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Abstract. In this paper, we establish the existence of common fixed points in partially ordered complete b-metric-

like spaces. An example is provided to support our results. The results obtained in this paper improve and extend

the corresponding results announced recently.
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1. Introduction-Preliminaries

Fixed point theory, which is an important branch modern mathematics, has been extensive-

ly studied in different framework of spaces. It is know that fixed point problems of nonlinear

operators, which find a lot of applications in applied sciences, such as, signal processing, im-

age reconstruction, nuclear magnetic resonance, include variational inequalities, saddle point

problems, equilibrium problems and inclusion problems as special cases; see [1-5] and the ref-

erences therein. However, most of the results obtained in metric spaces. Recently, different

generalizations of the metric spaces have been introduced; see [6-10] the references therein. In
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1989, The concept of b-metric spaces was introduced and studied by Bakhtin [11] and Czer-

wik [12]. Then, Amini-Harandi [13,14] introduced the notion of metric-like spaces. In 2013,

Alghamdi [15] introduced the notion of b-metric-like spaces. Since the b-metric-like space is

a natural generalization of metric spaces and metric-like spaces, we will focus on the results in

b-metric-like spaces in this paper. The organization of this article is as following. In Section 1,

we provide some necessary preliminaries and definitions which play an important role in this

article. In Section 2, common fixed point theorems are established in the framework of ordered

b-metric-like spaces. Moreover, an example is provided to illustrate the obtained results.

Next, we recall the following definitions.

Definition 1.1. [11] A b-metric on a nonempty set X is a function d : X ×X → [0,∞) such that

for all x,y,z ∈ X and a constant b≥ 1 the following three conditions hold:

(d1) if d(x,y) = 0⇔ x = y;

(d2) d(x,y) = d(y,x);

(d3) d(x,y)≤ b(d(x,z)+d(z,y)).

The pair (X ,d) is called a b-metric space.

Definition 1.2. [13] A metric-like on a nonempty set X is a function d : X ×X → [0,∞) such

that for all x,y,z ∈ X the following three conditions hold:

(d1) if d(x,y) = 0⇒ x = y;

(d2) d(x,y) = d(y,x);

(d3) d(x,y)≤ d(x,z)+d(z,y).

The pair (X ,d) is called a metric-like space.

Definition 1.3. [15] A b-metric-like on a nonempty set X is a function d : X ×X → [0,∞) such

that for all x,y,z ∈ X and a constant b≥ 1 the following three conditions hold:

(d1) if d(x,y) = 0⇒ x = y;

(d2) d(x,y) = d(y,x);

(d3) d(x,y)≤ b(d(x,z)+d(z,y)).

The pair (X ,d) is called a b-metric-like space.
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Definition 1.4. [15] Let (X ,d) be a b-metric-like space, and let {xn} be a sequence of points of

X . A point x ∈ X is said to be the limit of the sequence {xn} if limn→∞ d(x,xn) = d(x,x) and we

say that the sequence {xn} is convergent to x and denote it by xn→ x as n→ ∞.

Definition 1.5. [15] Let (X ,d) be a b-metric-like space.

(S1) A sequence {xn} is said to be Cauchy if and only if limm,n→∞ d(xm,xn) exists and is finite.

(S2) A b-metric-like space (X ,d) is said to be complete if and only if every Cauchy sequence

{xn} in X converges to x ∈ X , so that

lim
m,n→∞

d(xn,xm) = d(x,x) = lim
n→∞

d(xn,x).

Proposition 1.6. [15] Let (X ,d,b) be a b-metric-like space, and let {xn} be a sequence in X

such that limn→∞ d(xn,x) = 0. Then

(A) x is unique;

(B) 1
bd(x,y)≤ limn→∞ d(xn,y)≤ bd(x,y), for all y ∈ X.

Definition 1.7. [16] The function ϕ : [0,+∞)→ [0,+∞) is called an altering distance function,

if the following properties hold:

1. ϕ is continuous and non-decreasing.

2. ϕ(t) = 0 if and only if t = 0.

Definition 1.8. [17] Let (X ,�) be a partially ordered set. Then two mappings f ,g : X → X are

said to be weakly increasing if f x� g f x and gx� f gx, for all x ∈ X .

