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Abstract. There are a great number of concepts about fixed points of contraction mappings on metric spaces. In

this paper, we have tried to show that the set of all zero at infinity varieties is a complete metric space and some

results and examples about fixed points of contraction mappings on this space have been provided.
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1. Introduction

1.1. preliminaries. P. G. Dixon in [4] introduced varieties of Banach algebras and proved

an analoque of Birkhoff’s theorem [1] for varieties of banach algebras. In this section, some

important concepts about this subject have been mentioned.

Definition 1.1. For each Banach algebra A . and δ > 0, we define

‖p‖A ,δ = sup{‖p(x1, ...,xn)‖ : xi ∈A ,‖xi‖ ≤ δ ,1≤ i≤ n}
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We shall denote ‖p‖A ,1 = ‖p‖A , where p = p(X1, ...,Xn) is a polynomial. Throughout this

paper, a polynomial is a non-commuting polynomial without constant term.

As a law, we mean a formal expression ‖p‖ ≤ K, where K ∈ R and p is a polynomial. We say

that A satisfies the above law, if ‖p‖A ≤ K. Also, the law ‖p‖ ≤ K is homogeneous if p is a

homogeneous polynomial.

When we talk about algebras, a variety is a non-empty class v of complex associative algebras

which is closed under taking subalgebras, quotient algebras, direct sum and isomorphic images.

Birkhoff has proved that a non-empty class of complex associative algebras v is a variety if and

only if there is a set L of polynomials such that,

v = {A : p(x1, ...,xn) = 0,(x1, ...,xn ∈A ),∀p ∈ L}.

Definition 1.2. A non-empty class v of Banach algebras is said to be a variety if there exists a

non-negative real-valued function,

p 7−→ f (p)

on the set of all polynomials, such that v is precisely a class of Banach algebras A for which,

‖p‖A ≤ f (p)

for each

p = p(X1, ...,Xn).

Remark 1.1. If a variety defined by a family of homogeneous laws then, it is called H-variety

and we denote the set of all H-varieties by LH .

In[4], Dixon defined varieties of Banach algebras and proved an analogue of Birkhoff’s the-

orem based on varieties of universal algebras, for Banach algebras.

Theorem 1.1. ( [4] theorem 2.3 ) For each non-empty class v of Banach algebras, the followings

are equivalent,

(i)v is closed under taking closed subalgebras, quotient algebras, products(direct sums) and

images under isometric isomorphisms.

(ii)v is a variety.
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Definition 1.3. Let C be a class of Banach algebras and v(C) be the intersection of all varieties

containing C. Then, v(C) is a variety called the variety generated by C. If C consists of a single

Banach algebra A , then v(C) is written as v(A ) and it is said to be singly generated.

Definition 1.4. Let v is a variety and {Lα}α∈I to be the families of laws which determine v. We

define

|p|v = inf{K : ∃α ∈ I;(‖p‖ ≤ K) ∈ Lα}

where p is a polynomial. The family {|p|v}p is a family of laws which determine v.

Each variety is determined by a family of laws. But among such families one is particular

noteworthy; namely, the family of laws with minimal right-hand sides K. The function giving

these right-hand sides is as the following. For each variety v and polynomial p,

|p|v = sup{‖p‖A : A ∈ v}.

The following theorem shows that this supremum is always obtained.

Theorem 1.2. ([2] theorem 2.4) For each variety v , there exists a A ∈ v such that for all

polynomial p, we have

|p|v = ‖p‖A .

This theorem shows that this supremum is always obtaind.

Corollary 1.3. ([2] corollary 2.5) Each variety of Banach algebras is singly generated.

Corollary 1.4. ([2] corollary 2.6) Let v1,v2 be two varietirs. Then, v1 ⊆ v2 if and only if for all

polynomials p, we have

|p|v1 ≤ |p|v2.

We note that, partially ordered by inclusion, the class of all varieties is a complete lattice.

