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Abstract. In this paper, we shall introduce a characterization between new fixed point theorems for weak nonex-

pansive semi-topological semigroups on a locally convex space and the presence of a left invariant mean on weakly

almost periodic functions. Our outcomes expand the results of Lau and Zhang [13, 14] and Lau [15].

Keywords: fixed point property; locally convex space; weak nonexpansive mapping; weakly compact convex set;

weakly almost periodic functions.

2010 AMS Subject Classification: Primary 47H10, 47H20, Secondary 43A07.

1. Introduction

Numerous research works are concerned with fixed point for nonexpansive mappings in Ba-

nach spaces such as: Browder [5] proved that every nonexpansive mapping on a closed bounded

convex subset of a uniformly convex Banach space has a fp (fixed point). Since every uniformly

convex Banach space has NS ( normal structure )[16, Theorem 3.3.4, p. 148], then Kirk [11]
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extended the result Due to Browder [5] by showing that if C is WCS (a weakly compact subset

) of E with N.S, then C has the fp property. For more information about fp for nonexpansive

mappings (see [2, 3, 4, 6, 7, 8, 9, 10, 12, 17, 23]).

A semi-topological semi-group is a pair (S,H), where S is a nonempty set and H is a

Hausdorff topology such that, for all a ∈ S, the two functions s 7→ sa and s 7→ as are continuous

for each s∈ S. We mean by (E,Q) the space of continuous semi-norms Q on a separated locally

convex space E. The action of S on a subset K of E is called Q-non-expansive if it satisfy the

following condition:

ρ(sx− sy)≤ ρ(x− y) ∀ s ∈ S, x,y ∈ K and ρ ∈ Q.

In 1973, Lau [15] proved AP(S) ( the space of continuous almost periodic functions on S) has

LIM (a left invariant mean) if and only if the following property are holds.

(E) If S is a Q−nonexpansive separately continuous action on a compact convex subset C of E,

S has a common fp in C.

In 2008, Lau and Zhang [13] proved the following theorem which answered about the open

question posed by Lau [21, 22].

Theorem 1.1 [13, Theorem 3.4]. Let S be a separable semitopological semigroup. Then

WAP(S) ( the space of continuous weakly almost periodic functions on S) has a LIM if and

only if

(F) If S be a Q−nonexpansive action on WCCS ( a weakly compact convex subset ) C of (E,Q)

and S is WSC (weakly separately continuous) and WQEQ (weakly quasi-equicontinuous), then

S has a common fp in C.

The reason for this paper is to prove that if S is Q-weak nonexpansive (Definition 2.2 below

) semi-topological semigroups of self-mappings and acts on WCCS of a locally convex space

has a common fp if and only if WAP(S) on separable semitopological semigroups has a LIM.

2. Preliminaries

A semitopological semigroup S is said to be strongly left reversible if the set of countable

subsemigroups {Sα : α ∈ I} satiesfy: (i) S =
⋃

α∈I
Sα , (ii) aSα

⋂
bSα 6= /0 for each α ∈ I and

a,b,∈ Sα , and (iii) for each pair α1,α2 ∈ I , there is α3 ∈ I such that Sα1

⋃
Sα2 ⊂ Sα3 (see [13]).
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We mean by l∞(S) the commutative Banach algebra of all bounded complex-valued mappings

on S with supremum norm and pointwise multiplication. For each s∈ S and f ∈ l∞(S) let la f and

ra f are the left and right translates of f by a respectivelly, which are defined as: la f (s) = f (as)

and ra f (s) = f (sa). Let X ba a closed subalgebra of l∞(S) containing 1S. An element µ in X∗

is said to be mean on X if ‖µ‖= µ(1S) = 1. As is well known µ is a mean on X if and only if

inf
s∈S

f (s) ≤ µ( f ) ≤ sup
s∈S

f (s). The mean µ is called left (resp. right) invariant, denoted by LIM

(resp. RIM ) , if µ(la f ) = µ( f ) (reps. µ(ra f ) = µ( f )), for each a ∈ S and f ∈ X . Assume

that C(S) a closed subalgebra of l∞(S) including of all continuous bounded complex-valued

mappings on S. We mean by AP(S) the set of all f ∈C(S) such that: LO( f ) = {ls f : s ∈ S} is

relatively compact in the norm topology of C(S), and mean by WAP(S) the set of all f ∈C(S)

such that LO( f ) is relatively compact in the weak topology of C(S).

