
Available online at http://scik.org

Adv. Fixed Point Theory, 7 (2017), No. 1, 118-143

ISSN: 1927-6303

COMMON FIXED POINT THEOREMS SATISFYING A NEW TYPE OF WEAK
CONTRACTION CONDITION ON A SAKS SPACE

P. P. MURTHYAND UMA DEVI PATEL∗

Department of Pure and Applied Mathematics, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India

Copyright c© 2017 Murthy and Patel. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. The main purpose of this paper is to establish some common fixed point theorems in Saks spaces under

C- class contraction condition for two pairs of discontinuous weak compatible maps. The proved results generalize

and extend some of the known results in the literature.

Keywords: common fixed points; C-class contraction; altering distance function; weak compatible maps; Saks

Space.

2010 AMS Subject Classification: 47H10, 54H25.

1. Introduction

We need the following definitions and a lemma to establish some fixed points in Saks Spaces.

Now we recall some definitions given by Orlize ([15]).

Definition 1.1. A real valued function N defined on a linear space X is called a B-norm if

it satisfies the following conditions:

(1) N(x) = 0 if and only if x = 0,
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(2) N(x+ y)≤ N(x)+N(y),

(3) N(ax) = |a|N(x), where a is any real numbers.

Definition 1.2. A real valued function N defined on a linear space X is called a F-norm if it

satisfies the following conditions:

(1) N(x) = 0 if and only if x = 0,

(2) N(x+ y)≤ N(x)+N(y),

(3) if αn be a sequence of real numbers converges to a real number α and N(xn−x)→ 0 as

n→ ∞ then N(αn.xn−αx)→ 0 as n→ ∞.

Definition 1.3. A two-norm space is a linear space X with two norms, a B-norm N1 and F-norm

N2 and is denoted by (X ,N1,N2).

Definition 1.4. Let N1 and N2 be two-norms defined on X , then N1 is said to be non-weaker

than N2 in X (that is N2 ≤ N1), if

N1(xn)→ 0 as n→ ∞⇒ N2(xn)→ 0 as n→ ∞

where {xn} be a sequence in X .

We shall denote here that the two-norms N1 and N2 are equivalent if (N1 ≤ N2) as well as

(N2 ≤ N1).

Definition 1.5. Let (X ,N1,N2) be a two-norms space, then the sequence {xn} of X said to

be γ- convergent to a point x ∈ X if

Sup N1(xn)< ∞ and limn→∞N2(xn− x) = 0.

Definition 1.6. Let (X ,N1,N2) be a two-norms space, then a sequence {xn} of X is a γ - cauchy

sequence if

N2(xpn− xqn)→ 0 as pn, qn→ ∞

Definition 1.7. A two-norm space (X ,N1,N2) is called γ - complete, if every γ - cauchy se-

quence {xn} in two -norm space, there exists a point x ∈ X such that xn→ x.
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Let X be a linear set and suppose that N1 and N2 are B-norm and F-norm on X respectively.

Let Xs = (x ∈ X ,N1(x) < 1) and define d(x,y) = N2(x− y) for all x,y ∈ Xs. Then d is a metric

on Xs and the metric space (Xs,d) will be called a Saks Set.

Definition 1.8. Let (Xs,d) be a Saks set, A Saks set is said to be Saks Spaces, if it is com-

plete. We shall denoted this by, (X ,N1,N2).

Now we recall the following lemma.

Lemma 1.9. Let (Xs,d) = (X ,N1,N2) be a Saks Space. Then the following statements are

equivalent:

(1) N1 is equivalent to N2 on X .

(2) (X ,N1) is a Banach Space and N1 ≤ N2 on X .

(3) (X ,N2) is a Frechet Space and N2 ≤ N1 on X .

Throughout this paper, (Xs,d) = (X ,N1,N2) denotes a Saks Space, in which N1 is equivalent to

N2 on X .

2. Preliminaries

The weak contraction condition in Hilbert Space was introduced by Alber and Gurerre - De-

labriere ([18]). Later Rhoades ([3]) has shown that the result of Alber and Gurerre - Delabriere

([18]) in Hilbert Spaces is also true in a complete metric space. Rhoades [3] established a fixed

point theorem in a complete metric space by using the following contraction condition:

A weakly contractive mapping T : X → X which satisfies the condition

d(T x,Ty)≤ d(x,y)−ϕ(d(x,y)),

where x,y ∈ X and ϕ : [0,∞)→ [0,∞) is a continuous and nondecreasing function such that

ϕ(t) = 0 if and only if t = 0.
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Remark: In the above result if ϕ(t) = (1−k)t where k ∈ (0,1), then we obtain the contraction

condition of Banach.

Results on generalized (φ ,ψ)- weak contractive condition in metric spaces were given by

Rhoades ([3]), Dutta and Choudhury ([8]), Zhang and Song ([13]), Doric ([5]), Hosseini ([14]),

Abkar and Choudhury ([1]),Murthy, Tas and Choudhary ([9]), Murthy and patel ([10])), Murthy,

Tas and Patel ([11]) etc..

Now, we translate the weakly contractive condition in Saks Space from Murthy, Tas and Choud-

hary ([9]):

A mapping T : X → X , where (Xs,d) = (X ,N1,N2) is a Saks space is said to be weakly contrac-

tive condition if

N2(T x−Ty)≤ N2(x− y)−ϕ(N2(x− y))

where x,y ∈ X and ϕ : [0,∞)→ [0,∞) is a continuous and nondecreasing function such that

ϕ(t) = 0 if and only if t = 0.

Definition 2.1.[7] (Altering distance function) A function ψ : [0,∞)→ [0,∞) is called an al-

tering distance function if the following properties are satisfied:

(1) ψ is monotone increasing and continuous,

(2) ψ(t) = 0 if and only if t = 0.

In 2014 Ansari [2] introduced the concept of C-clas functions which cover a large class of

contractive conditions.