Definition 1.5. Let L be the lattice of all varieties, and LH be the lattice of all H-varieties. Let

P be the set of all polynomials, and PH be the set of all homogeneous polynomials also, PNH be

the set of all non homogeneous polynomials. We define

P1 = {p ∈ P : |p|1 < 1}
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PH1 = {p ∈ PH : |p|< 1}

PNH1 = {p ∈ PNH : |p|< 1}.

1.2. Zero at infinity varieties.

Definition 1.6. Suppose that v is a variety. Then, it is zero at infinity if for each ε > 0 there

exists N > 0 such that for all p ∈ PH1, if deg(p)> N then |p|v ≤ ε .

We show the set of all zero at infinity varieties by L0.

Definition 1.7. If x ∈ R with 0 < x < 1 and v 6= N2 be a variety, then vx is the variety that is

determined by following lows

‖p‖< xi−1|p|v

where p is a homogeneous polynomial with deg(p) = i.

The next theorem has been proved in [3] but we have done some reforms in its proof for

specification.

Theorem 1.5. The set of all varieties is a complete metric space.

Proof. Let v ∈ L. Define φv : P→ R+ as

φv(p) = |p|v.

However, the mapping ψ : L→ L∞(P1) with ψ(v) = φv is well defined and one to one. Because

v = w if and only if |p|v = |p|w for all polynomials p ∈ P1. Therefore, v = w if and only if

φv(p) = φw(p) for all polynomials p ∈ P1. Consequently, v = w if and only if ψ(v) = ψ(w).

Hence L∞(P1) induces the followin metric to L:

dL(v,w) = d(φv,φw) = ‖φv−φw‖∞.

Now, we want to show that ψ is continuous. Let {vn}∞
n=1 be a sequence in L such that vn −→ v.

So, for each ε > 0 there exists N > 0 such that for any n > N we have dL(vn,v) < ε . Hence,

‖φvn−φv‖∞ < ε and ‖ψ(vn)−ψ(v)‖∞ < ε .

We define, Φ = {φv : v ∈ L} and show that (Φ,d) is a closed subset of L∞(P1) metric space. Let
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{φvn}∞
n=1 is a cauchy sequence in Φ. For all ε > 0 there exists an N > 0 such that for n,m > N

we have

‖φvn−φvm‖∞ < ε

Therefore, supp∈P1
|φvn(p)− φvm(p)| < ε and consequently, supp∈P1

∣∣|p|vn − |p|vm

∣∣ < ε . Then,

for all p ∈ P1 it is concluded that,
∣∣|p|vn−|p|vm

∣∣< ε and it means that the sequence {|p|vn}∞
n=1

is a cauchy sequence in R. So, it converges to an α ∈ R and there is a variety v ∈ L such that

α = |P|v where p ∈ P1. Therefore, we have |p|vn −→ |p|v and it means that for all ε > 0 there

exists an N > 0 such that, for all n > N we have∣∣|p|vn−|p|v
∣∣< ε (∀p ∈ P1).

So, we have supp∈P1

∣∣|p|vn − |p|v
∣∣ < ε and it is clear that ‖φvn − φvm‖∞ < ε . Then, φvn −→ φv

with ‖.‖∞. Hence, Φ is a closed subset of L∞(P1) . �

By previous theorem, (L,dL) Similarly, (LH ,dH) is also a metric space with

dH(V,W ) = sup
p∈PH1

∣∣|p|V −|p|W ∣∣.
Also, (L,dNH) is a metric space with

dNH(V,W ) = sup
p∈PNH1

∣∣|p|V −|p|W ∣∣.
Theorem 1.6. If v is a variety such that v 6= N2 then

(i) The mapping x→ vx from [0,1) into (LH ,dH) is a strictly increasing injective continuous

mapping.

(ii) If v is zero at infinity, then previous mapping is also continuous at 1.

