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Abstract. In this paper, we establish a fixed point theorem by revisiting the notion of a new contractive mapping

in Menger PM-spaces. A fixed point for generalized type contractive mappings in M-complete Menger PM-spaces

under arbitrary t-norm.
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1. Introduction

The paper is intended to prove a new contraction mapping principle in certain probabilistic

metric spaces, namely Menger Probabilistic Metric spaces. As is well known that Banach

Contraction Principle is one of the most important results of functional analysis, generalization

of this principle in general metric spaces has been intensively investigated and currently is also

an active branch of research. To cite a few examples, in [1] a new contraction principle was

addressed by Khan et al., where they used a control function on the metric function; in [2] and

[3] generalized Banach contraction conjecture has been established independently and in [4]
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Kirk investigated asymptotic contraction in metric spaces. Particularly, the work of Khan et al.,

in [1] initiated the study of a new category of fixed point theorems. Furthermore, contractive

types of mappings occupy a very important position in the fixed point theory in metric spaces.

Several types of contractions and their interrelations have been discussed in the review paper

due to Rhoades [5] and comparison of various definitions of contraction mappings may be seen

in [6]. Probabilistic metric spaces have been introduced as a probabilistic generalization of

metric spaces. Schweizer and Sklar [7] have investigated several of these structures. And on

contributing to these study, we try to find a new way of contraction in Menger PM-space.

2. Preliminaries

A lot of work has been done on the existence of fixed points of mappings in such spaces. In

the following we review some notions connected with probabilistic metric spaces.

Definition 2.1.[7,8] A map F : R→ R+ is called a distribution function if it is nondecreasing

and left continuous with inf
t∈R

F(t) = 0 and sup
t∈R

F(t) = 1 . We shall denote by D+ the set of

all distribution functions, while H ∈ D+ will always denote the specific distribution function

defined by

H(t) =

 0 i f t ≤ 0,

1 i f t > 0.

Definition 2.2.([7,8]) A binary operation T : [0,1]× [0,1]→ [0,1] is a continuous t-norm is the

following condition hold

(a) T is commutative and associative ,

(b) T is continuous,

(c) T (a,1) = a for all a ∈ [0,1],

(d) T (a,b)≤ T (c,d) whenever a≤ c and b≤ d for all a,b,c,d ∈ [0,1].

The following are three basic continuous t-norms from the literature:

(i) The minimum t-norm, say TM , defined by TM(a,b) = min{a,b}.

(ii) The product t-norm, say Tp, defined by Tp(a,b) = a ·b.

(iii) The Lukasiewicz t-norm, sayTL , defined by TL(a,b) = max{a+b−1,0}.
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These t-norms are related in the following way: TL ≤ Tp ≤ TM.

Definition 2.3.[7,8]A probabilistic metric space (PM-space) is an order pair (X ,F) where S is

a nonempty set, F is a function defined on X ×X to the set of distribution functions which

satisfies the following conditions:

(i) Fx,y(0) = 0,

(ii) Fx,y(t) = 1 for all t > 0 if and only if x = y,

(iii) Fx,y(t) = Fy,x(t) for all x,y ∈ X for all t ∈ R,

(iv) If Fx,y(t1) = 1 and Fy,z(t2) = 1 then Fx,z(t1 + t2) = 1, t ∈ R.

Definition 2.4.[7,8]A Menger Space is an triplet (X ,F,T ) where X is a nonempty set, F is

a function defined on X × X to the set of distribution functions such that the following are

satisfied:

(i) Fx,y(0) = 0 for all x,y ∈ X ,

(ii) Fx,y(t) = 1 for all t > 0 if and only if x = y,

(iii) Fx,y(t) = Fy,x(t) for all x,y ∈ X for all t ∈ R,

(iv) Fx,y(t + s)≥ T (Fx,z(t),Fz,y(s)) for all x,y,z ∈ X for all s, t ∈ R+ where T is a t-norm.

Definition 2.5.[7,8]A Menger PM-space is a triple (X ,F,T ) where X is a nonempty set, T is a

continuous t-norm and F is a mapping from X ×X into D+ such that, if Fx,y denotes the value

of F at the pair(x,y) , the following conditions hold:

(PM1) Fx,y(t) = H(t) if and only if x = y for all t ∈ R+,

(PM2) Fx,y(t) = Fy,x(t) for all x,y ∈ X for all t ∈ R+,

(PM3) Fx,y(t + s)≥ T (Fx,z(t),Fz,y(s)) for all x,y,z ∈ X for all s, t ∈ R+ .

