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Abstract. In this work, we investigate the existence and regularity of solutions for some partial functional inte-

grodifferential equations with finite delay. The continuous dependence upen initial values and asymptotic stability

are also studied. Firstly, we show the existence of the mild solutions. Secondly, we give sufficient conditions en-

suring the existence of the strict solutions. The method used treats the equations in the domain of A with the graph

norm employing results from linear semigroup theory. To illustrate our abstract result, we conclude this work with

an application.
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1. Introduction

Integrodifferential equations with delay are important for investigating some problems raised

from natural phenomena. They have been studied in many different aspects. The purpose of

this work is to study global existence and regularity of the following integrodifferential equation
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with finite delay in a Banach space (X , |.|) , namely

(1.1)


u′(t) = Au(t)+

∫ t

0
g(t− s,u(s))ds+ f (t,ut), for t ≥ 0,

u0 = ϕ ∈ C = C ([−r,0];D(A)) ,

where A : D(A) ⊂X →X is the infinitesimal generator of a linear semigroup (T (t))t≥0 a

Banach space X , g is in general a nonlinear operator from R+×D(A) to X , f : R+×C →X

is a continuous function and the phase space C is a linear space of functions mapping [−r,0]

into D(A) endowed with the graph norm namely for x ∈ D(A), |x|D(A) = |x|X + |Ax|X then(
D(A), |.|D(A)

)
is a Banach space, for every t ≥ 0, the history function ut ∈ C is defined by

ut(θ) = u(t +θ) for θ ∈ [−r,0].

As in [33], we consider a nonlinear Volterra integrodifferential equation of parabolic type

(1.2)



∂

∂ t
w(t,x) =

∂ 2

∂x2 w(t,x)+
∫ t

0
k
(

t− s,
∂ 2

∂x2 w(s,x)
)

ds+h(t,x),

for t > 0 and 0 < x < 1,

w(t,0) = w(t,1) = 0, for t > 0,

w(0,x) = w0(x), for 0 < x < 1.

The abstract version of the initial boundary value problem (1.2) is given by

(1.3)


u′(t) = Au(t)+

∫ t

0
g(t− s,u(s))ds+F(t), for t ≥ 0,

u(0) = x ∈X .

Some results are proved concerning local existence, global existence, continuous dependence

upon initial values and asymptotic stability for Eq.(1.3) under some suitable assumptions. A

vast literature has investigated this equation in various aspects. Eq.(1.3) has many physical

applications and arises in such problems as heat flow in materials with memory [7], [8]. As a

model see Eq.(1.2). For his study, we also refer the reader to [[3], [9], [23], [27]].

Partial functional differential equations arise in a variety of areas of biological, physical and
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engineering applications, see, for example, the books and the papers in the following references

[[20], [21], [25], [30], [34]] , [19,28] and the references therein. Equations with delay appear in

many mathematical models of natural phenomena. Recently, the following differential equa-

tions with delay have been studies by many authors ([32], and references therein):

(1.4)


u′(t) = Au(t)+F(t,ut), for t ≥ 0,

u0 = ϕ ∈ C ([−r,0];X ) .

There has been a great deal of work contributed to the study of partial differential equations

with delay by using different methods under different conditions. The most classical work is

due to Travis and Webb [32].

In, the recent years, many authors have attracted much attention to the study of existence prob-

lems for differential and integrodifferntial equations. We refer to [1, 2, 6, 10, 11, 12, 13, 14, 15,

22, 26, 29, 31] where numerous approaches that are commonly used: the contraction mapping

principle, Leray-Schauder alternative, Schauder and Sadovskii fixed point theorems.

Eq.(1.1) is the mixed type of Eq.(1.3) and Eq.(1.4). It well enable us to study the nonlinear

Volterra integrodifferential equation with delay. On the basis of the results in Eq.(1.4) we gen-

eralize the method used in [33] to derive global existence and regularity of Eq.(1.1). The result

obtained is a generalization and a continuation of [33]. The method used treats the equation in

the domain of A with the graph norm employing results from linear semigroup theory concern-

ing abstract inhomogeneous linear differential equations.