Proof. Take v = v(A ) for some Banach algebra A . Consider the algebra Ax, consisting of the

algebra A with the norm x−1 times the A -norm. For all homogeneous polynomial p of degree

i, we have

‖p‖Ax = x−1|p|A ,x

= xi−1|p|A .

Thus for any homogeneous polynomial p of degree i, we have

|p|vx = xi−1|p|v.
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Moreover, if 0 < x1 < x2 < 1 then, for any homogeneous p with |p|v 6= 0 and deg(p) > 1, we

have

|p|vx1
< |p|vx2

.

So, the mapping x→ vx of [0,1) into the H-varieties is an injective. Now, take 0 < a < b <

1,xn ∈ (0,b) and xn→ a. Then

dH(vxn,va) = sup
p∈PH1

| |p|vxn
−|p|va|

= sup
p∈PH1

|xi−1
n −ai−1||p|v

≤ sup
p∈PH1

|xn−a||xi−2
n + ...+ai−2|

< |xn−a| sup
p∈PH1

(i−1)bi−2.

Since (i−1)bi−2 is convergent, it is bounded. Thus, vxn→ va. Now, take xn ∈ [0,1) and xn→ 0.

Put p ∈ PH1 and deg(p)> 1, then

||p|vxn
−|p|N2|= |p|vxn

−|p|N2

≤ |p|vxn

= xi−1
n |p|v

≤ xi−1
n

≤ xn.

Since v0 = N2, the mapping is continuous.

Let xn ∈ [0,1] and xn → 1 and v be a zero at infinity variety. Also, if ε > 0 then, there exists

N′ > 0 such that, if p ∈ PH1 and deg(p)> N′, then |p|v < ε/2.

We have

||p|vxn
−|p|H(v)|= |p|v|xi−1

n −1|.

Now, if i > N′ then

|p|v|xi−1
n −1| ≤ 2|p|v < ε.
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Also, for each 1 < i≤N, xi−1
n → 1. So, there exists N > 0 such that for all n > N, |xi−1

n −1|< ε.

Thus, for all n > N,

|p|v|xi−1
n −1| ≤ |xi−1

n |< ε.

Thus, for all p ∈ PH1 and all n > N, we have ||p|vxn
− 1| < ε. Hence, vxn → H(v), because

H(v) = v1 �

Corollary 1.7. Let v be a zero at ifinity variety. Then, {vx : 0 < x < 1} is a connected, complete

and compact subspace of (LH ,dH).

Theorem 1.8. The subspace (L0
H ,dH) of zero at infinity H-varieties is closed in (L,dL).

Proof. Let {vn}∞
n=1 be a sequence of zero at infinity varieties. Take vn→ v. Thus, for each ε > 0,

there exists N > 0, such that for all n ∈ N, if n≥ N, then

sup
p∈P1

∣∣|p|vn−|p|v
∣∣< ε

Since the metric spaces (L,dL) and (LNH ,dNH) are equivalent, we have

sup
q∈PNH1

∣∣|q|vn−|q|v
∣∣< ε.

Let p be a homogeneous polynomial, where qi = p and (i = 1,2, ...). Since

sup
q∈PNH1

∣∣|q|vn−|q|v
∣∣< ε.

for all q, such that qi = p, we have ∣∣|q|vn−|q|v
∣∣< ε.

Thus,
∣∣ infq |q|vn−|q|v

∣∣< ε,
∣∣|p|vn−|p|v

∣∣< ε and
∣∣|p|vN−|p|v

∣∣< ε. Since vN is a zero at infinity

variety, for each ε > 0, there exists N1 > 0 such that for all polynomials p∈ PH1, if deg(p)>N1,

then |p|vN < ε . Thus, |p|v < ε , and v is a zero at infinity. �

Definition 1.8. Let v be a zero at infinity variety. We define

[N2,v] = {w|N2 ⊆ w⊆ v,w is a variety}.

It is obvious that the members of [N2,v] are zero at infinity varieties.
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Theorem 1.9. Let v be a zero at infinity variety. Then, [N2,v] is a closed set.