Definition 2.2.[2] We say that F : [0,∞)2 → R is called C-class function if it is continuous

and satisfies following axioms:

(1) F(s, t)≤ s,

(2) F(s, t) = s implies that either s = 0 or t = 0,
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for all s, t ∈ [0,∞).

Note that for some Fwe have F(0,0) = 0.

We denote the set of C-class functions by C .

Example 2.3. The following functions F : [0,∞)2→ R are elements of C .

(1)F(s, t) = ks, 0 < k < 1, F(s, t) = s⇒ s = 0;

(2) F(s, t) = s− t, F(s, t) = s⇒ t = 0;

(3) F(s, t) = s
(1+t)r ; r ∈ (0,∞), F(s, t) = s⇒ s = 0 or t = 0;

(4) F(s, t) = log(t +as)/(1+ t), a > 1, F(s, t) = s⇒ s = 0 or t = 0;

(5) F(s, t) = ln(1+as)/2, a > e, F(s, t) = s⇒ s = 0;

(6) F(s, t) = (s+ l)(1/(1+t)r)− l, l > 1,r ∈ (0,∞), F(s, t) = s⇒ t = 0;

(7) F(s, t) = s logt+a a, a > 1, F(s, t) = s⇒ s = 0 or t = 0;

(8) F(s, t) = s− (1+s
2+s)(

t
1+t ), F(s, t) = s⇒ t = 0;

(9) F(s, t) = ln(1+ s), F(s, t) = s⇒ s = 0.

We recall the concept of weakly compatible mappings given by initially Gungck and Rhoades

([6]).

Definition 2.4.([6]) A pair of self mappings A and B of a metric space (X ,d) is said to be

weakly compatible, if they commute at their coincidence points. In other words, if Ax = Bx for

some x ∈ X , then ABx = BAx.

In this paper, we derive few common fixed point theorems for four maps by using C-class

weak contractive condition using more than one control functions in Saks spaces for two pairs

of weak compatible maps which is not necessarily continuous.
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3. Main results

Theorem 3.1. Let (Xs,d)= (X ,N1,N2) is a Saks Space in which N1 is equivalent to N2 on X .

Let A,B,S and T : X → X be self mappings which satisfies the following inequality:

(1) ψ(N2(Ax−By))≤ F(ψ(αM(x,y)),φ(N(x,y)))

where x,y ∈ X , x 6= y, α ∈ (0,1),

M(x,y) = max{N2(Sx−Ty), 1
2(N2(Sx−Ax)+N2(Ty−By)), 1

2(N2(Sx−By)+N2(Ty−Ax))}

and

N(x,y) = min{N2(Sx−Ty), 1
2(N2(Sx−Ax)+N2(Ty−By)), 1

2(N2(Sx−By)+N2(Ty−Ax))}

(1) A(X)⊂ T (X) and B(X)⊂ S(X),

(2) (A,S) and (B,T ) are weak compatible pairs,

(3) φ : [0,∞)→ [0,∞) is such that φ(t) > 0 and lower semi-continuous for all t > 0, φ is

discontinuous at t = 0 with φ(0) = 0,

(4) ψ : [0,∞)→ [0,∞) are altering distance function,

(5) F is element of C .

Then A,B,S and T have a unique common fixed point in X .

Proof. Let x0 ∈ X be an arbitrary point. Since A(X) ⊂ T (X) and B(X) ⊂ S(X) there exist

x1 ∈ X such that Ax0 = T x1 and for x1 ∈ X there exist x2 ∈ X such that Bx1 = Sx2. Inductively,

we construct a sequence

y2n+1 = A(x2n) = T (x2n+1), y2n+2 = B(x2n+1) = S(x2n+2).

We assume

(2) y2n 6= y2n+1,

for all n ∈ N∪{0}, where N is set of natural numbers.

First, we have to show that N2(y2n− y2n+1)→ 0 as n→ ∞. For this, putting x = x2n, y = x2n+1
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in (3.1), we have

(3) ψ1(N2(y2n+1− y2n+2))≤ F(ψ(αM(x2n,x2n+1)),φ(N(x2n,x2n+1)))

where

M(x2n,x2n+1) = max{N2(y2n− y2n+1),
1
2(N2(y2n− y2n+1)+N2(y2n+1− y2n+2)),

1
2(N2(y2n− y2n+2)+N2(y2n+1− y2n+1))}

and

N(x2n,x2n+1) = min{N2(y2n− y2n+1),
1
2(N2(y2n− y2n+1)+N2(y2n+1− y2n+2)),

1
2(N2(y2n− y2n+2)+N2(y2n+1− y2n+1))}.

Then by triangular inequality,

M(x2n,x2n+1)≤ max{N2(y2n− y2n+1),
1
2(N2(y2n− y2n+1)+N2(y2n+1− y2n+2)),

1
2(N2(y2n− y2n+1)+N2(y2n+1− y2n+2))}.

If

(4) N2(y2n− y2n+1)< N2(y2n+1− y2n+2)

then, we get

(5) M(x2n,x2n+1)≤ N2(y2n+1− y2n+2).

Using monotonic increasing property of ψ function, we have

(6) ψ(M(x2n,x2n+1))≤ ψ(N2(y2n+1− y2n+2)).

We have

ψ(N2(y2n+1− y2n+2))≤ F(ψ(αM(x2n,x2n+1)),φ(N(x2n,x2n+1)))≤ ψ(αM(x2n,x2n+1))

< ψ(M(x2n,x2n+1))≤ ψ(N2(y2n+1− y2n+2)).

This implies that
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ψ(N2(y2n+1− y2n+2))< ψ(N2(y2n+1− y2n+2)).

which is a contradiction. Then we have

(7) N2(y2n+1− y2n+2)≤ N2(y2n− y2n+1).