In order to prove the main results result, we also need the following.

Let(X ,d,b) be a b-metric-like space. Define [15] ds : X2→ [0,∞) by

ds(x,y) = |2d(x,y)−d(x,x)−d(y,y)|. (1.1)

Clearly, ds(x,x) = 0 for all x ∈ X .

2. Main results

Theorem 2.1. Let (X ,�) be a partially ordered set and suppose that there exists a b-metric-like

d on X such that (X ,d) is a b-complete b-metric-like space and let f ,g : X → X be two weakly
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increasing mappings with respect to �. Suppose f satisfies d(x, f x) ≥ d(x,x) and g satisfies

d(x,gx)≥ d(x,x), ∀x→ X, and

ψ(b4d( f x,gy))≤ ψ(Mb(x,y))−ϕ(Mb(x,y))+Lψ(N(x,y)), (2.1)

where Mb(x,y) = max{d(x,y),d(x, f x),d(y,gy), d(x,gy)+d(y, f x)
6b } and N(x,y) = min{ds(x, f x),

ds(y, f x),ds(x,gy)}, where ds is defined in (1.1) for all comparable elements x,y ∈ X, L≥ 0, ψ

and ϕ are altering distance functions. If either f or g continuous, then f and g have a common

fixed point.

Proof. Let us divide the proof into two parts as follows.

Part I. We prove that u is a fixed point of f if and only if u is a fixed point of g.

Suppose that u is a fixed point of f , that is, f u = u. As u� u, by (2.1), we have

ψ(b4d(u,gu)) = ψ(b4d( f u,gu))

≤ ψ

(
max

{
d(u,u),d(u, f u),d(u,gu),

d(u,gu)+d(u, f u)
6b

})
−ϕ

(
max

{
d(u,u),d(u, f u),d(u,gu),

d(u,gu)+d(u, f u)
6b

})
+Lmin{ds(u, f u),ds(u,gu)}.

(2.2)

Since d(u, f u) = d(u,u)≤ d(u,gu), we have

d(u,gu)+d(u, f u)
6b

≤ d(u,gu)
3b

≤ d(u,gu),

In view of min{ds(u,u),ds(u,gu)}= 0, we find from (2.2) that

ψ(b4d(u,gu)) = ψ(b4d( f u,gu))

≤ ψ(max{d(u,u),d(u,gu)})

−ϕ(max{d(u,u),d(u,gu)})

+Lmin{ds(u,u),ds(u,gu)}

= ψ(d(u,gu))−ϕ(d(u,gu))

≤ ψ(b4d(u,gu))−ϕ(d(u,gu)).
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Thus, we have ϕ(d(u,gu)) = 0. Therefore, d(u,gu) = 0 and hence gu = u. Similarly, we can

show that if u is a fixed point of g, then u is a fixed point of f .

Part II. Letting x0 ∈X , we construct a sequence {xn} in X, such that x2n+1 = f x2n and x2n+2 =

gx2n+1 for all non-negative integers. As f and g are weakly increasing with respect to �. It

follows that

x1 = f x0 � g f x0 = x2 = gx1

� f gx1 = x3 = f x2

� ·· ·x2n+1 = f x2n

� g f x2n = x2n+2

� ·· · .

If x2n = x2n+1, for some n ∈ N, then x2n = f x2n. Thus, x2n is a fixed of f . By the first part,

we conclude that x2n is also a fixed point of g. If x2n+1 = x2n+2, for some n ∈ N, then x2n+1 =

gx2n+1. Thus, x2n+1 is a fixed of g. By the first part, we conclude that x2n+1 is also a fixed point

of f . Therefore, we assume that xn 6= xn+1, for all n ∈ N. Now, we complete the proof in the

following steps.

Step 1. Prove that

lim
n→∞

d(xn,xn+1) = 0.