Proof. Let {vn}∞
n=1 be a sequence of zero at infinity varieties such that vn ∈ [N2,v] for all n ∈N.

So, N2 ⊆ vn ⊆ v. If v′ * v, then there exists c ∈ v′ such that c /∈ v. So, there exists p0 ∈ PH1 such

that ‖p0‖c > |p0|v, and |p0|v′ ≥ ‖p0‖c > |p0|v > |p0|vn . By vn→ v′, for each ε > 0, there exists

N > 0 such that for all n≥ N

sup
p∈P1

∣∣|p|vn−|p|v′
∣∣< ε.

Thus, for all polynomials p ∈ PH1, we will have
∣∣|p|vn −|p|v′

∣∣ < ε. Now, if ε = |p0|v′ −|p0|v,

then −(|p0|v′ −|p0|v) < |p0|vn −|p0|v′ < |p0|v′ −|p0|v. Thus, for all n ≥ N, |p0|v < |p0|vn and

this is a contradiction. �

Corollary 1.10. Let v be a zero at infinity variety. Then, [Nn,v] for all n ∈ N and n > 2 are

complete metric subspaces.

Corollary 1.11. Let v be a zero at infinity variety. Then, the closed intervals [N2,v] is complete

metric subspace.

Theorem 1.12. Let v be zero at infinity variety. Then, {vx|0 < x < 1} is a path-connected

subspace of metric space (LH ,dH).

Proof. Take 0 ≤ a < a′ ≤ 1. Also va and va′ are two zero at infinity varieties. We define the

mapping f : [0,1]→{va|0≤ a≤ 1} as follows

f (t) = va+t(a′−a).

Then, we have f (0) = va and f (1) = va′ .

Now, we prove that f is a continuous mapping of [0,1] onto {va|0 ≤ a ≤ 1}. For all n ∈ N, if

tn, t ∈ [0,1] and tn→ t, Then

d( f (tn), f (t)) = sup
p∈PH1

||p|va+tn(a′−a)
−|p|va+t(a′−a)

|

= sup
p
|[a+ tn(a′−a)]i−1|p|v− [a+ t(a′−a)]i−1|p|v|

= sup
p
|p|v|(a+ tn(a′−a))i−1− (a+ t(a′−a))i−1|
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= sup
p∈PH1

|p|v|(a+ tn(a′−a)−a− t(a′−a))[(a+ tn(a′−a))i−2+

(a+ tn(a′−a))i−3(a+ t(a′−a))+ ...+(a+ t(a′−a))i−2]|

= sup
p∈PH1

|p|v|(tn− t)(a′−a)[(a+ tn(a′−a))i−2+

(a+ tn(a′−a))i−3(a+ t(a′−a))+ ...+(a+ t(a′−a))i−2]|

< |tn− t| sup
p∈PH1

(i−2)(a′)i−2.

Since (i−2)(a′)i−2 is bounded and {|tn− t|}∞
n=1 is convergent to 0,

d( f (tn), f (t))→ 0.

�

Corollary 1.13. Let L0
H be the set of all zero at infinity H-varieties. Let α ∈ I and vα

a ∈ L0
H be

a zero at infinity variety. If Cα = {vα
a |0≤ a≤ 1}, then ∪α∈ICα is connected.

Corollary 1.14. If {xn} is a convergent sequence in [0,1] with xn→ x and vxn is a zero at infinity

variety for all n ∈ N, then the sequence {vxn} is convergent to vx.

1.3. Fixed point of zero at infinity varieties.

Proposition 1.15. Let (L0,dL) be the complete metric space of zero at infinity varieties. Suppose

that {xn}⊂ [0,1] is a sequence and T : L0→ L0 is defined as T (vxn)= vxn+1 for all vxn,vxn+1 ∈ L0,

then T is a Lipschitzian map.