Using (3.7), we have

(8) M(x2n,x2n+1) = N2(y2n− y2n+1) and N(x2n,x2n+1) =
1
2
(N2(y2n− y2n+2)).

Now putting (3.8) in (3.3), we get

(9) ψ(N2(y2n+1− y2n+2))≤ F(ψ(αN2(y2n,y2n+1)),φ(
1
2
(N2(y2n,y2n+2)))).

Again (3.7) implies that N2(y2n− y2n+1) is monotone decreasing sequence of non-negative real

number there exist r > 0 such that

(10) limn→∞N2(y2n− y2n+1) = r > 0.

By virtue of (3.2), we have N(x2n,x2n+1)> 0. Taking n→ ∞ in (3.9), we get

limn→∞ψ(N2(y2n+1− y2n+2))≤ F(limn→∞ψ(αN2(y2n,y2n+1)), limn→∞φ(1
2(N2(y2n,y2n+2)))).

Using (3.10), which implies that

ψ(r)≤ F(ψ(αr), limn→∞φ(1
2(N2(y2n,y2n+2))))≤ ψ(αr)< ψ(r),

we observe that the term limn→∞φ(1
2(N2(y2n,y2n+2)) of the above inequality is nonzero. We get

a contradiction. Therefore, we have

(11) limn→∞N2(y2n− y2n+1) = 0.

Putting x = x2n+1 and y = x2n+2 in (3.1) and arguing as above, we have

(12) limn→∞N2(y2n+1− y2n+2) = 0.

Therefore for all n ∈ N∪{0},

(13) limn→∞N2(yn− yn+1) = 0.

Next, we prove that {yn} is a cauchy sequence. For this, it is enough to show that the subse-

quence {y2n} is a cauchy sequence. Suppose {y2n} is not a cauchy sequence then there exist an



126 P. P. MURTHY AND UMA DEVI PATEL

ε > 0 and the sequence of natural number {2n(k)} and {2m(k)} such that, 2n(k)> 2m(k)> 2k

for k ∈ N and

(14) N2(y2m(k)− y2n(k))≥ ε

corresponding to 2m(k), we can choose 2n(k) to be the smallest such that (3.14) is satisfied.

Then we have

(15) N2(y2m(k)− y2n(k)−1)< ε.

Putting x = x2m(k)−1 and y = x2n(k)−1 in (3.1), where for all k ∈ N

(16) ψ(N2(y2m(k)− y2n(k)))≤ F(ψ(αM(x2m(k)−1,x2n(k)−1)),φ(N(x2m(k)−1,x2n(k)−1)))

where

M(x2m(k)−1,x2n(k)−1) = max{N2(y2m(k)−1− y2n(k)−1),
1
2(N2(y2m(k)−1− y2m(k)) +N2(y2n(k)−1−

y2n(k))),

1
2(N2(y2m(k)−1− y2n(k))+N2(y2n(k)−1− y2m(k)))}

and

N(x2m(k)−1,x2n(k)−1)=min{N2(y2m(k)−1−y2n(k)−1),
1
2(N2(y2m(k)−1−y2m(k))+N2(y2n(k)−1−y2n(k))),

1
2(N2(y2m(k)−1− y2n(k))+N2(y2n(k)−1− y2m(k)))}.

Using triangle inequality,

N2(y2m(k)− y2n(k))≤ N2(y2m(k)− y2n(k)−1)+N2(y2n(k)−1− y2n(k)).

Letting limit k→ ∞,

(17) limk→∞N2(y2m(k)− y2n(k)) = ε.

Again for all k,

N2(y2m(k)−1− y2n(k)−1)≤ N2(y2m(k)− y2m(k)−1)+N2(y2m(k)− y2n(k))+N2(y2n(k)−1− y2n(k)),
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N2(y2m(k)− y2n(k))≤ N2(y2m(k)− y2m(k)−1)+N2(y2m(k)−1− y2n(k)−1)+N2(y2n(k)−1− y2n(k)).

Letting limit k→ ∞, and using (3.13) and (3.17), we get

(18) limk→∞N2(y2m(k)−1− y2n(k)−1) = ε.

Again for all positive integer k,

N2(y2m(k)−1− y2n(k))≤ N2(y2m(k)−1− y2m(k))+N2(y2m(k)− y2n(k)),

N2(y2m(k)− y2n(k))≤ N2(y2m(k)− y2m(k)−1)+N2(y2m(k)−1− y2n(k)).

Letting limit k→ ∞, and using (3.13) and (3.18), we get

(19) limk→∞N2(y2m(k)−1− y2n(k)) = ε.

Again for all positive integer k,

N2(y2n(k)−1− y2m(k))≤ N2(y2n(k)−1− y2n(k))+N2(y2n(k)− y2m(k)),

N2(y2n(k)− y2m(k))≤ N2(y2n(k)− y2n(k)−1)+N2(y2n(k)−1− y2m(k)).

Letting limk→ ∞ and using (3.13) and (3.19), we get

(20) limk→∞N2(y2n(k)−1− y2m(k)) = ε.

Using (3.13)- (3.20), we get

limk→∞M(x2m(k)−1,x2n(k)−1) = ε.

limk→∞N(x2m(k)−1,x2n(k)−1) = 0.

Letting k→ ∞ in (3.16), we get

ψ(ε)≤ F(ψ(αε), limk→∞φ(N(x2m(k)−1,x2n(k)−1)))≤ ψ(αε)< ψ(ε),

which is a contradiction. Hence {yn} is a Cauchy sequence with respect to N1 by (Lemma 1.9)

(X ,N1) is Banach Space. Therefore, the Cauchy sequence {yn} be a convergent sequence and

converge to a point z(say) in X , Consequently, the subsequences of {yn} are also converges to z

in X .

Ax2n→ z , T x2n+1→ z, Bx2n+1→ z and Sx2n→ z.
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Now we shall show that z is the common fixed point of A,B,S and T .