As x2n and x2n+1 are comparable, by (2.1), we have

ψ(d(x2n+1,x2n+2))≤ ψ(b4d(x2n+1,x2n+2))

= ψ(b4d( f x2n,gx2n+1))

≤ ψ(Mb(x2n,x2n+1))−ϕ(Mb(x2n,x2n+1))+Lψ(N(x2n,x2n+1)),

where

Mb(x2n,x2n+1) = max{d(x2n,x2n+1),d(x2n, f x2n),d(x2n+1,gx2n+1),

d( f x2n,x2n+1)+d(x2n,gx2n+1)

6b
}

= max{d(x2n,x2n+1),d(x2n+1,x2n+2),
d(x2n+1,x2n+1)+d(x2n,x2n+2)

6b
}.
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It follows that

d(x2n,x2n+2)≤ bd(x2n,x2n+1)+bd(x2n+1,x2n+2)

d(x2n+1,x2n+1)≤ bd(x2n,x2n+1)+bd(x2n+1,x2n) = 2bd(x2n,x2n+1).

So, we have

Mb(x2n,x2n+1) = max{d(x2n,x2n+1),d(x2n+1,x2n+2),
d(x2n+1,x2n+1)+d(x2n,x2n+2)

6b
}

≤max{d(x2n,x2n+1),d(x2n+1,x2n+2),
3bd(x2n,x2n+1)+d(x2n+1,x2n+2)

6b
}

≤max{d(x2n,x2n+1),d(x2n+1,x2n+2),

3bd(x2n,x2n+1)+bd(x2n+1,x2n+2)+2bd(x2n+1,x2n+2)

6b
}

= max{d(x2n,x2n+1),d(x2n+1,x2n+2),
d(x2n,x2n+1)+d(x2n+1,x2n+2)

2
}

= max{d(x2n,x2n+1),d(x2n+1,x2n+2)}

and

N(x2n,x2n+1) = min{ds(x2n, f x2n),ds(x2n+1, f x2n),ds(x2n,gx2n+1)}

= min{ds(x2n,x2n+1),ds(x2n+1,x2n+1),ds(x2n,x2n+2)}

= 0.

Hence, we have

ψ(d(x2n+1,x2n+2))≤ψ(max{d(x2n+1,x2n+2),d(x2n,x2n+1)})

−ϕ(max{d(x2n+1,x2n+2),d(x2n,x2n+1)}).
(2.3)

If max{d(x2n+1,x2n+2),d(x2n,x2n+1)}= d(x2n+1,x2n+2), then (2.3) becomes

ψ(d(x2n+1,x2n+2))≤ ψ(d(x2n+1,x2n+2))−ϕ(d(x2n+1,x2n+2))< ψ(d(x2n+1,x2n+2)),

which yields a contradiction. So,

max{d(x2n+1,x2n+2),d(x2n,x2n+1)}= d(x2n,x2n+1).

It follows (2.3) that

ψ(d(x2n+1,x2n+2))≤ ψ(d(x2n,x2n+1))−ϕ(d(x2n,x2n+1))< ψ(d(x2n,x2n+1)). (2.4)
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Similarly, we can show that

ψ(d(x2n+1,x2n))≤ ψ(d(x2n−1,x2n))−ϕ(d(x2n−1,x2n))< ψ(d(x2n−1,x2n)). (2.5)

By (2.4) and (2.5), we get that d(xn,xn+1) is a non-increasing sequence of positive numbers.

Hence, there exists r ≥ 0 such that

lim
n→∞

d(xn,xn+1) = r.

Letting n→ ∞ in (2.4), we get

ψ(r)≤ ψ(r)−ϕ(r)≤ ψ(r),

which implies that ϕ(r) = 0 and hence r = 0. So, we have

lim
n→∞

d(xn,xn+1) = 0. (2.6)

Step 2. Prove that {xn} is a Cauchy sequence. It is sufficient to show that {x2n} is a Cauchy

sequence. Suppose the contrary, that is, {x2n} is not a Cauchy sequence. Then there exists

ε > 0, for which we can find two subsequences of positive integers {x2mi} and {x2ni} such that

ni is the smallest index for which

ni > mi > i,d(x2mi,x2ni)≥ ε. (2.7)

This means that

d(x2mi,x2ni−2)< ε. (2.8)

From (2.7), (2.8), we get

d(x2mi,x2ni+1)

≤ bd(x2ni,x2ni+1)+bd(x2mi,x2ni)