A mapping ψ defined on S×K into K , denoted by ψ(s,x) = sx (x ∈ K and s ∈ S), then we

called the action S is joint continuous at (s0,x0) ∈ S×K if for neighbourhood W of ψ(s0,x0)

there exists a product of open U ×V ⊆ S×K containing (s0,x0) such that ψ(U ×V )⊆W , and

we say that the action S is separately continuous if for each s0 ∈ S and x0 ∈ K the functions

x→ψ(s0,x) and s→ψ(s,x0) are both continuous on K and S respectively. Thus it is clear that,

joint continuity is a stronger condition then separate continuity.

The action S on a convex subset K of a linear topological space is said to be affine if for each

s ∈ S and x,y ∈ K then s(αx+(1−α)y) = αsx+(1−α)sy, α ∈ [0,1] (see [13]).

Definition 2.1 [13]. Suppose the space (E,Q) be linear topological space with the topology by

Q. For any ρ ∈ Q and A⊆ E, δρ(A) will denote the ρ - diameter of A, which

δρ(A) = sup{ρ(x− y) : x,y ∈ A}

A convex closed subset C of E has NS if for all closed bounded subset D of C which contains

more than one point, and ρ ∈ Q there is a point x ∈ D satisfy the following condition

rρ(D,x)< δρ(D)

where

rρ(D,x) = sup{ρ(x− y) : y ∈ D}
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Lemma 2.1 [13, Lemma 3.1]. Suppose that S acts on a Hausdorff space X and S is quasi-

equicontinuous. Then the following statements are holds:

(1) The action of S0 on X is quasi-equicontinuous if S0 is a subsemigroup of S,

(2) Every compact S−invariant subspace X0 of compact X implies that the action S on X0 is

quasi-equicontinuous.

Lemma 2.2 [13, Lemma 3.2]. Let S as quasi-equicontinuouson and separately continuous and

acts on a compact Hausdorff space X . Then for all x∈X and all f ∈C(X), we have fx ∈WAP(S),

where fx is defined by

fx(s) = f (sx) (s ∈ S).

Lemma 2.3 [13, Lemma 3.3]. Let S Q-nonexpansive, weakly separately continuous and sepa-

rable semitopological semigroup that acts on a WCCS K of (E,Q). Suppose that F is no-empty

minimal weakly compact S-invariant subset of K satisfying sF = F (s ∈ S). Then F is Q-

compact.

Lemma 2.4 [13, Lemma 5.3]. Suppose that S acts on a compact Hausdorff space X and the

action S×X −→ X is called jointly continuous. If there is a dense subset D in S such that

aS
⋂

bS 6= /0 for a,b ∈D, then a non-empty compact subset K of X which is minimal S-invariant

satisfies:

(1) S̄x = K ∀ x ∈ K

(2) sK = K ∀ s ∈ S.

Lemma 2.5 [19, Lemma 2]. If C is a non-empty compact subset of separated locally convex

(E,Q), and ρ ∈ Q such that δρ > 0 then there exists an element u ∈ co(C) (depending on ρ)

such that

sup{ρ(u− y) : y ∈C}< δρ(C),

where co(C) is the closed convex hull of C.

Lemma 2.6. Let S be a semi-topological Q-weak non-expansive semigroup and acts on WCCS

K of a separated locally convex space (E,Q). Then for a,b ∈ K, the following hold:

(i) ρ(s.a− s2.b)≤ ρ(a− s.b)

(ii) Either λρ(a− s.a)≤ (a−b) or λρ(s.a− s2.a)≤ ρ(s.a−b) holds.
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(iii) Either ρ(s.a− s.b)≤ (a−b) or ρ(s2.a− s.b)≤ ρ(s.a−b) holds.

Proof. The proof similar to the proof of [18, Lemma 5].

Definition 2.2 [1]. Let S be a semitopological semigroup and action on a subset K ⊆ E. Then S

is Q-weak non-expansive if it satisfy the following condition:

λρ(x− s.x)≤ ρ(x− y) implies that ρ(s.x− s.y)≤ ρ(x− y), λ ∈ (0,1),(1)

for all s ∈ S, x,y ∈ K and ρ ∈ Q.

Remark 2.1. If we put λ = 1
2 , then we get the Suzuki Q-non-expansive condition [18].