In Section 2, we recall some preliminary results about Eq.(1.3) and Eq.(1.4). Some basic no-

tations and assumptions are also given in this section. In Section 3, we prove global existence

and regularity of solution to Eq.(1.1) which are the main results of this paper. Moreover, some

properties of solutions are also studied. In Section 4, we give an example of application to show

that our results valuable.
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2. Preliminary results

In this section, we recall some fundamental results needed to establish our results. Throughout

the paper, X is a Banach space, A is closed linear operator on X .Y represent the Banach space

D(A) equipped with the graph norm defined by |y|Y = |y|X + |Ay|X for y ∈Y . C ([−r,0];Y )

is the space of continuous function from [−r,0] to Y . It is well know by the Hille-Yosida

theorem that A is the infinitesimal generator of a C0-semigroup of bounded linear operators in

X if and only if

(i) D(A) = X ,

(ii) there exist M ≥ 1, w ∈ R such that for λ > w, (λ I−A)−1 ∈B(X ) and

∣∣(λ I−A)−n∣∣≤ M
(λ −w)n for λ > w and n ∈ N,

where B(X ) is the space of bounded linear operators on X .

Definition 2.1. A continuous function u : [0,+∞[→D(A) is said to be strict solution of Eq.(1.3)

if

(i) u ∈ C 1 ([0,+∞[;X )∩C ([0,+∞[;Y )

(ii) u satisfies Eq.(1.3) for all t ≥ 0.

Remark 2.2. From this definition, we deduce that u(t) ∈D(A), the function t 7→ g(t− s,u(s))

is integrable for all t ≥ 0 and s ∈ [0, t].

Theorem 2.3. [33]. If u is a strict solution of Eq.(1.3) then u satisfies

(2.1) u(t) = T (t)x+
∫ t

0
T (t− s)

∫ s

0
g(s− r,u(r))drds+

∫ t

0
T (t− s)F(s)ds.

Remark 2.4. If u satisfies the formula (2.1) u is not in general a strict solution. That is why we

give the definition of the mild solution.

Definition 2.5. A continuous function u : [0,+∞[→D(A) is called a mild solution of Eq.(1.3)

if u satisfies the formula (2.1).
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3. Existence and regularity of the solutions for Eq.(1.1)

In this section, we prove global existence and regularity of solution to Eq.(1.1), which are the

main results of this work. Moreover, the continuous dependence upen initial values and asymp-

totic stability are also studied. Firstly, we show the existence of the mild solutions. Secondly,

we give sufficient conditions ensuring the existence of the strict solutions.

3.1 Global existence of the mild solutions

Definition 3.1. We say that a continuous function u : [−r,+∞[→ D(A) is a strict solution of

Eq.(1.1) if the following conditions hold

(i) u ∈ C 1([0,+∞[;X )∩C ([0,+∞[;Y ),

(ii) u satisfies Eq.(1.1) on [0,+∞[,

(iii) u(θ) = ϕ(θ) for −r ≤ θ ≤ 0.

Proposition 3.2. If u is a strict solution of Eq.(1.1), then u is given by

(3.1) u(t) = T (t)ϕ(0)+
∫ t

0
T (t− s)

∫ s

0
g(s− r,u(r))drds+

∫ t

0
T (t− s) f (s,us)ds.

Proof. It is just a consequence of Theorem.(2.3). In fact, let us suppose F(t) = f (t,ut) for t ≥ 0.

Then we get the desired result. �

Definition 3.3. We say that a continuous function u : [−r,+∞[→ D(A) is a mild solution of

Eq.(1.1) if u satisfies the formula (3.1) and u0 = ϕ.

To establish existence of mild solutions, we assume the following assumptions.

(H1) f : R+×C ([−r,0];D(A))→ D(A) is continuous and Lipschitzian with respect to the

second argument. Let L f > 0 be such that

| f (t,ϕ)− f (t, ϕ̂)| ≤ L f |ϕ− ϕ̂|C for t ≥ 0 and ϕ, ϕ̂ ∈ C ([−r,0];D(A)) .