< bd(x2ni,x2ni+1)+b2d(x2ni,x2ni−1)+b2d(x2mi,x2ni−1)

≤ bd(x2ni,x2ni+1)+b2d(x2ni,x2ni−1)+b3d(x2ni−1,x2ni−2)+b3d(x2mi,x2ni−2)

< bd(x2ni,x2ni+1)+b2d(x2ni,x2ni−1)+b3d(x2ni−1,x2ni−2)+ εb3.
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Using (2.6), we have limsupi→∞ d(x2mi,x2ni+1)≤ εb3. Again, from (2.7), we get ε ≤ d(x2mi,x2ni)≤

bd(x2mi,x2ni+1)+bd(x2ni,x2ni+1). Using (2.6), we have
ε

b ≤ limsupi→∞ d(x2mi,x2ni+1). So, we obtain

ε

b
≤ limsup

i→∞

d(x2mi,x2ni+1)≤ εb3. (2.9)

Similarly, we can obtain

ε

b
≤ limsup

i→∞

d(x2mi−1,x2ni)≤ εb3,

ε ≤ limsup
i→∞

d(x2mi,x2ni)≤ εb4,

ε

b2 ≤ limsup
i→∞

d(x2mi−1,x2ni+1)≤ εb4.

(2.10)

Since x2ni and x2mi−1 are comparable, using (2.1) we have

ψ(b4d(x2ni+1,x2mi)) = ψ(b4d( f x2ni,gx2mi−1))

≤ ψ(Mb(x2ni,x2mi−1))−ϕ(Mb(x2ni,x2mi−1))+Lψ(N(x2ni,x2mi−1)),

(2.11)

where

Mb(x2ni,x2mi−1) = max{d(x2ni,x2mi−1),d(x2ni, f x2ni),d(x2mi−1,gx2mi−1),

d(x2ni,gx2mi−1)+d(x2mi−1, f x2ni)

6b
}

= max{d(x2ni,x2mi−1),d(x2ni,x2ni+1),d(x2mi−1,x2mi),

d(x2ni,x2mi)+d(x2mi−1,x2ni+1)

6b
}

(2.12)

and

N(x2ni,x2mi−1) = min{ds(x2ni, f x2ni),d
s(x2mi−1, f x2ni),d

s(x2ni,gx2mi−1)}

= min{ds(x2ni, f x2ni+1),ds(x2mi−1,x2ni+1),ds(x2ni,x2mi)}.
(2.13)
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From (2.6), (2.10), (2.11) and (2.13), we get

ε

6b
+

ε

6b3 = min{ε

b
,

ε

6b
+

ε

6b3}

≤ limsup
i→∞

Mb(x2ni,x2mi−1)

= max{limsup
i→∞

d(x2ni,x2mi−1),0,0,

limsupi→∞ d(x2ni,x2mi)+ limsupi→∞ d(x2ni+1,x2mi−1)

6b
}

≤min{εb3,
εb2

6b
+

εb4

6b3 }= εb3.

So, we have

ε

6b
+

ε

6b3 ≤ limsup
i→∞

Mb(x2ni,x2mi−1)≤ εb3 (2.14)

and

limsup
i→∞

N(x2ni,x2mi−1) = 0. (2.15)

Similarly, we can obtain

ε

6b
+

ε

6b3 ≤ liminf
i→∞

Mb(x2ni,x2mi−1)≤ εb3. (2.16)

Now, from (2.11), (2.14), (2.15) and (2.16), we have

ψ(εb3) = ψ(b4 ε

b
)≤ ψ(b4 limsup

i→∞

d(x2ni+1,x2mi))

≤ ψ(limsup
i→∞

Mb(x2ni+,x2mi−1))−ϕ(liminf
i→∞

Mb(x2ni+,x2mi−1))

≤ ψ(εb3)−ϕ(liminf
i→∞

Mb(x2ni+,x2mi−1)),

which implies that

ϕ(liminf
i→∞

Mb(x2ni+,x2mi−1)) = 0.

So liminfi→∞ Mb(x2ni+,x2mi−1) = 0. This is a contradiction to (2.16). Hence {xn} is a Cauchy

sequence in X .
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Step 3. Prove that

lim
m,n→∞

d(xn,xm) = 0.