3. Main results

In this section, we prove that Q-weak non-expansive S has a common fixed point if and only

if the existence of LIM on WAP(S).

Lemma 3.1. Let S be a Q-weak non-expansive and separable continuous semitopological semi-

group actions on WCCS K of (E,Q) as weakly separately continuous. Suppose that F is a

minimal non-empty weakly compact S-invariant subset of K satisfying sF ⊆ F (s ∈ S). Then

cow(F) is closed and Q−separble in Q−topology.

Proof. Since F is nonempty minimal S-invariant subset of K, we have Sa = F, a ∈ F. From

the weakly compactness of F we concludes SaW
= F. By the separability of S there exist Sc

countable dense subsets of S such that Scx = Sx which implies that Sca = Sa = F = SaW by

the separate continuity of S. Moreover, coW (Sa) = co(Sca). By using Mazur’s theorem we have

co(Sca) = coW (Sca) we conclude the desired result.

Lemma 3.2. Let S as in Lemma 3.1. Then F is Q-compact.

Proof. The idea of the proof is the same idea of proof [13, Lemma 3.3] which is based to show

that F is Q− totally bounded. Given a neighborhood N of 0 in (E,Q) , then there are finite

seminorms {p1, ..., pn} ⊂ Q and r,ε > 0 such that U = {x ∈ E : pi(x) < r+ ε; i = 1, ...,n} is a

neighborhood of 0 contained in N. Then the same conclusion as in the proof of [13, Lemma

3.3] leads to there is a weakly open neighborhood W of 0 and an element w ∈ F such that

(w+W )
⋂

F ⊂ w+U . Take another Q - open symmetrical neighborhood W1 of 0 such that

W1+W1 ⊂W , and finite seminorms {ρ1, ...,ρm} ⊂Q and r0 > 0 such that H = {x ∈ E : ρ j(x)<
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r0 + ε, j = 1, ...,m} ⊂W1. Therefore, due to the separability property of F in Lemma 3.2,

there is a sequence {yn} ⊂ F such that: F ⊂ ∪∞
n=1{yn +H}. Since F is non-empty minimal,

then for all a ∈ F,SaW
= F and w ∈ SaW

, then there is a sequence {sn} ⊂ S such that: s1y1 ∈

w+W1,s2s1y2 ∈w+W1, ...,snsn−1...s1yn ∈w+W1(n= 1,2, ...). If x∈ (snsn−1...s1)(yn+H)
⋂

F

therefore x ∈ F and x ∈ (snsn−1...s1)(yn+H). Then x can be written as: x = s(yn+h), for some

h ∈ H and s = snsn−1...s1. By the density of SF in F , there exits elements a1,a2, ...,an in SF

such that ρ j(yn− an) <
ε

3 , ∀ ε > 0,∀ ρ ∈ Q. Let zn = yn− an such that F ⊂ ∪∞
n=1{zn +H}.

Since F is non-empty minimal, then for all a ∈ F,SaW
= F and w ∈ SaW

, then there is a se-

quence {sn}⊂ S such that s1z1 ∈w+W1,s2s1z2 ∈w+W1, ...,snsn−1...s1zn ∈w+W1(n= 1,2, ...).

If x ∈ (snsn−1...s1)(zn + H)
⋂

F therefore x ∈ F and x ∈ (snsn−1...s1)(zn + H). Then x can

be written as: x = s(zn + h), for some h ∈ H and s = snsn−1...s1. Since ρ j(zn) <
ε

3 , then

ρ j(szn− s(0))< ε

3 ∀ ε > 0 (by the continuity of s). Hence

λρ j(zn− szn) ≤ λ (ρ j(zn)+ρ j(szn− s(0))+ρ j(s(0)))< λ (
ε

3
+

ε

3
+ρ j(s(0)))

< ε +ρ j(h), ∀ ε > 0, j = 1, .....,m,(2)

where s(0) ∈ ∪∞
n=1{zn +H}, s(0) = zk +h, h ∈ H for some k.