(H2) The derivative ∂g
∂ t (t,u) exists and is continuous from R+×D(A) into X , moreover there

exist two nondecreasing continuous functions b : R+→ R+ and c : R+→ R+ such that
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|g(s,u1)−g(s,u2)| ≤ b(s) |u1−u2|D(A)

and ∣∣∣∣∂g
∂ s

(s,u1)−
∂g
∂ s

(s,u2)

∣∣∣∣≤ c(s) |u1−u2|D(A)

for all s ∈ R+ and u1,u2 ∈ Y .

Theorem 3.4. Assume that (H1) and (H2) hold. If ϕ ∈ C ([−r,0];Y ), then there exist a unique

continuous function u : [−r,+∞[→ Y which solves (3.1).

Proof. Let t1 > 0. Define the set Mt1(ϕ) := {u ∈ C ([0, t1];Y ) : u(0) = ϕ(0)} .

Mt1(ϕ) is a closed subset of C ([0, t1];Y ), where C ([0, t1];Y ) is the space of continuous func-

tions from [0, t1] to Y equipped with the uniform norm topology. Next, for each u ∈ Mt1(ϕ),

we define its extension ũ : [−r, t1]→X by

ũ(t) =


ϕ(t) for t ∈ [−r,0],

u(t) for t ∈ [0, t1].

Define the operator Γ : Mt1(ϕ)→ C ([−r,0];X ) by

(3.2) (Γu)(t) = T (t)ϕ(0)+
∫ t

0
T (t− s)

[∫ s

0
g(s− r, ũ(r))dr+ f (s, ũs)

]
ds.

The first step is to show that Γ(Mt1(ϕ))⊂Mt1(ϕ). In fact, we have

(Γu)(t) = T (t)ϕ(0)+
∫ t

0
T (t− s)

∫ s

0
g(s− r, ũ(r))drds+

∫ t

0
T (t− s) f (s, ũs)ds 0≤ t ≤ t1,

and

(AΓu)(t) = AT (t)ϕ(0)+A
∫ t

0
T (t− s)

∫ s

0
g(s− r, ũ(r))drds+A

∫ t

0
T (t− s) f (s, ũs)ds 0≤ t ≤ t1.

Since A is closed, then

(AΓu)(t) = AT (t)ϕ(0)+A
∫ t

0
T (t− s)

∫ s

0
g(s− r, ũ(r))drds+

∫ t

0
T (t− s)A f (s, ũs)ds 0≤ t ≤ t1.

For the next, we need the following Lemmas.
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Lemma 3.5. Let u : [0, t1]→X be continuously differentiable. Assume that (H2) hold. Then,

k(t) =
∫ t

0
g(t− s,u(s))ds is continuously differentiable from [0, t1] to X .

Proof. Let k(t) =
∫ t

0
g(t− s,u(s))ds for all t ∈ [0, t1]. Let h > 0.

k(t +h)− k(t)
h

=
1
h

[∫ t+h

0
g(t +h− s,u(s))ds)−

∫ t

0
g(t− s,u(s))ds

]

=
1
h

∫ t

0
(g(t +h− s,u(s))−g(t− s,u(s)))ds+

1
h

∫ t+h

t
g(t +h− s,u(s))ds

passing to the limit we obtain k′(t)=
k(t +h)− k(t)

h
−→

∫ t

0

∂

∂ t
g(t−s,u(s))ds+g(0,u(t)) when

h−→ 0+.

By virtue of the hypothesis we have placed on g, we see that k(t) is continuously differentiable

from [0, t1] to X . �

We require the following Lemma, which is proved in [24, p.488].

Lemma 3.6. [24]. Let k : [0, t1]→X be continuously differentiable and q be defined by

q(t) =
∫ t

0
T (t− s)k(s)ds for t ∈ [0, t1].

Then q(t) ∈D(A) for t ∈ [0, t1], q is continuously differentiable and

Aq(t) = q′(t)− k(t) =
∫ t

0
T (t− s)k′(s)ds+T (t)k(0)− k(t).

By virtue of the hypothesis (H2), then, by Lemmas 3.5 and 3.6, we deduce that,

(3.3)