Since B(X) ⊂ S(X), then ∃ v ∈ X such that z = Sv. Let N2(z−Av) 6= 0. putting x = v and

y = x2n+1 in (3.1), we get

(21) ψ(N2(Av−Bx2n+1))≤ F(ψ(αM(v,x2n+1)),φ(N(v,x2n+1)))

where

M(v,x2n+1) = max{N2(Sv−T x2n+1),
1
2(N2(Sv−Av)+N2(T x2n+1−Bx2n+1)),

1
2(N2(Sv−Bx2n+1)+N2(T x2n+1−Av))} and

N(v,x2n+1) = min{N2(Sv−T x2n+1),
1
2(N2(Sv−Av)+N2(T x2n+1−Bx2n+1)),

1
2(N2(Sv−Bx2n+1)+N2(T x2n+1−Av))}

Letting n→ ∞ and using z = Sv, we get

M(v,z) = max{N2(Sv− z), 1
2(N2(Sv−Av)+N2(z− z)), 1

2(N2(Sv− z)+N2(z−Av))}=
1
2(N2(z−Av)).

Letting n→ ∞ in (3.21 )

ψ(N2(Av− z))≤ F(ψ(α 1
2(N2(z−Av))), limn→∞φ(N(v,x2n+1))).

Using discontinuity of φ at t = 0 and φ(t)> 0 for t > 0, we observe that the limn→∞φ(N(x2n+1,v))

term is non zero and F is an element of C, we obtain

ψ(N2(Av− z))≤ F(ψ(α 1
2(N2(z−Av))), limn→∞φ(N(v,x2n+1)))≤ ψ(α 1

2(N2(z−Av))).

Therefore we have

ψ(N2(Av− z))≤ ψ(α 1
2(N2(z−Av)))< ψ(1

2(N2(z−Av))),

a contradiction with the ψ function. Therefore N2(z−Av) = 0⇒ Av = z⇒ Av = z = Sv.

Since (A,S) is weakly compatible pair of maps, it commute at their coincidence point v i.e.

ASv = SAv⇒ Az = Sz.
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Now we have to show that Az = Sz = z. For this,

putting x = z and y = x2n+1 in (3.1), we get

(22) ψ(N2(Az−Bx2n+1))≤ F(ψ(αM(z,x2n+1)),φ(N(z,x2n+1)))

where

M(z,x2n+1) = max{N2(Sz−T x2n+1),
1
2(N2(Sz−Az)+N2(T x2n+1−Bx2n+1)),

1
2(N2(Sz−Bx2n+1)+N2(T x2n+1−Az))} and

N(z,x2n+1) = min{N2(Sz−T x2n+1),
1
2(N2(Sz−Az)+N2(T x2n+1−Bx2n+1)),

1
2(N2(Sz−Bx2n+1)+N2(T x2n+1−Az))}.

Taking n→ ∞ and using Az = Sz, we get

M(z,z) = N2(Sz− z).

Letting n→ ∞ in (3.22 )

ψ(N2(Sz− z))≤ F(ψ(αN2(Sz− z)), limn→∞φ(N(z,x2n+1))).

Using discontinuity of φ at t = 0 and φ(t)> 0 for t > 0, we observe that the limn→∞φ(N(x2n+1,z))

term is non zero and F is an element of C, we get

ψ(N2(Sz− z))≤ F(ψ(αN2(Sz− z)), limn→∞φ(N(z,x2n+1)))≤ ψ(αN2(Sz− z))<

ψ(N2(Sz− z)),

which is a contradiction. Therefore N2(Sz− z) = 0⇒ Sz = z⇒ Sz = Az = z.

Since A(X) ⊂ T (X) then there exist w ∈ X such that z = Tw. Let N2(z,Bw) 6= 0. Putting

x = x2n and y = w in (3.1), we get

(23) ψ(N2(Ax2n,Bw))≤ F(ψ(αM(x2n,w)),φ(N(x2n,w)))

where

M(x2n,w)=max{N2(Sx2n,Tw), 1
2(N2(Sx2n,Ax2n)+N2(Tw,Bw)), 1

2(N2(Sx2n,Bw)+N2(Tw,Ax2n))}
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and

N(x2n,w)=min{N2(Sx2n,Tw), 1
2(N2(Sx2n,Ax2n)+N2(Tw,Bw)), 1

2(N2(Sx2n,Bw)+N2(Tw,Ax2n))}

Taking n→ ∞ and using z = Tw, we have

M(z,w) = max{N2(z,Tw), 1
2(N2(z,z)+N2(Tw,Bw)), 1

2(N2(z,Bw)+N2(Tw,z))}=
1
2(N2(z,Bw)).

Also we have

ψ(N2(z,Bw))≤ F(ψ(α 1
2(N2(z,Bw))), limn→∞φ(N(z,x2n)))≤ ψ(α 1

2(N2(z,Bw)).

Using discontinuity of φ at t = 0 and φ(t)> 0 for t > 0, we observe that the limn→∞φ(N(x2n,z))

term is non zero. Therefore we obtain,

ψ(N2(z,Bw))≤ ψ(α 1
2(N2(z,Bw))< ψ(1

2(N2(z,Bw)).

Hence we arrive at a contradiction with the ψ function.

Therefore N2(z,Bw) = 0⇒ Bw = z⇒ Bw = z = Tw.

Since (B,T ) is the weakly compatible pair of the maps, it commute at their coincidence point w

that is BTw = T Bw⇒ Bz = T z.

Now we shall to show that Bz = T z = z.