Take ε → 0 in (2) and by Q−weak nonexpansive, we obtain that

ρ j(s(zn +h)− szn) ≤ ρ j(h)< r0.(3)

From (3) we get that x ∈ (snsn−1, ...,s1)zn +H and then

(snsn−1...s1)(zn +H)
⋂

F ⊆ (snsn−1, ...,s1)zn +H ⊂ w+W1 +W1 ⊂ w+W

Therefore, {(sn...s1)
−1(w+W )}∞

n=1 is weakly open cover of F. Therefore F ⊂
⋃n

k=1(sksk−1...s1)
−1(w+

W ) for some integer n. According to F = (sn...s1)F then

F =
n⋃

k=1

(sn...sk+1)(w+W )
⋂

F ⊆
n⋃

k=1

(sn...sk+1)(w+U)
⋂

F.

Let x ∈
⋃n

k=1(sn...sk+1)(w+U)
⋂

F. Hence x ∈ F and x ∈
⋃n

k=1(sn...sk+1)(w+U), for some

k = 1, ...,n. By the density again of SF in F there exist an element c in SF such that ρ(w−c)< ε

∀ ε > 0, ρ ∈ Q. Therefore x can be written as x = s̃(z + u) such that z = w− c for some
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s̃ = sn...sk+1 ∈ S and u ∈U. By conclusion of (2), (3) and from Q−weak nonexpansive one can

get

pi(s̃(z+u)− s̃z)< r, i = 1, .....,n.(4)

Which implies that

F ⊂
n⋃

k=1

(snsn−1...sk+1)(w+U)
⋂

F ⊂
n⋃

k=1

(sn.....sk+1z+U)

Thus F is Q−compact.

Remark 3.1. Whenever S acts on WCCS K of a separated locally convex (E,Q), then the weak

continuity implies WQEQ if the action on K is affine and equicontinuous with respect to the

topology determined by Q [13].

Consider the following generalized fixed point property.

(GF) Whenever the action S is Q-weak non-expansive, weakly separately continuous and weakly

quasi-equicontinuous and acts on a weakly compact convex subset K of a separated locally con-

vex space (E,Q), then S has a common fp in K.

Now, we are in the position to introduce our main theorem in this section.

Theorem 3.1. Let S be a separable semitopological semigroup. Then WAP(S) has a LIM if and

only if S has the generalized fixed point property (GF).

Proof. Suppose that (GF) holds and let S acts linearly on WAP(S)∗ such as s(ψ) = l∗s ψ

for all s ∈ S and ψ ∈ WAP(S)∗, where l∗s is the dual of the translation operator ls. Hence

(s(ψ))( f ) = (l∗s ψ)( f ) = ψ(ls f ) for all f ∈WAP(S). Let K be the set of all means on WAP(S),

then if m1 and m2 ∈ K and λ ∈ [0,1], (λm1 +(1−λ )m2)(1S) = λm1(1S)+ (1−λ )m2(1S) =

1, hence K is convex subset of AWP(S)∗. Define Q = {ρ f : f ∈WAP(S)} where ρ f (ψ) =

sup
s∈S
{|ψ(ls f )|, |ψ( f )|},(ψ ∈WAP(S)∗), then ρ f is a seminorm on WAP(S)∗. One can note that

(WAP(S)∗,Q) is separated locally convex space and therefore K is WCCS of (WAP(S)∗,Q).

Also, this action on WAP(S)∗ ( and therefore on K ) is Q-weak nonexpansive because it is

Q-nonexpansive. Since for all m ∈ K and f ∈WAP(S), LO( f ) is relatively compact in the

norm of weak topology of C(S), and since the norm topology in LO( f ) is the same a the topol-

ogy of point wise convergence. since the action (s f )(t) = (ls f )(t) = f (st) is continuous for

each s ∈ S, the map s( f ) = ls f is a continuous map s→ (LO( f ), weak norm). Hence the
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action s(m) = l∗s (m) is continuous on S into (K, weak ∗). Also it is clearly the action S on

WAP(S)∗ ( and therefore on K ) is separately continuous and weakly separated continuous.

Since for m1 and m2 ∈K and λ ∈ [0,1] such that s(λm1+(1−λ )m2) = l∗s (λm1+(1−λ )m2) =

λ (l∗s m1)+(1−λ )(l∗s m2) = λ (sm1)+(1−λ )(sm2), then the action S on K is affine and hence

is weak quasi-equicontinuous on K. Since the property (GF) hold, then the action has a fixed

point in K for S (let it is m) then sm = l∗s m = m and since (l∗S(m) f ) = m(ls) = m( f ) for all

f ∈WAP(S) then m is LIM of WAP(S).