Definition 2.6.[10]Let (X ,F,T ) be a Menger PM-space. Then

(i) A sequence {xn} in X is said to be convergent to x ∈ X if, for every ε > 0 and λ > 0, there

exists a positive integer N such that Fxn,x(ε)> 1−λ whenever n≥ N.

(ii) A sequence {xn} in X is called Cauchy sequence if, for every ε > 0 and λ > 0, there exists

a positive integer N such that Fxn,xm(ε)> 1−λ whenever n,m≥ N.

(iii) A Menger PM-space is said to be M-complete if every Cauchy sequence in X is convergent

to a point in X .
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(iv) A sequence {xn} in X is called G-Cauchy if lim
n→∞

Fxn,xn+m(t) = 1 for each m ∈N and t > 0.

(v) The space (X ,F,T ) is said called G-Complete if every G-Cauchy sequence in X is conver-

gent.

According to[7], the (ε,λ )-topology in a Menger PM-space (X ,F,T ) is introduced by the

family of neighborhoods Nx of a point x ∈ X given by

Nx = Nx(ε,λ ) : ε > 0,λ ∈ (0,1),

where

Nx(ε,λ ) = y ∈ X , : Fx,y(ε)> 1−λ .

The (ε,λ )-topology is a Hausdorff topology. In this topology a function f is continuous in

x ∈ X if and only if f (xn)→ f (x0), for every sequence xn→ x as n→ ∞. The following class

of functions was introduced in [10] and will be used in proving our results in the next section.

Definition 2.7.A function φ : R+→ R+ is said to be a φ -function if it satisfies the following

conditions:

(i) φ(t) = 0 if and only if t = 0,

(ii) φ(t) is strictly increasing and φ(t)→ ∞ as t→ ∞,

(iii) φ is left continuous in (0,∞),

(iv) φ is continuous at 0.

Definition 2.8. [9] Let (X ,F,T ) be a Menger PM-space. The probabilistic metric F is triangular

if it satisfies the condition

1
Fx,y(t)

−1≤
(

1
Fx,z(t)

−1
)
+

(
1

Fz,y(t)
−1
)

(2.1)

for every x,y,z ∈ X and each t > 0.

In the sequel, the class of all φ -functions will be denoted by Φ.

3. Main results

In metric spaces we often use the contraction like d( f x, f y) ≤ cd(x,y),c ∈ (0,1) to get a

fixed point. And in PM spaces the conditions like Ff x, f y(φ(t)) ≥ Fx,y(φ(t/c)), t > 0,c ∈ (0,1)
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have been often used to study fixed point problems. In this section, we find a new contractive

mapping in Menger PM-space. We start with a revised version of Ff x, f y(φ(t)) ≥ Fx,y(φ(t/c))

to proof the existence problem of a fixed point in a G-complete Menger space.

Theorem 3.1. Let (X ,F,T ) be a G-complete Menger space F is triangular and f : X → X be a

mapping satisfying the following inequality:

1
Ff x, f y(φ(t))

−1≤ r
(

1
Ff x,x(φ(t/c))

−1
)
+ r
(

1
Ff y,y(φ(t/c))

−1
)

(3.1)

where x,y ∈ X ,c ∈ (0,1),r ∈ [0, 1
2), t > 0,φ ∈ Φ such that Fx,y(φ(t)) > 0. Then f has a fixed

point.

Proof. Let x0 ∈ X . Define a sequence {xn} in X so that xn+1 = f (xn) for all n ∈ N
⋃
{0}. We

suppose xn+1 6= xn for all n ∈ N, otherwise f has trivially a fixed point.

We have known that sup
t∈R

Fx0,x1(t) = 1 and by (ii) of Definition 2.7, one can find t0 > 0 such

that Fx0,x1(φ(t0)) > 0. Since Fx0,x1(φ(t0)) > 0 implies that Fx0,x1(φ(t0/c)) > 0, therefore (3.1)

gives that

1
Fx2,x1(φ(t0))

−1≤ r
(

1
Fx2,x1(φ(t0/c))

−1
)
+ r
(

1
Fx1,x0(φ(t0/c))

−1
)

(3.2)

since φ is strictly increasing and F is non-decreasing, with t0 > 0,c ∈ (0,1)we can get
1

Fx2,x1(φ(t0/c)) ≤
1

Fx2,x1(φ(t0))
and that is

1
Fx2,x1(φ(t0))

−1≤ r
(

1
Fx2,x1(φ(t0))

−1
)
+ r
(

1
Fx1,x0(φ(t0/c))

−1
)
. (3.3)

From (3.3) we can get that

(1− r)
(

1
Fx2,x1(φ(t0))

−1
)
≤ r
(

1
Fx1,x0(φ(t0/c))

−1
)

(
1

Fx2,x1(φ(t0))
−1
)
≤ r

1− r

(
1

Fx1,x0(φ(t0/c))
−1
)
.