For this, Putting x = x2n and y = z in (3.1), we get

(24) ψ(N2(Ax2n,Bz))≤ F(ψ(αM(x2n,z)),φ(N(x2n,z)))

where

M(x2n,z)=max{N2(Sx2n,T z), 1
2(N2(Sx2n,Ax2n)+N2(T z,Bz)), 1

2(N2(Sx2n,Bz)+N2(T z,Ax2n))}

and

N(x2n,z) =

min{N2(Sx2n,T z), 1
2(N2(Sx2n,Ax2n)+N2(T z,Bz)), 1

2(N2(Sx2n,Bz)+N2(T z,Ax2n))}

Taking n→ ∞ and using Bz = T z, we have

M(z,z) = max{N2(z,T z), 1
2(N2(z,z)+N2(T z,Bz)), 1

2(N2(z,Bz)+N2(T z,z))}= N2(z,Bz).

Also we have
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ψ(N2(z,Bz))≤ F(ψ(αN2(z,Bz)), limn→∞φ(N(x2n,z))).

Using discontinuity of φ at t = 0 and φ(t)> 0 for t > 0, we observe that the limn→∞φ(N(x2n,z))

term is non zero and F is an element of class C. Therefore we have

ψ(N2(z,Bz))≤ F(ψ(αN2(z,Bz)), limn→∞φ(N(x2n,z)))≤ ψ(αN2(z,Bz)),

This implies that

ψ(N2(z,Bz))≤ ψ(αN2(z,Bz))< ψ(N2(z,Bz)),

which is a contradiction. Therefore N2(z,Bz) = 0⇒ Bz = z⇒ Bz = z = T z.

Hence Az = Bz = T z = Sz = z.

Now we shall show that z is the unique common fixed point of A,B,S and T .

Let z1 is the another fixed point of A,B,S and T such that z1 = Az1 = Sz1 = Bz1 = T z1. Putting

x = z and y = z1 in (3.1), we get

ψ(N2(z− z1))≤ F(ψ(αN2(z− z1)),φ(N2(z− z1)))≤ ψ(αN2(z− z1))< ψ(N2(z− z1)),

which is a contradiction. Hence N2(z− z1) = 0⇒ z = z1. Hence A,B,S and T have a unique

common fixed point in X . �

As an immediate consequence of the above theorem we have the following corollaries. When

we take S = T in Theorem 3.1 we have the following:

Corollary 3.2. Let (Xs,d)= (X ,N1,N2) is a Saks Space in which N1 is equivalent to N2 on

X . Let A,B and T : X → X be self mappings which satisfies the following inequality:

(25) ψ(N2(Ax−By))≤ F(ψ(αM(x,y)),φ(N(x,y)))

where x,y ∈ X , x 6= y, α ∈ (0,1),

M(x,y) = max{N2(T x−Ty), 1
2(N2(T x−Ax)+N2(Ty−By)), 1

2(N2(T x−By)+N2(Ty−Ax))}

and

N(x,y) = min{N2(T x−Ty), 1
2(N2(T x−Ax)+N2(Ty−By)), 1

2(N2(T x−By)+N2(Ty−Ax))}
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(1) A(X)⊂ T (X) and B(X)⊂ T (X),

(2) (A,T ) and (B,T ) are weak compatible pairs,

(3) φ : [0,∞)→ [0,∞) is such that φ(t) > 0 and lower semi-continuous for all t > 0, φ is

discontinuous at t = 0 with φ(0) = 0,

(4) ψ : [0,∞)→ [0,∞) are altering distance function,

(5) F is an element of C .

Then A,B and T have a unique common fixed point in X .

When we take A = B and S = T in Theorem 3.1 we have the following theorem:

Corollary 3.3. Let (Xs,d)= (X ,N1,N2) is a Saks Space in which N1 is equivalent to N2 on

X . Let A,S : X → X be self mappings which satisfies the following inequality:

(26) ψ(N2(Ax−Ay))≤ F(ψ(αM(x,y)),φ(N(x,y)))

where x,y ∈ X , x 6= y, α ∈ (0,1),

M(x,y) = max{N2(Sx−Sy), 1
2(N2(Sx−Ax)+N2(Sy−Ay)), 1

2(N2(Sx−Ay)+N2(Sy−Ax))}

and

N(x,y) = min{N2(Sx−Sy), 1
2(N2(Sx−Ax)+N2(Sy−Ay)), 1

2(N2(Sx−Ay)+N2(Sy−Ax))}

(1) A(X)⊂ S(X),

(2) (A,S) is weak compatible pairs,

(3) φ : [0,∞)→ [0,∞) is such that φ(t) > 0 and lower semi-continuous for all t > 0, φ is

discontinuous at t = 0 with φ(0) = 0,

(4) ψ : [0,∞)→ [0,∞) are altering distance function,

(5) F is an element of C .

Then A and S have a unique common fixed point in X .

When we take S = T = Identitymap in Theorem 3.1 we have the following:

Corollary 3.4. Let (Xs,d)= (X ,N1,N2) is a Saks Space in which N1 is equivalent to N2 on
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X . Let A,B : X → X be self mappings which satisfies the following inequality:

(27) ψ(N2(Ax−By))≤ F(ψ(αM(x,y)),φ(N(x,y)))

where x,y ∈ X with x 6= y, α ∈ (0,1),

M(x,y) = max{N2(x− y), 1
2(N2(x−Ax)+N2(y−By)), 1

2(N2(x−By)+N2(y−Ax))}

and

N(x,y) = min{N2(x− y), 1
2(N2(x−Ax)+N2(y−By)), 1

2(N2(x−By)+N2(y−Ax))}

(1) φ : [0,∞)→ [0,∞) is such that φ(t) > 0 and lower semi-continuous for all t > 0, φ is

discontinuous at t = 0 with φ(0) = 0,

(2) ψ : [0,∞)→ [0,∞) are altering distance function,

(3) F is an element of class C.

Then A and B have a unique common fixed point in X .