Conversely if WAP(S) has a LIM. Let X be a non-empty minimal WCCS of K which is

invariant under S and assume that F ⊂ X be a non-empty minimal weakly compact subset of

X that is invariant under S. By the first paragraph of the proof of [13, Theorem 3.4], F is

Q−compact. We now follow an idea similar to that in [20, Lemma 2], we show that F contains

only one point. Suppose, to the contrary, that F has x1 and x2, x1 6= x2, (since otherwise F

has a common fixed point of s and the proof is finished), there exists a continuous seminorm

ρ in Q such that ρ(x1− x2) = ε > 0. Let α = λx1 +(1− λ )x2, λ ∈ [0,1). Then α ∈ co(F).

Moreover ρ(α − x) ≤ ε ∀ x ∈ F such that ε0 = sup{ρ(α − x);x ∈ F} < ε. Let Θ = {x ∈ X :

ρ(x−y)≤ ε0, ∀ y ∈ F}. Then α ∈Θ and Θ is a nonempty weakly closed convex proper subset

of X. Furthermore, if x ∈ Θ, then ρ(x− y)≤ ε0, y ∈ F. Since S is Q−weak nonexpansive, then

by Lemma 2.6 (iii) one can obtained that

ρ(sx− sy)≤ ε0, or ρ(sx− s2y)≤ ε0.(5)

From (5), we get that sx ∈ Θ (s ∈ S, x ∈ Θ), which implies that Θ is S−invariant. This implies

to a contradiction to the minimality of X . then F must include a single common fp for S.

Remark 3.2. Theorem 3.1 extending result of Lemma 3.13 and Theorem 3.14 due to Lau and

Zhang [14].

Theorem 3.2. Let S be a separable semitopological semigroup. If AP(S) has a LIM , then the

fixed point property (GE) holds.

(GE) Suppose that S acts on a WCCS K of a separated (E,Q) as Q-weak non-expansive self

mappings and, the action is separately continuous and equicontinuous when K is equipped with

the weak topology of (E,Q) then S has a common fixed point in K.

The proof is similar to Theorem 3.1 and [15, Theorem 3.2]
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Theorem 3.3. A semitopological semigroup S has the following property (GÉ) if and only if

AP(S) has LIM

(GÉ) Whenever S acts on a weakly compact convex space (E,Q) as Q-weak non-expansive

mappings, if K has Q - NS and the S-action is equicontinuous and separately continuous when

K is equipped with the weak topology of (E,Q) , then K contains a common fp for S.

Proof. Let AP(S) has a LIM ψ , and X be a set that is non-empty minimal WCCS of K that is

invariant under S action. Consider F ⊂ X be a non-empty minimal weakly compact subset of

X that is invariant under S. Since the action on X is equicontinuous and separately continuous,

fy for each f ∈ C(F) and y ∈ F . Hence µ defined by µ( f ) = ψ( fy) is a mean on C(F). By

the same steps in the proof of Theorem 3.1, we get F is Q-compact and Q-bounded. Let F has

x1,x2 such that x1 6= x2 and by taking α = λx1 +(1−λ )x2 where λ ∈ [0,1] and ρ ∈ Q , by NS

of K

r0 = sup{ρ(α− x) : x ∈ F}< δr(F)

Then by the same argument as in the proof of Theorem 3.1 lead to contradiction, consequently

F must consist of single point and this point is a common fixed point for S. Conversely, let (GÉ)

holds. By replace E by AP(S)∗ with respect to the topology which determined by the family of

continuous semi-norm Q = {ρ f : f ∈WAP(S)} where

ρ f (ψ) = sup
s∈S
{|ψ(ls f )|, |ψ( f )|} (ψ ∈ AP(S)∗).

One can define S as a action on AP(S)∗ by s(ψ) = l∗s ψ for all s ∈ S and ψ ∈ AP(S)∗. It is easy

to see that, the semigroup S acts linearly on AP(S)∗ by s 7→ l∗s . Let K be the family of all means

on AP(S), therefore K is compact closed subset of AP(S)∗. Since from Lemma 2.5, a compact

subset of separated locally convex space has normal structure, K has Q− normal structure. By

the same conclusion as in the proof of Theorem 3.1, it is clear the action of S on AP(S)∗ (

and therefore on K) is equicontinuous and separately continuous with respect to the topology

determined by Q, and Q-weak nonexpansive. Since property (GÉ) hold. Then K has a common

fp for S, which is a LIM on AP(S).
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