Proof. suppose that vxn,vyn ∈ L0 where {xn},{yn} are sequences in [0,1]. Then, we have

dL(T kvxn,T
kvyn) = dL(vxn+k ,vyn+k)

= sup
p
|xi−1

n+k− yi−1
n+k||p|v

≤ Lk sup |xi−1
n − yi−1

n ||p|v

= LkdL(vxn ,vyn)
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By Archimedean property, Lk exists for any k ∈ N. So, it’s done. �

Proposition 1.16. Let (L0,dL) be the complete metric space of zero at infinity varieties and

T : L0 → L0 be a Lipschitzian mapping with constant k 6= 1, defined as above. Also, let

ψ : L0→ (0,∞) be defined as ψ(vx) =
1

1−k dL(vx,T vx) for all vx ∈ L0. If {vxn} is a sequence in

L0 such that vxn+1 = T vxn and {xn} ∈ [0,1], then we have,

i) ψ is continuous.

ii) dL(vxn,vxn+1) = ψ(vxn)−ψ(vxn+1) for all n ∈ N0.

iii) For all n ∈ N0,

dL(vxn ,vx) = ψ(vxn)−ψ(vx).

Proof. i)Suppose {vxn} is a sequence in L0 such that vxn → vx, so dL(vxn,vx)→ 0. Then we

have,

|ψ(vxn)−ψ(vx)|= |
1

1− k
dL(vxn,T vxn)−

1
1− k

dL(vx,T vx)|

= | 1
1− k

|
∣∣∣sup

p

∣∣|p|vxn
−|p|T vxn

∣∣− sup
p

∣∣|p|vx−|p|T vx

∣∣∣∣∣
≤ | 1

1− k
|(sup

∣∣|p|vxn
−|p|T vxn

−|p|vx + |p|T vx

∣∣)
≤ | 1

1− k
|(sup

∣∣|p|vxn
−|p|vx

∣∣+ sup
∣∣|p|T vxn

−|p|T vx

∣∣)
= | 1

1− k
|
(
dL(vxn,vx)+dL(T vxn,T vx)

)
= |1+ k

1− k
|dL(vxn,vx)

Therefore, ψ(vxn)→ ψ(vx) and consequently ψ is continuous.

ii)If vxn,vxn+1 ∈ L0, then we have,

ψ(vxn)−ψ(vxn+1) =
1

1− k
dL(vxn ,T vxN )−

1
1− k

dL(vxn+1 ,T vxn+1)

=
1

1− k

(
dL(vxn,T vxn)−dL(vxn+1 ,T vxn+1)

)
=

1
1− k

(
dL(vxn,T vxn)−dL(T vxn,T (T vxn+1))

)
=

1
1− k

(
dL(vxn,T vxn)− kdL(vxn,T vxn)

)
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= dL(vxn,T vxn)

iii) According to the corollary(2.9), it is concluded that there exists a vx ∈ L0 such that vxn→ vx.

In the first part, it is proved that ψ is continuous, therefore, ψ(vxn)→ ψ(vx). Also, we have

dL(vxn ,vx) = ψ(vxn)− lim
n→∞

ψ(vxm)

= ψ(vxn)−ψ(vx)

�

Theorem 1.17. Let L0 be the complete metric space of zero at infinity varieties and ψ : L0→

(−∞,∞) a proper, bounded below and lower semicontinuous function. Suppose that for each

vu ∈ L0 with infvx∈L0 ψ(vx)< ψ(vu) there exists a vw ∈ L0 such that vw 6= vu and

dL(vu,vw)≤ ψ(vu)−ψ(vw).

