SGMVID. Suppose that T1 : H×H → H

is relaxed (γ1, r1)-cocoercive and µ1-Lipschitzian in the first variable, and T2 : H×H → H

is relaxed (γ2, r2)-cocoercive and µ2-Lipschitzian in the first variable. Let g : H → H be

relaxed (γ3, r3)-cocoercive and µ3-Lipschitz and let h : H → H be relaxed (γ4, r4)-cocoercive

and µ4-Lipschitz continuous. If

∣∣∣∣ρ− r1 − γ1µ2
1

µ2
1

∣∣∣∣ <
√

(r1 − γ1µ2
1)

2 − µ2
1k1(2− k1)

µ2
1

, r1 > γ1µ
2
1 + µ1

√
k1(2− k1), k1 < 1,

(2.6)∣∣∣∣η − r2 − γ2µ2
2

µ2
2

∣∣∣∣ <
√

(r2 − γ2µ2
2)

2 − µ2
2k2(2− k2)

µ2
2

, r2 > γ2µ
2
2 + µ2

√
k2(2− k2), k2 < 1,

(2.7)

where

k1 =
√

1− 2(r3 − γ3µ2
3) + µ2

3, (2.8)

k2 =
√

1− 2(r4 − γ4µ2
4) + µ2

4, (2.9)
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and an ∈ [0, 1],
∞∑
n=0

an = ∞, then for arbitrarily chosen initial points x0, y0 ∈ H, xn and

yn obtained from Algorithm 2.1 converge strongly to x∗ and y∗ respectively.

Proof. It follows from (2.1a) and (2.2a), and the nonexpansive property of the resol-

vent operator Jφ that

‖xn+1−x∗‖ = ‖(1−an)xn + anJφ[g(yn)−ρT1(yn, xn)]−(1−an)x∗−anJφ[g(y∗)−ρT1(y∗, x∗)]‖

≤ (1− an)‖xn − x∗‖ + an‖Jφ[g(yn)− ρT1(yn, xn)]− Jφ[g(y∗)− ρT1(y∗, x∗)]‖

≤ (1− an)‖xn − x∗‖ + an‖[g(yn)− ρT1(yn, xn)]− [g(y∗)− ρT1(y∗, x∗)]‖

= (1− an)‖xn − x∗‖ + an‖yn − y∗ − ρ[T1(yn, xn)− T1(y∗, x∗))‖

+ an‖yn − y∗ − (g(yn)− g(y∗))‖. (2.10)

Since T1 is relaxed (γ1, r1)-cocoercive and µ1-Lipschitzian in first variable , we have

‖yn−y∗−ρ[T1(yn, xn)−T1(y∗, x∗)]‖2 = ‖yn−y∗‖2−2ρ〈T1(yn, xn)−T1(y∗, x∗), yn−y∗〉

+ ρ2 ‖T1(yn, xn)− T1(y∗, x∗)‖2

≤ ‖yn − y∗‖2 − 2ρ [−γ1‖T1(yn, xn)− T1(y∗, x∗)‖2 + r1‖yn − y∗‖2]

+ ρ2 ‖T1(yn, xn)− T1(y∗, x∗)‖2

≤ ‖yn − y∗‖2 + 2ργ1µ
2
1‖yn − y∗‖2 − 2ρr1‖yn − y∗‖2 + ρ2µ2

1‖yn − y∗‖2

= [1 + 2ργ1µ
2
1 − 2ρr1 + ρ2µ2

1] ‖yn − y∗‖2. (2.11)

In a similar way, using the (γ3, r3)-cocoercivity and µ3-Lipschitz continuity of the operator

g, we have

‖yn − y∗ − (g(yn)− g(y∗))‖2 ≤ k1‖yn − y∗‖, (2.12)

where k1 is defined by (2.8). Set

θ1 = k1 + [1 + 2ργ1µ
2
1 − 2ρr1 + ρ2µ2

1]
1/2.