When we take A = B and S = T = identitymap in Theorem 3.1 we have the following:

Corollary 3.5. Let (Xs,d)= (X ,N1,N2) is a Saks Space in which N1 is equivalent to N2 on

X . Let A : X → X be a self mapping which satisfies the following inequality:

(28) ψ(N2(Ax−Ay))≤ F(ψ(αM(x,y)),φ(N(x,y)))

where x,y ∈ X with x 6= y, α ∈ (0,1),

M(x,y) = max{N2(x− y), 1
2(N2(x−Ax)+N2(y−Ay)), 1

2(N2(x−Ay)+N2(y−Ax))}

and

N(x,y) = min{N2(x− y), 1
2(N2(x−Ax)+N2(y−Ay)), 1

2(N2(x−Ay)+N2(y−Ax))}

(1) φ : [0,∞)→ [0,∞) is such that φ(t) > 0 and lower semi-continuous for all t > 0, φ is

discontinuous at t = 0 with φ(0) = 0,

(2) ψ : [0,∞)→ [0,∞) are altering distance function.

(3) F is element of class C.

Then A has a unique fixed point in X .
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Remark: When we take ψ(t) = t in Theorem 3.1, Corollaries 3.2, 3.3, 3.4, 3.5 we have the

following new corollaries:

Corollary 3.6. Let (Xs,d)= (X ,N1,N2) is a Saks Space in which N1 is equivalent to N2 on

X . Let A,B,S and T : X → X be self mappings which satisfies the following inequality:

(29) ψ(N2(Ax−By))≤ F((αM(x,y)),φ(N(x,y)))

where x,y ∈ X , x 6= y, α ∈ (0,1),

M(x,y) = max{N2(Sx−Ty), 1
2(N2(Sx−Ax)+N2(Ty−By)), 1

2(N2(Sx−By)+N2(Ty−Ax))}

and

N(x,y) = min{N2(Sx−Ty), 1
2(N2(Sx−Ax)+N2(Ty−By)), 1

2(N2(Sx−By)+N2(Ty−Ax))}

(1) A(X)⊂ T (X) and B(X)⊂ S(X),

(2) (A,S) and (B,T ) are weak compatible pairs,

(3) φ : [0,∞)→ [0,∞) is such that φ(t) > 0 and lower semi-continuous for all t > 0, φ is

discontinuous at t = 0 with φ(0) = 0,

(4) F is an element of C .

Then A,B,S and T have a unique common fixed point in X .

Corollary 3.7. Let (Xs,d)= (X ,N1,N2) is a Saks Space in which N1 is equivalent to N2 on

X . Let A,B and T : X → X be self mappings which satisfies the following inequality:

(30) ψ(N2(Ax−By))≤ F((αM(x,y)),φ(N(x,y)))

where x,y ∈ X , x 6= y, α ∈ (0,1),

M(x,y) = max{N2(T x−Ty), 1
2(N2(T x−Ax)+N2(Ty−By)), 1

2(N2(T x−By)+N2(Ty−Ax))}

and

N(x,y) = min{N2(T x−Ty), 1
2(N2(T x−Ax)+N2(Ty−By)), 1

2(N2(T x−By)+N2(Ty−Ax))}

(1) A(X)⊂ T (X) and B(X)⊂ T (X),

(2) (A,T ) and (B,T ) are weak compatible pairs,
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(3) φ : [0,∞)→ [0,∞) is such that φ(t) > 0 and lower semi-continuous for all t > 0, φ is

discontinuous at t = 0 with φ(0) = 0,

(4) F is an element of C .

Then A,B and T have a unique common fixed point in X .

Corollary 3.8. Let (Xs,d)= (X ,N1,N2) is a Saks Space in which N1 is equivalent to N2 on

X . Let A and S : X → X be self mappings which satisfies the following inequality:

(31) ψ(N2(Ax−Ay))≤ F((αM(x,y)),φ(N(x,y)))

where x,y ∈ X , x 6= y, α ∈ (0,1),

M(x,y) = max{N2(Sx−Sy), 1
2(N2(Sx−Ax)+N2(Sy−Ay)), 1

2(N2(Sx−Ay)+N2(Sy−Ax))}

and

N(x,y) = min{N2(Sx−Sy), 1
2(N2(Sx−Ax)+N2(Sy−Ay)), 1

2(N2(Sx−Ay)+N2(Sy−Ax))}

(1) A(X)⊂ S(X),

(2) (A,S) is weak compatible pairs,

(3) φ : [0,∞)→ [0,∞) is such that φ(t) > 0 and lower semi-continuous for all t > 0, φ is

discontinuous at t = 0 with φ(0) = 0,

(4) F is an element of C .

Then A and S have a unique common fixed point in X .

Corollary 3.9. Let (Xs,d)= (X ,N1,N2) is a Saks Space in which N1 is equivalent to N2 on

X . Let A,B : X → X be self mappings which satisfies the following inequality:

(32) N2(Ax−By)≤ F(αM(x,y),φ(N(x,y)))

where x,y ∈ X with x 6= y, α ∈ (0,1),

M(x,y) = max{N2(x− y), 1
2(N2(x−Ax)+N2(y−By)), 1

2(N2(x−By)+N2(y−Ax))}

and

N(x,y) = min{N2(x− y), 1
2(N2(x−Ax)+N2(y−By)), 1

2(N2(x−By)+N2(y−Ax))}
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(1) φ : [0,∞)→ [0,∞) is such that φ(t) > 0 and lower semi-continuous for all t > 0, φ is

discontinuous at t = 0 with φ(0) = 0,

(2) F is an element of class C.

Then A and B have a unique common fixed point in X .

Corollary 3.10. Let (Xs,d)= (X ,N1,N2) is a Saks Space in which N1 is equivalent to N2 on

X . Let A : X → X be self mapping which satisfies the following inequality:

(33) N2(Ax−Ay)≤ F(αM(x,y),φ(N(x,y)))

where x,y ∈ X with x 6= y, α ∈ (0,1),

M(x,y) = max{N2(x− y), 1
2(N2(x−Ax)+N2(y−Ay)), 1

2(N2(x−Ay)+N2(y−Ax))}

and

N(x,y) = min{N2(x− y), 1
2(N2(x−Ax)+N2(y−Ay)), 1

2(N2(x−Ay)+N2(y−Ax))}

(1) φ : [0,∞)→ [0,∞) is such that φ(t) > 0 and lower semi-continuous for all t > 0, φ is

discontinuous at t = 0 with φ(0) = 0,

(2) F is an element of class C.