Then, there is a vx0 ∈ L0 such that ψ(vx0) = infvx∈L0 ψ(vx)

Proof. It is similar to proof of theorem(4.1.2) in [5]. �

Corollary 1.18. Let L0 be the complete metric space of zero at infinity varieties and T : L0→

L0 a Lipschitzian map with constant k 6= 1. Let ψ : L0 → (−∞,∞] be defined as ψ(vx) =

1
1−k dL(vx,T vx) for all vx ∈L0. Then we have ψ(vx0)= infvx∈L0 ψ(vx) where ψ(vx0)= limn→∞ ψ

(
T n(Vx0)

)
Theorem 1.19. Let L0 be the complete metric space of zero at infinity varieties and ψ : L0→

(−∞,∞] be a proper bounded below and lower semicontinuous function. Let T : L0→ L0 be a

mapping such that, dL(vx,T vx) ≤ ψ(vx)−ψ(T vx) for all vx ∈ L0. Then, there exists a vy ∈ L0

such that vy = T vy and ψ(vy)< ∞.

Proof. It is like the proof of theorem(4.1.3)[5]. �

Theorem 1.20. Let L0 be the complete metric space of zero at infinity varieties and T : L0→ L0

be defined as T vx = vα(x) where α : [0,1]→ [0,1] is a function. Then, T has a fixed point if and

only if α has a fixed point. Also, if x0 ∈ [0,1] is a fixed point for α then vx is a fixed point for T.
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Proof. Suppose that T has a fixed point. There exists vx ∈ L0 such that T vx = vx. Therefore,

vx = vα(x) and we have vx ⊂ vα(x), then,

|p|vx ≤ |p|vα(x)

sup
p

xi−1|p|v ≤ sup
p

α(x)i−1|p|v

xi−1 ≤ α(x)i−1

Previous inquality is correct for any i ∈ N, so it is concluded that x ≤ α(x). Similarly, it is

obtained that α(x) ≤ x, so we will have α(x) = x. Therefore, α has a fixed point. Inverse is

obvious. �

Theorem 1.21. Suppose L0 is the complete metric space of zero at infinity varieties and ψ :

L0→ (−∞,∞] is defined as ψ(vx) = f (x) where f : [0,1]→ (−∞,∞] is a continuous bijection.

For vx 6= N2, let T : L0 → L0 be defined as T vx = vy such that |x− y| < f (x)− f (y)
(i−1)supp |p|v

where

i = deg(p) and y ∈ [0,1]. Then, T has a fixed point.

Proof.

dL(vx,vy) = sup
p
|xi−1− yi−1||p|v

≤ |x− y|sup
p
|xi−2 + xi−3y+ ...+ xyi−3 + yi−2||p|v

≤ |x− y|sup
p
(i−1)|p|v

≤ f (x)− f (y)
(i−1)supp |p|v

sup
p
(i−1)|p|v

≤ f (x)− f (y)

= ψ(vx)−ψ(vy)

= ψ(vx)−ψ(T vx)

by previous theorem, ther is vx0 ∈ L0 such that T vx0 = vx0 . �

Remark 1.2. The fixed point of the mapping T in previous theorem need not to be unique.



FIXED POINT THEOREMS OF CONTRACTION MAPPINGS 327

Theorem 1.22. Let L0 be the complete metric space of zero at infinity varieties and T : L0→ L0

a contaction mapping with Lipschitzian constant k ∈ (0,1). Then, we have the following,

i) There exists a unique fixed point vx ∈ L0 for T .

ii) For arbitrary vx ∈ L0 the picard iteration process is defined by

vxn+1 = T vxn ∀n ∈ N

converge to vx.

iii) For all n ∈ N we have dL(vxn,vx0)≤ (1− k)−1kndL(vx1,vx0).

Proof. Similar to the proof of the Theorem 4.1.5 in [5]. �

Lemma 1.23. Let {xn} be an increasing (decreasing) sequence in R and for each n ∈ N we

have xn >
xn+1+xn−1

2 (xn <
xn+1+xn−1

2 ) Then, for each m, l ∈ N we have,

|xm+n− xl+n|< |xm− xl|

such that n ∈ N.

Proof. Suppose {xn} is an increasing sequence in R and xn >
xn+1+xn−1

2 for all n ∈ N.

So we have

xn+1− xn < xn− xn−1.

If m, l ∈ N and m > l then,

xm+1− xm < xm− xm−1 < ... < xl+1− xl.