Again we let x = x2,y = x1 from (3.1) we can also have the result that

1
Fx3,x2(φ(t0))

−1≤ r
(

1
Fx3,x2(φ(t0/c))

−1
)
+ r
(

1
Fx2,x1(φ(t0/c))

−1
)

1
Fx3,x2(φ(t0))

−1≤ r
(

1
Fx3,x2(φ(t0))

−1
)
+ r
(

1
Fx2,x1(φ(t0/c))

−1
)
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1
Fx3,x2(φ(t0))

−1≤ r
1− r

(
1

Fx2,x1(φ(t0/c))
−1
)

≤ (
r

1− r
)2
(

1
Fx1,x0(φ(t0/c2))

−1
)
.

(3.4)

Repeating the above procedure successively n times, we obtain

1
Fxn+1,xn(φ(t0))

−1≤ (
r

1− r
)n
(

1
Fx1,x0(φ(t0/cn))

−1
)

(3.5)

If we change x0 with xk in the previous inequalities, then for all n > k we get

1
Fxn,xn+1(φ(ckt0))

−1≤ (
r

1− r
)n−k(

1

Fxk,xk+1(φ(
ckt0
cn−k ))

−1) (3.6)

Since r ∈ [0, 1
2), then 0 ≤ r

1−r < 1, we can get ( r
1−r )

n → 0 as n→ ∞. Therefor the above

inequality imply that

lim
n→∞

Fxn+1,xn(φ(c
kt0))≥ 1 (3.7)

with F(t)≤ 1 we can get

lim
n→∞

Fxn,xn+1(φ(ckt0)) = 1 (3.8)

Now let ε > 0 be given, then by using the properties (i) and (iv) of a function φ we can find

k ∈ N such that φ(ckt0)< ε . It follows from (3.8) that

lim
n→∞

Fxn,xn+1(ε)≥ lim
n→∞

Fxn,xn+1(φ(c
kt0)) = 1 (3.9)

By using the (iv) of Definition(2.4), we obtain

Fxn,xn+p(ε)≥ T (Fxn,xn+1(ε/p),T (Fxn+1,xn+2(ε/p)), ...,(Fxn+p−1xn+p(ε/p)...)). (3.10)

Let n→ ∞ and making use of (3.9) and (c) of Definition (2.2), for any integer p, we get

lim
n→∞

Fxn,xn+p(ε) = 1 for every ε > 0. (3.11)

Hence {xn} is a G-Cauchy sequence. Since (X ,F,T ) is G-complete, therefor xn→ u, as n→∞,

for some u ∈ X .

Now we show that u is a fixed point of f .

Since

Ff u,u(ε)≥ T (Ff u,xn+1(ε/2),Fxn+1,u(ε/2)) (3.12)
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by using the properties (i) and (iv) of a function φ , we can find s > 0 such that φ(s)< ε

2 . Again,

since xn→ u as n→∞, then there exists n0 ∈N such that, for all n> n0, we have Fxn,u(φ(s))> 0.

Therefor, for n > n0, we obtain

Fxn+1, f u(ε/2)≥ Fxn+1, f u(φ(s)) (3.13)

1
Fxn+1, f u(φ(s))

−1≤ r
(

1
Ff xn,xn(φ(

s
c))
−1
)
+ r
(

1
Ff u,u(φ(

s
c))
−1
)

(3.14)

Since F is triangular then we can get

r
(

1
Ff u,u(φ(

s
c))
−1
)
≤ r
(

1
Ff u,xn+1(φ(

s
c))
−1
)
+ r
(

1
Fxn+1,u(φ(

s
c))
−1
)

≤ r
(

1
Ff u,xn+1(φ(s))

−1
)
+ r
(

1
Fxn+1,u(φ(

s
c))
−1
) (3.15)

So (3.14) can be treated as:

1
Fxn+1, f u(φ(s))

−1≤ r
(

1
Ff xn,xn(φ(

s
c))
−1
)
+ r
(

1
Ff u,xn+1(φ(s))

−1
)

+ r
(

1
Fxn+1,u(φ(

s
c))
−1
) (3.16)

that is

(1− r)
(

1
Ff u,xn+1(φ(s))

−1
)

≤ r
(

1
Fxn+1,u(φ(

s
c))
−1
)
+ r
(

1
Ff xn,xn(φ(

s
c))
−1
)

≤ r
(

1
Fxn+1,u(φ(

s
c))
−1
)
+ r
(

1
Fxn+1,xn(φ(

s
c))
−1
) (3.17)

In (3.17) let n→ ∞, we get

lim
n→∞

Fxn+1, f u(φ(s)) = 1 (3.18)

With (3.13) we can obtain

lim
n→∞

Fxn+1, f u(
ε

2
) = 1 (3.19)

From (3.12) and (3.19), we get Ff u,u(ε) = 1 for every ε > 0, which in turn yields that f u = u.