Then A has a unique fixed point in X .

Similar manner of the Theorem 3.1, we can prove our another main result by replacing:

N(x,y) = min{N2(Sx,Ty), 1
2(N2(Sx,Ax)+N2(Ty,By)), 1

2(N2(Sx,By)+N2(Ty,Ax))}

by

N(x,y) = min{N2(Sx,Ty), 1
2(N2(Sx,By)+N2(Ty,Ax))}

the theorem follows:

Theorem 3.11. Let (Xs,d)= (X ,N1,N2) is a Saks Space in which N1 is equivalent to N2 on

X . Let A,B,S and T : X → X be self mappings which satisfies the following inequality:

(34) ψ(N2(Ax−By))≤ F(ψ(αM(x,y)),φ(N(x,y)))
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where x,y ∈ X with x 6= y, α ∈ (0,1),

M(x,y) = max{N2(Sx−Ty), 1
2(N2(Sx−Ax)+N2(Ty−By)), 1

2(N2(Sx−By)+N2(Ty−Ax))}

N(x,y) = min{N2(Sx−Ty), 1
2(N2(Sx−By)+N2(Ty−Ax))}

(1) A(X)⊂ T (X) and B(X)⊂ S(X),

(2) (A,S) and (B,T ) are weak compatible pairs,

(3) φ : [0,∞)→ [0,∞) is a lower semi continuous function with φ(t) > 0 for all t ∈ (0,∞)

and φ(0) = 0,

(4) ψ : [0,∞)→ [0,∞) is an altering distance function which in addition is strictly monotone

increasing.

(5) F is an element of C.

Then A,B,S and T have a unique common fixed point in X .

Similar manner of the Corollaries of the Theorem 3.1 we can find more corollaries of the The-

orem 3.11.

When we take S = T in the Theorem 3.11 we have the following:

Corollary 3.12. Let (Xs,d)= (X ,N1,N2) is a Saks Space in which N1 is equivalent to N2 on

X . Let A,B and T : X → X be self mappings which satisfies the following inequality:

(35) ψ(N2(Ax−By))≤ F(ψ(αM(x,y)),φ(N(x,y)))

where x,y ∈ X , x 6= y, α ∈ (0,1),

M(x,y) = max{N2(T x−Ty), 1
2(N2(T x−Ax)+N2(Ty−By)), 1

2(N2(T x−By)+N2(Ty−Ax))}

and

N(x,y) = min{N2(T x−Ty), 1
2(N2(T x−By)+N2(Ty−Ax))}

(1) A(X)⊂ T (X) and B(X)⊂ T (X),

(2) (A,T ) and (B,T ) are weak compatible pairs,

(3) φ : [0,∞)→ [0,∞) is a lower semi continuous function with φ(t) > 0 for all t ∈ (0,∞)

and φ(0) = 0,
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(4) ψ : [0,∞)→ [0,∞) is an altering distance function which in addition is strictly monotone

increasing.

(5) F is an element of C .

Then A,B and T have a unique common fixed point in X .

When we take A = B and S = T in Theorem 3.11 we have the following theorem:

Corollary 3.13. Let (Xs,d)= (X ,N1,N2) is a Saks Space in which N1 is equivalent to N2 on X .

Let A and S : X → X be self mappings which satisfies the following inequality:

(36) ψ(N2(Ax−Ay))≤ F(ψ(αM(x,y)),φ(N(x,y)))

where x,y ∈ X , x 6= y, α ∈ (0,1),

M(x,y) = max{N2(Sx−Sy), 1
2(N2(Sx−Ax)+N2(Sy−Ay)), 1

2(N2(Sx−Ay)+N2(Sy−Ax))}

and

N(x,y) = min{N2(Sx−Sy), 1
2(N2(Sx−Ay)+N2(Sy−Ax))}

(1) A(X)⊂ S(X),

(2) (A,S) is weak compatible pairs,

(3) φ : [0,∞)→ [0,∞) is a lower semi continuous function with φ(t) > 0 for all t ∈ (0,∞)

and φ(0) = 0,

(4) ψ : [0,∞)→ [0,∞) is an altering distance function which in addition is strictly monotone

increasing.

(5) F is an element of C .

Then A and S have a unique common fixed point in X .

When we take S = T = Identitymap in Theorem 3.11 we have the following:

Corollary 3.14. Let (Xs,d)= (X ,N1,N2) is a Saks Space in which N1 is equivalent to N2 on X .

Let A,B : X → X be self mappings which satisfies the following inequality:

(37) ψ(N2(Ax−By))≤ F(ψ(αM(x,y)),φ(N(x,y)))

where x,y ∈ X with x 6= y, α ∈ (0,1),
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M(x,y) = max{N2(x− y), 1
2(N2(x−Ax)+N2(y−By)), 1

2(N2(x−By)+N2(y−Ax))}

and

N(x,y) = min{N2(x− y), 1
2(N2(x−By)+N2(y−Ax))}

(1) φ : [0,∞)→ [0,∞) is a lower semi continuous function with φ(t) > 0 for all t ∈ (0,∞)

and φ(0) = 0,

(2) ψ : [0,∞)→ [0,∞) is an altering distance function which in addition is strictly monotone

increasing.

(3) F is an element of class C.

Then A and B have a unique common fixed point in X .

When we take A = B and S = T = identitymap in Theorem 3.11, we have the following:

Corollary 3.15. Let (Xs,d)= (X ,N1,N2) is a Saks Space in which N1 is equivalent to N2 on X .