Suppose that there is c≥ 0, such that limm,n→∞ d(xn,xm) = c. From (2.1), we have

ψ(d(xn+1,xm+1))≤ ψ(b4d(xn+1,xm+1))

= ψ(b4d( f xn,gxm))

≤ ψ(Mb(xn,xm))−ϕ(Mb(xn,xm))+Lψ(N(xn,xm)),

(2.17)

where

Mb(xn,xm) = max{d(xn,xm),d(xn, f xn),d(xm,gxm),

d( f xn,xm)+d(xn,gxm)

6b
}

= max{d(xn,xm),d(xn,xn+1),d(xm,xm+1),

d(xn+1,xm)+d(xn,xm+1)

6b
}.

(2.18)

From (2.17) and (2.18), we have ψ(c)≤ ψ(c)−ϕ(c)≤ ψ(c), which implies that ϕ(c) = 0 and

hence c = 0. So, we have

lim
n→∞

d(xn,xm) = 0. (2.19)

Step 4. As {xn} is a Cauchy sequence in X , which is a complete b-metric-like space, there

exists u ∈ X such that xn→ u as n→ ∞. So, from Definition 1.3, have

lim
m,n→∞

d(xn,u) = d(u,u) = lim
m,n→∞

d(xn,xm) = 0

and limn→∞ x2n+1 = limn→∞ f x2n = u. Without any loss of generality, we may assume that f is

continuous. So limn→∞ f x2n = f u. From Proposition 1.6, we get limn→∞ f x2n = f u = u. So, we

have f u = u. Thus, u is a fixed point of f . By the first part, we conclude that u is also a fixed

point of g.

Theorem 2.2. Under the hypotheses of Theorem 2.1, without the continuity assumption of one

of the functions f or g, for any non-decreasing sequence xn in X such that xn→ x ∈ X, let us

have xn � x, for all n ∈ N. Then, f and g have a common fixed point in x.



A NEW COMMON FIXED POINT THEOREM 111

Proof. From Theorem 2.1, we construct an increasing sequence {xn} ∈ X such that xn→ u, for

some u ∈ X . Using the assumption on X , we have xn � u, for all n ∈ N. Now, we show that

f u = gu = u. By (2.1), we have

ψ(b4d(x2n+1,gu)) = ψ(b4d( f x2n,gu))

≤ ψ(Mbd(x2n,u))−ϕ(Mbd(x2n,u))+Lψ(N(x2n,u)),
(2.20)

where

Mb(x2n,u) = max{d(x2n,u),d(x2n, f x2n),d(u,gu)
d(x2n,gu)+d( f x2n,u)

6b
}

= max{d(x2n,u),d(x2n,x2n+1),d(u,gu)
d(x2n,gu)+d(x2n+1,u)

6b
}

(2.21)

and

N(x2n,u) = min{ds(x2n, f x2n),ds(u, f x2n),ds(x2n,gu)}

= min{ds(x2n,x2n+1),ds(u,x2n+1),ds(x2n,gu)}.
(2.22)

Letting n→ ∞ in (2.21) and (2.22) and using Proposition 1.6, we get

d(u,gu)
6b2 = min{d(u,gu)

b
,
d(u,gu)

6b2 }

≤ limsup
n→∞

Mb(x2n,u)≤max{d(u,gu),
bd(u,gu)

6b
}= d(u,gu)

(2.23)

and N(x2n,u)→ 0. Similarly, we obtain

d(u,gu)
6b2 ≤ liminf

n→∞
Mb(x2n,u)≤ d(u,gu). (2.24)

Using (2.20), (2.23) and Proposition 1.6, we get

ψ(b3d(u,gu)) = ψ(b4 1
b

d(u,gu))≤ ψ(b4 limsup
n→∞

d(x2n+1,gu))

≤ ψ(limsup
n→∞

Mb(x2n,u))−ϕ(liminf
n→∞

Mb(x2n,u))

≤ ψ(d(u,gu))−ϕ(liminf
n→∞

Mb(x2n,u))

≤ ψ(b3d(u,gu))−ϕ(liminf
n→∞

Mb(x2n,u)).