(AΓu)(t) = AT (t)ϕ(0)+
∫ t

0
T (t− s)g(0, ũ(s))ds

+
∫ t

0
T (t− s)

∫ s

0

∂g
∂ s

(s− r, ũ(r))drds−
∫ t

0
g(t− s, ũ(s))ds

+
∫ t

0
T (t− s)A f (s, ũs)ds 0≤ t ≤ t1.

Thus, for u ∈Mt1(ϕ), Γu and AΓu are both continuous from [0, t1] to X , Γ maps Mt1(ϕ) into

Mt1(ϕ).
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Let u,v ∈Mt1(ϕ). Then

|(Γu)(t)− (Γv)(t)|X ≤
∣∣∣∣∫ t

0
T (t− s)

∫ s

0
(g(s− r, ũ(r))−g(s− r, ṽ(r))drds

∣∣∣∣
X

+

∣∣∣∣∫ t

0
T (t− s)( f (s, ũs)− f (s, ṽs))ds

∣∣∣∣
X

≤M
∫ t

0
ew(t−s)

∫ s

0
|g(s− r, ũ(r))−g(s− r, ṽ(r))|X drds

+M
∫ t

0
ew(t−s) | f (s, ũs)− f (s, ṽs)|X ds

≤M
∫ t

0
ew(t−s)

∫ s

0
|g(s− r, ũ(r))−g(s− r, ṽ(r))|X drds

+M
∫ t

0
ew(t−s) | f (s, ũs)− f (s, ṽs)|D(A) ds.

Without loss of generality, we assume that w > 0. By (H1) and (H2), we obtain that

|(Γu)(t)− (Γv)(t)|X ≤Mewt1
∫ t

0

∫ s

0
b(s− r) |ũ(r)− ṽ(r)|D(A) drds+ML f ewt1

∫ t

0
|ũs− ṽs|D(A) ds.

On the other hand, we have

|(AΓu)(t)− (AΓv)(t)|X
≤M

∫ t
0 ew(t−s) |g(0, ũ(s))−g(0, ṽ(s))|X ds+

∫ t
0 |g(t− s, ũ(s))−g(t− s, ṽ(s))|X ds

+M
∫ t

0
ew(t−s)

∫ s

0

∣∣∣∣∂g
∂ s

(s− r, ũ(r))− ∂g
∂ s

(s− r, ṽ(r))
∣∣∣∣
X

drds

+M
∫ t

0
ew(t−s) |A f (s, ũs)−A f (s, ṽs)|Y ds

≤Mb(0)ewt1
∫ t

0
|ũ(s)− ṽ(s)|D(A) ds+Mewt1

∫ t

0

∫ s

0
c(s− r) |ũ(r)− ṽ(r)|D(A) drds

+
∫ t

0
b(t− s) |ũ(s)− ṽ(s)|D(A) ds+ML f ewt1

∫ t

0
|ũs− ṽs|D(A) ds.

Which implies that

|(Γu)(t)− (Γv)(t)|D(A) ≤Mb(0)ewt1
∫ t

0
|ũ(s)− ṽ(s)|D(A) ds

+Mewt1
∫ t

0

∫ s

0
[b(s− r)+ c(s− r)] |ũ(r)− ṽ(r)|D(A) drds

+
∫ t

0
b(t− s) |ũ(s)− ṽ(s)|D(A) ds+2ML f ewt1

∫ t

0
|ũs− ṽs|D(A) ds.
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Define α(t) =
∫ t

0
e−ws(b(s)+ c(s))ds and β (t) = max

0≤s≤t
e−wsb(s) for t > 0.

|(Γu)(t)− (Γv)(t)|D(A) ≤Mb(0)ewt1
∫ t1

0
|ũ(s)− ṽ(s)|D(A) ds+Mewt1α(t)

∫ t1

0
|ũ(s)− ṽ(s)|D(A) ds

+Mewt1β (t)
∫ t1

0
|ũ(s)− ṽ(s)|D(A) ds+2ML f ewt1

∫ t1

0
|ũs− ṽs|D(A) ds

|(Γu)(t)− (Γv)(t)|D(A) ≤Mt1ewt1
[
b(0)+α(t)+β (t)+2L f

]
|ũ− ṽ|D(A) .