Let A : X → X be self mapping which satisfies the following inequality:

(38) ψ(N2(Ax−Ay))≤ F(ψ(αM(x,y)),φ(N(x,y)))

where x,y ∈ X with x 6= y, α ∈ (0,1),

M(x,y) = max{N2(x− y), 1
2(N2(x−Ax)+N2(y−Ay)), 1

2(N2(x−Ay)+N2(y−Ax))}

and

N(x,y) = min{N2(x− y), 1
2(N2(x−Ay)+N2(y−Ax))}

(1) φ : [0,∞)→ [0,∞) is a lower semi continuous function with φ(t) > 0 for all t ∈ (0,∞)

and φ(0) = 0,

(2) ψ : [0,∞)→ [0,∞) is an altering distance function which in addition is strictly monotone

increasing.

(3) F is an element of class C.

Then A has a unique fixed point in X .

Remark: When we take ψ(t) = t in Theorem 3.11, Corollaries 3.12, 3.13, 3.14, 3.15 we have

the following new corollaries:
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Corollary 3.16. Let (Xs,d)= (X ,N1,N2) is a Saks Space in which N1 is equivalent to N2 on

X . Let A,B,S and T : X → X be self mappings which satisfies the following inequality:

(39) ψ(N2(Ax−By))≤ F((αM(x,y)),φ(N(x,y)))

where x,y ∈ X , x 6= y, α ∈ (0,1),

M(x,y) = max{N2(Sx−Ty), 1
2(N2(Sx−Ax)+N2(Ty−By)), 1

2(N2(Sx−By)+N2(Ty−Ax))}

and

N(x,y) = min{N2(Sx−Ty), 1
2(N2(Sx−By)+N2(Ty−Ax))}

(1) A(X)⊂ T (X) and B(X)⊂ S(X),

(2) (A,S) and (B,T ) are weak compatible pairs,

(3) φ : [0,∞)→ [0,∞) is a lower semi continuous function with φ(t) > 0 for all t ∈ (0,∞)

and φ(0) = 0,

(4) F is an element of C .

Then A,B,S and T have a unique common fixed point in X .

Corollary 3.17. Let (Xs,d)= (X ,N1,N2) is a Saks Space in which N1 is equivalent to N2 on

X . Let A,B and T : X → X be self mappings which satisfies the following inequality:

(40) ψ(N2(Ax−By))≤ F((αM(x,y)),φ(N(x,y)))

where x,y ∈ X , x 6= y, α ∈ (0,1),

M(x,y) = max{N2(T x−Ty), 1
2(N2(T x−Ax)+N2(Ty−By)), 1

2(N2(T x−By)+N2(Ty−Ax))}

and

N(x,y) = min{N2(T x−Ty), 1
2(N2(T x−By)+N2(Ty−Ax))}

(1) A(X)⊂ T (X) and B(X)⊂ T (X),

(2) (A,T ) and (B,T ) are weak compatible pairs,

(3) φ : [0,∞)→ [0,∞) is a lower semi continuous function with φ(t) > 0 for all t ∈ (0,∞)

and φ(0) = 0,

(4) F is an element of C .
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Then A,B and T have a unique common fixed point in X .

Corollary 3.18. Let (Xs,d)= (X ,N1,N2) is a Saks Space in which N1 is equivalent to N2 on

X . Let A and S : X → X be self mappings which satisfies the following inequality:

(41) ψ(N2(Ax−Ay))≤ F((αM(x,y)),φ(N(x,y)))

where x,y ∈ X , x 6= y, α ∈ (0,1),

M(x,y) = max{N2(Sx−Sy), 1
2(N2(Sx−Ax)+N2(Sy−Ay)), 1

2(N2(Sx−Ay)+N2(Sy−Ax))}

and

N(x,y) = min{N2(Sx−Sy), 1
2(N2(Sx−Ay)+N2(Sy−Ax))}

(1) A(X)⊂ S(X),

(2) (A,S) is weak compatible pairs,

(3) φ : [0,∞)→ [0,∞) is a lower semi continuous function with φ(t) > 0 for all t ∈ (0,∞)

and φ(0) = 0,

(4) F is an element of C .

Then A and S have a unique common fixed point in X .

Corollary 3.19. Let (Xs,d)= (X ,N1,N2) is a Saks Space in which N1 is equivalent to N2 on

X . Let A,B : X → X be self mappings which satisfies the following inequality:

(42) N2(Ax−By)≤ F(αM(x,y),φ(N(x,y)))

where x,y ∈ X with x 6= y, α ∈ (0,1),

M(x,y) = max{N2(x− y), 1
2(N2(x−Ax)+N2(y−By)), 1

2(N2(x−By)+N2(y−Ax))}

and

N(x,y) = min{N2(x− y), 1
2(N2(x−By)+N2(y−Ax))}

(1) φ : [0,∞)→ [0,∞) is a lower semi continuous function with φ(t) > 0 for all t ∈ (0,∞)

and φ(0) = 0,

(2) F is an element of class C.
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Then A and B have a unique common fixed point in X .

Corollary 3.20. Let (Xs,d)= (X ,N1,N2) is a Saks Space in which N1 is equivalent to N2 on

X . Let A : X → X be a self mappings which satisfies the following inequality:

(43) N2(Ax−Ay)≤ F(αM(x,y),φ(N(x,y)))

where x,y ∈ X with x 6= y, α ∈ (0,1),

M(x,y) = max{N2(x− y), 1
2(N2(x−Ax)+ 1

2(N2(x−Ay)+N2(y−Ax))}

and

N(x,y) = min{N2(x− y), 1
2(N2(x−Ay)+N2(y−Ax))}

(1) φ : [0,∞)→ [0,∞) is a lower semi continuous function with φ(t) > 0 for all t ∈ (0,∞)

and φ(0) = 0,

(2) F is an element of class C.

Then A has a unique fixed point in X .
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