This completes the proof.

Theorem 3.2. Fix( f ) := {x ∈ X : x = f x},Fu,v(0) = 0 if u,v ∈ Fix( f ) then with the hypotheses

of Theorem 3.1, we obtain uniqueness of the fixed point.
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Proof.We prove uniqueness of the fixed point. Let u and v be two fixed point of f , that is,

f u = u and f v = v. For all s > 0, by the condition of Definition of 2.7 we have φ( s
cn )→ ∞ as

n→ ∞. Since sup
n→∞

Fu,v(φ(
s
cn )) = 1 there exist n0 > N so that Fu,v(φ(

s
cn0 )) > 0. By using (3.1)

we get

1
Fu,v(φ(

s
cn0−1 ))

−1 =
1

Ff u, f v(φ(
s

cn0−1 ))
−1

≤ r
(

1
Ff u,u(φ(

s
cn0 ))

−1
)
+ r
(

1
Ff v,v(φ(

s
cn0 ))

−1
)

= r
(

1
Fu,u(φ(

s
cn0 ))

−1
)
+ r
(

1
Fv,v(φ(

s
cn0 ))

−1
)

= 1

(3.20)

that implies 1
Fu,v(φ(

s
cn0−1 ))

= 1. By repeating (3.20) n times, We get Fu,v(φ(s)) = 1. It follows

that Fu,v(t) = H(t) for all t > 0. In fact, if t is not range of φ , since φ is continuous at 0, then

there exists s > 0 such that φ(s) < t. This implies Fu,v(t) ≥ Fu,v(φ(s)) = 1, yielding thereby

u = v.

Our next step is to furnish a fixed point theorem in an M-complete Menger PM-space.

Theorem 3.3. Let (X ,F,T ) be an M-complete Menger PM-space and : f : X → X be a con-

tractive mapping, with the condition in Theorem 3.1. Then f has a fixed point.

Proof In view of the assumptions in Theorem 3.1. Then, following similar arguments to those

given in Theorem 3.1, we obtain Fxn,xn+1(ε)→ 1 as n→∞. Now we shall show that {xn} is a M-

Cauchy sequence.By the properties of φ , given ε > 0, we can find s > 0 such that ε > φ(s)> 0

Therefor,

1
Fxn,xn+p(ε)

−1≤ 1
Fxn,xn+p(φ(s))

−1 (3.21)
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Now since F is triangular, we get

1
Fxn,xn+p(ε)

−1≤ 1
Fxn,xn+1(ε)

−1+
1

Fxn+1,xn+2(ε)
−1+ ...

+
1

Fxn+p−1,xn+p(ε)
−1

≤ 1
Fxn,xn+1(φ(s))

−1+
1

Fxn+1,xn+2(φ(s))
−1+ ...

+
1

Fxn+p−1,xn+p(φ(s))
−1

(3.22)

again we use the inequality (3.5) we get

1
Fxn,xn+p(ε)

−1≤ (
r

1− r
)n
(

1
Fx0,x1(φ(s/cn))

−1
)

+(
r

1− r
)n+1

(
1

Fx0,x1(φ(s/cn+1))
−1
)
+ ...

+(
r

1− r
)n+p−1

(
1

Fx0,x1(φ(s/cn+p−1))
−1
)

≤ (
r

1− r
)n
(

1
Fx0,x1(φ(s/cn))

−1
)

+(
r

1− r
)n+1

(
1

Fx0,x1(φ(s/cn))
−1
)
+ ...

+(
r

1− r
)n+p−1

(
1

Fx0,x1(φ(s/cn))
−1
)

= (
r

1− r
)n
(

1
Fx0,x1(φ(s/cn))

−1
)(

1− ( r
1−r )

p

1− r
1−r

)

(3.23)

Since r ∈ [0, 1
2),

r
1−r ∈ (0,1) then ( r

1−r )
n→ 0 as n→ ∞, we obtain Fxn,xn+p(ε)→ 1 as n→ ∞.

Thus {xn} is an M-Cauchy sequence in X . The rest of this theorem can be completed on the

lines of Theorem 3.1. This concludes the proof.

Theorem 3.4. The uniqueness of the fixed point can be proofed in the same way we have seen

in Theorem 3.2.
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