Therefore, xm+1− xm < xl+1− xl and it conclude that,

xm+1− xl+1 < xm− xl. (∗)

Suppose k ∈ N and,

xm+k− xl+k < xm− xl. (∗∗)

By (∗) we have

xm+K+1− xl+k+1 < xm+k− xl+k

and by (∗∗) we have

xm+k− xl+k < xm− xl.
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Therefore,

xm+K+1− xl+k+1 < xm− xl.

By induction, it has done. �

Corollary 1.24. Let L0 be the complete metric space of zero at infinity varieties and {xn}⊂ [0,1]

a decreasing sequence such that xn < xn+1+xn−1
2 for each n ∈ N . If T : L0 → L0 is defined as

T vxn = vxn+1 where {vxn} is a sequnce in L0, then we have

i) T is a contraction.

ii) There exists a unique fixed point vx ∈ L0 for T where x = limn→∞ xn.

iii) For arbitrary vx0 ∈ L0 the picard iteration process is convergent to vx.

iv) For all n ∈ N it is proved that dL(vxn,vx) ≤ (1− k)−1kndL(vx0,vx1) where k ∈ (0,1) is the

Lipschitz constant of T .

Proof. Part (i) must be proved, and the rest of the cases according to the previous theorem is

obvious. Taken ∈ N and vxm,vxl ∈ L0 where m, l are natural numbers. Then,

dL(T nvxm,T
nvxl) = dL(vxm+n,vxl+n)

= sup
p

∣∣|p|vxm+n
−|p|vxl+n

∣∣
= sup

p

∣∣xi−1
m+n− xi−1

l+n

∣∣|p|v
= sup

p

∣∣xm+n− xl+n
∣∣∣∣xi−2

m+n + xi−3
m+nxl+n + ...+ xi−2

l+n

∣∣|p|v
< sup

p

∣∣xm− xl
∣∣∣∣xi−2

m+n + xi−3
m+nxl+n + ...+ xi−2

l+n

∣∣|p|v
≤ sup

p

∣∣xm− xl
∣∣∣∣xi−2

m + xi−3
m xl + ...+ xi−2

l

∣∣|p|v
= sup

p

∣∣|p|vxm
−|p|vxl

∣∣
= dL(vxm ,vxl) .

So, there exists k ∈ (0,1) such that

dL(T nvxm ,T
nvxl ])≤ kdL(vxm ,vxl).

Therefore, T is a contraction mapping. �
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Example 1.9. Let X = L0 and T : X → X be a mapping defined as

T vx = v x
2
.

Then, T is a contraction, because

dL(T vx,T vy) = dL(v x
2
,v y

2
)

= sup
p
|x

i−1− yi−1

2i−1 ||p|v

≤ 1
2

sup
p

∣∣xi−1|p|v− yi−1|p|v
∣∣

=
1
2

dL(vx,vy).

Also, T is a uniformely Lipschitzian mapping. Hence, by previous theorem it has a fixed point

in X.

Example 1.10. Let X = L0 and T : X → X be a mapping defined as

T vx = v1−x

for all x ∈ [0,1]. Then, T is non contraction but it has a fixed point, because we have

dL(T vx,T vy) = dL(v1−x,v1−y)

= sup
p
|(1− x)i−1− (1− y)i−1||p|v

= sup
p
|x−y||(1−x)i−1+(1−x)i−2(1−y)+...+(1−y)i−1||p|v.

If x < 1
2 ,y <

1
2 then we have 1− x > x,1− y > y so

dL(T vx,T vy) = sup
p
|x− y||(1− x)i−1 +(1− x)i−2(1− y)+ ...+(1− y)i−1||p|v

> sup
p
|x− y||xi−1 + xi−2y+ ...+ yi−1||p|v

by previous relations, it is concluded that

dL(T vx,T vy)> dL(vx,vy).

Therefore, T is non contraction but it has a fixed point, because

T v 1
2
= v 1

2
.
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