It is clear from the condition (2.6) that 0 ≤ θ1 < 1. Hence from (2.10)-(2.12), it follows

that

‖xn+1 − x∗‖ ≤ (1− an)‖xn − x∗‖ + anθ1‖yn − y∗‖. (2.13)
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Similarly, T2 is relaxed (γ2, r2)-cocoercive and µ2-Lipschitzian in the first variable, we

obtain

‖xn+1 − x∗ − η[T2(xn+1, yn)− T2(x∗, y∗)]‖2 = ‖xn+1 − x∗‖2

−2η〈T2(xn+1, yn)−T2(x∗, y∗), xn+1−x∗〉+ η2‖T2(xn+1, yn)−T2(x∗, y∗)‖2

≤ ‖xn+1 − x∗‖2 − 2η [−γ2‖T2(xn+1, yn)− T2(x∗, y∗)‖2 + r2‖xn+1 − x∗‖2]

+ η2‖T2(xn+1, yn)− T2(x∗, y∗)‖2

= ‖xn+1 − x∗‖2 + 2ηγ2‖T2(xn+1, yn)− T2(x∗, y∗)‖2 − 2ηr2‖xn+1 − x∗‖2

+ η2‖T2(xn+1, yn)− T2(x∗, y∗)‖2

≤ ‖xn+1 − x∗‖2 + 2ηγ2µ
2
2‖xn+1 − x∗‖2 − 2ηr2‖xn+1 − x∗‖2

+ η2µ2
2‖xn+1 − x∗‖2

= [1 + 2ηγ2µ
2
2 − 2ηr2 + η2µ2

2]‖xn+1 − x∗‖2. (2.14)

In a similar way, using the (γ4, r4)-cocoercivity and µ4-Lipschitz continuity of the operator

h, we have

‖yn − y∗ − (h(yn)− h(x∗))‖2 ≤ k2‖yn − y∗‖, (2.15)

where k2 is defined by (2.9).

Hence from (2.1b), (2.2b), (2.14) and (2.15) and the nonexpansive property of the

resolvent operator Jφ , we have

‖yn+1−y∗‖ = ‖Jφ[h(xn+1)−ηT2(xn+1, yn)]−Jφ[h(x∗)−ηT2(x∗, y∗)]‖

≤ ‖xn+1 − x∗ − η(T2(xn+1, yn)− T2(x∗, y∗))‖ + ‖xn+1 − x∗ − (h(xn+1)− h(x∗)‖

≤ {k2 + [1 + 2ηγ2µ
2
2 − 2ηr2 + η2µ2

2]
1/2}‖xn+1 − x∗‖

= θ2‖xn+1 − x∗‖, (2.16)

where

θ2 = k2 + [1 + 2ηγ2µ
2
2 − 2ηr2 + η2µ2

2]
1/2.

From (2.7), it follows that θ2 < 1. Combining (2.13) and (2.16), we obtain that

‖xn+1 − x∗‖ ≤ (1− an)‖xn − x∗‖ + anθ1‖yn − y∗‖



26 S. HUSAIN AND S. GUPTA

≤ (1− an)‖xn − x∗‖ + anθ1‖xn − x∗‖

= [1− an(1− θ1θ2)]‖xn − x∗‖.

Since the constant (1− θ1θ2) ∈ (0, 1] and
∞∑
n=0

(1− θ1θ2) =∞, from Lemma 2.2, we have

limn→∞‖xn − x∗‖ = 0. Hence the result limn→∞‖yn − y∗‖ = 0 is from (2.14). This

completes the proof.

If g = h = I, the identity operator, then Theorem 2.1 reduces to the following

result for solving a system of mixed variational inequalities SMVID, which is considered

and introduced by Noor [7].