Therefore, ϕ(liminfn→∞ Mb(x2n,u)) ≤ 0, equivalently, liminfn→∞ Mb(x2n,u) = 0. Thus, from

(2.20) we get u = gu and hence u is a fixed point of g. On the other hand, similar to the first part
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of the proof of Theorem 2.1, we can show that f u = u. Hence, u is a common fixed point of f

and g.

Example 2.3. Let X = [0,∞) be equipped with the b-metric-like d(x,y) = (x + y)2 for all

x,y ∈ X, where b = 2. Define a relation � on X by x � y iff y ≤ x, the functions f ,g : X → X

by f x = ln(1+ x
13) and f x = ln(1+ x

9), and the altering distance functions ψ,ϕ : [0,+∞) by

ψ(t) = qt and ϕ(t) = (q−1)t, where 1≤ q≤ 36
16 . Then, we have the following:

(1) (X ,�) is a partially ordered set having the b-metric-like d, where the b-metric-like space

(X ,d) is complete.

(2) f and g are weakly increasing mappings with respect to �.

(3) f and g are continuous.

(4) f ,g satisfies:

ψ(b4d( f x,gy))≤ ψ(Mb(x,y))−ϕ(Mb(x,y))+Lψ(N(x,y)),

where

Mb(x,y) = max{d(x,y),d(x, f x),d(y,gy),
d(x,gy)+d(y, f x)

6b
}

and

N(x,y) = min{ds(x, f x),ds(y, f x),ds(x,gy)}

Proof. The proof of (1) is clear. To prove (2), for each x ∈ X , we know that 1+ x
13 ≤ e

x
13 and

1+ x
9 ≤ e

x
9 . So, f x = ln(1+ x

13)≤ x and gx = ln(1+ x
9)≤ x. Hence, f gx = ln(1+ gx

13)≤ gx and

g f x = ln(1+ f x
9 )≤ f x, for each x ∈ X .Therefore, f and g are weakly increasing mappings with

respect to �. It is easy to see that f and g are continuous. To prove (4), let x,y ∈ X with x� y.

So, y≤ X . Thus, we have the following cases.

Case 1. If y
9 ≤

x
13 ≤

x
9 , then we have

(1+
x

13
)(1+

y
9
)≤ (1+

x
9
)(1+

y
9
)⇒ ln(1+

x
13

)(1+
y
9
)≤ ln(1+

x
9
)(1+

y
9
).
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Now, using the mean value theorem for function ln(1+ t), for t ∈ [ y
9 , x

9 ], we have

ψ(b4d( f x,gy)) = 16qd( f x,gy)

= 16q(ln(1+
x

13
)+ ln(1+

y
9
))2 = 16q(ln(1+

x
13

)(1+
y
9
))2

≤ 16q(ln(1+
x
9
)(1+

y
9
))2 = 16q(ln(1+

x
9
)+ ln(1+

y
9
))2

≤ 16q(
x
9
+

y
9
)2 ≤ 36

81
(x+ y)2

≤ d(x,y)≤M2(x,y) = ψ(M2(x,y))−ϕ(M2(x,y)),

that is, we have ψ(b4d( f x,gy))≤ ψ(Mb(x,y))−ϕ(Mb(x,y))+Lψ(N(x,y)), for each L≥ 0.

Case 2. If x
13 ≤

y
9 ≤

x
9 , then we have ψ(b4d( f x,gy))≤ψ(Mb(x,y))−ϕ(Mb(x,y))+Lψ(N(x,y)),

for each L≥ 0. The proof is the same to Case 1.

Thus, all the hypotheses of Theorem 2.1 are satisfied and hence f and g have a common fixed

point. Indeed, 0 is the unique common fixed point of f and g.

Finally, Let us finish this paper with the following remarks.

Remark 2.4. Theorems 2.1 and 2.2 not only improve and extend the corresponding results

of Alghamdi [15], but also improve and extend the corresponding results of Roshan [18] and

others.

Remark 2.5. A b-metric-like is a metric-like if b = 1, so our results can be viewed as a gener-

alization and extension of corresponding results and several other comparable results.
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