Theorem 2.2. Let (x∗, y∗) ∈ H be the solution of SMVID. If T1 : H × H → H is

relaxed (γ1, r1)-cocoercive and µ1-Lipschitzian in the first variable, and T2 : H ×H → H

is relaxed (γ2, r2)-cocoercive and µ2-Lipschitzian in the first variable with conditions

0 < ρ min{2(r1 − γ1µ2
1)/µ

2
1, 2(r2 − γ2µ2

2)/µ
2
2}, r1 > γ1µ

2
1,

0 < η min{2(r1 − γ1µ2
1)/µ

2
1, 2(r2 − γ2µ2

2)/µ
2
2}, r2 > γ2µ

2
2,

and an ∈ [0, 1],
∞∑
n=0

an = ∞, then for arbitrarily chosen initial points x0, y0 ∈ H, xn and

yn obtained from Algorithm 2.2 converge strongly to x∗ and y∗ respectively.

If T1, T2 are univariate mappings, then the following result can be obtained from

theorem 2.1

Theorem 2.3. Let (x∗, y∗) be the solution of SGMVI. If T1 : H ×H → H is relaxed

(γ1, r1)-cocoercive and µ1-Lipschitzian, and T2 : H ×H → H is relaxed (γ2, r2)-cocoercive

and µ2-Lipschitzian. Let g : H → H be relaxed (γ3, r3)-cocoercive and µ3-Lipschitz and

let h : H → H be relaxed (γ4, r4)-cocoercive and µ4-Lipschitz continuous. If∣∣∣∣ρ− r1 − γ1µ2
1

µ2
1

∣∣∣∣ <
√

(r1 − γ1µ2
1)

2 − µ2
1k1(2− k1)

µ2
1

, r1 > γ1µ
2
1 + µ1

√
k1(2− k1), k1 < 1,

∣∣∣∣η − r2 − γ2µ2
2

µ2
2

∣∣∣∣ <
√

(r2 − γ2µ2
2)

2 − µ2
2k2(2− k2)

µ2
2

, r2 > γ2µ
2
2 + µ2

√
k2(2− k2), k2 < 1,
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where

k1 =
√

1− 2(r3 − γ3µ2
3) + µ2

3,

k2 =
√

1− 2(r4 − γ4µ2
4) + µ2

4,

and an ∈ [0, 1],
∞∑
n=0

an = ∞, then for arbitrarily chosen initial points x0, y0 ∈ H, xn and

yn obtained from Algorithm 2.3 converge strongly to x∗ and y∗ respectively.

If φ(.) is an indicator function of a closed convex set K in H, then Jφ = PK , the

projection of H onto K. Consequently, Theorem 2.1 reduces to the following result for

solving system of general variational inequalities SGHVID, which is mainly due to Noor[8].

Theorem 2.4. Let (x∗, y∗) be the solution of SGHVID. It T1 : H × H → H is

relaxed (γ1, r1)-cocoercive and µ1-Lipschitzian in the first variable, and T2 : H ×H → H

is relaxed (γ2, r2)-cocoercive and µ2-Lipschitzian in the first variable. Let g : H → H be

relaxed (γ3, r3)-cocoercive and µ3-Lipschitz and let h : H → H be relaxed (γ4, r4)-cocoercive

and µ4-Lipschitz continuous. If

∣∣∣∣ρ− r1 − γ1µ2
1

µ2
1

∣∣∣∣ <
√

(r1 − γ1µ2
1)

2 − µ2
1k1(2− k1)

µ2
1

, r1 > γ1µ
2
1 + µ1

√
k1(2− k1), k1 < 1,

∣∣∣∣η − r2 − γ2µ2
2

µ2
2

∣∣∣∣ <
√

(r2 − γ2µ2
2)

2 − µ2
2k2(2− k2)

µ2
2

, r2 > γ2µ
2
2 + µ2

√
k2(2− k2), k2 < 1,

where

k1 =
√

1− 2(r3 − γ3µ2
3) + µ2

3,

k2 =
√

1− 2(r4 − γ4µ2
4) + µ2

4,

and an ∈ [0, 1],
∞∑
n=0

an = ∞, then for arbitrarily chosen initial points x0, y0 ∈ H, xn and

yn obtained from Algorithm 2.4 converge strongly to x∗ and y∗ respectively.
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