If we choose t1 such that Mt1ewt1
[
b(0)+α(t)+β (t)+2L f

]
< 1, then Γ is a strict contraction

in Mt1(ϕ), then by applying the Banach fixed point Theorem, we deduce that there exists a

unique fixed point u = u(.,ϕ) for Γ in Mt1(ϕ), which implies that Eq.(1.1) has a unique mild

solution on [−r, t1]. A similar argument can be used for [t1,2t1],...,[nt1,(n+1)t1], for all n≥ 0,

which implies that the mild solution exists uniquely in [−r,+∞[. This completes the proof.

�

Proposition 3.7. (Dependence continuous with respect to the initial data)

Suppose that (H1) and (H2) hold. Then there exist continuous functions α : R+ → R+ and

β : R+→ R+ such that if u and v satisfy Eq.(1.1) for 0≤ t ≤ t1 with u0 = ϕ1,v0 = ϕ2. Then
|ut− vt |D(A) ≤M |ϕ1−ϕ2|e[w+M(b(0)+α(t)+β (t)+k)]t if w≥ 0

|ut− vt |D(A) ≤Me−wr |ϕ1−ϕ2|e[w+M(b(0)+α(t)+β (t)+k)e−wr]t if w < 0,

where k is the Lipschitz constant of f .

Proof. Define

α(t) =
∫ t

0
e−ws(b(s)+ c(s))ds and β (t) = max

0≤s≤t
b(s)e−ws for t > 0.

Using (3.2) and (3.3), we obtain that

|u(t)− v(t)|X ≤Mewt |ϕ1−ϕ2|+M
∫ t

0
ew(t−s)

∫ s

0
|g(s− r,u(r))−g(s− r,v(r))|X drds

+M
∫ t

0
ew(t−s) | f (s,us)− f (s,vs)|X ds
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|u(t)− v(t)|X ≤Mewt |ϕ1−ϕ2|+M
∫ t

0
ew(t−s)

∫ s

0
|g(s− r,u(r))−g(s− r,v(r))|X drds

+M
∫ t

0
ew(t−s) | f (s,us)− f (s,vs)|D(A) ds

|u(t)− v(t)|X ≤Mewt |ϕ1−ϕ2|+Mewt
∫ t

0
e−ws

∫ s

0
b(s− r) |u(r)− v(r)|D(A) drds

+ML f ewt
∫ t

0
e−ws |us− vs|D(A) ds.

On the other hand, we have

|(Au)(t)− (Av)(t)|X ≤Mewt |A(ϕ1−ϕ2)|

+M
∫ t

0
ew(t−s)

[
|g(0,u(s))−g(0,v(s))|X +

∫ s

0

∣∣∣∣∂g
∂ s

(s− r,u(r))− ∂g
∂ s

(s− r,v(r))
∣∣∣∣
X

dr
]

ds

+
∫ t

0
|g(t− s,u(s))−g(t− s,v(s))|X ds+M

∫ t

0
ew(t−s) |A f (s,us)−A f (s,vs)|X ds

|(Au)(t)− (Av)(t)|X ≤Mewt |A(ϕ1−ϕ2)|

+M
∫ t

0
ew(t−s)

[
b(0) |u(s)− v(s)|D(A)+

∫ s

0
c(s− r) |u(r)− v(r)|D(A) dr

]
ds

+
∫ t

0
b(t− s) |u(s)− v(s)|D(A) ds+ML f

∫ t

0
ew(t−s) |us− vs|D(A) ds.

|u(t)− v(t)|D(A) ≤Mewt |ϕ1−ϕ2|+Mewt
∫ t

0
e−ws

∫ s

0
(b(s− r)+ c(s− r)) |u(r)− v(r)|D(A) drds

+Mb(0)ewt
∫ t

0
e−ws |u(s)− v(s)|D(A) ds+Me−wt

∫ t

0
b(t− s) |u(s)− v(s)|D(A) ds

+2ML f ewt
∫ t

0
e−ws |us− vs|D(A) ds

|u(t)− v(t)|D(A) ≤Mewt |ϕ1−ϕ2|+Mewt
α(t)

∫ t

0
|u(s)− v(s)|D(A) ds

+Mb(0)ewt
∫ t

0
e−ws |u(s)− v(s)|D(A) ds+Mβ (t)

∫ t

0
|u(s)− v(s)|D(A) ds

+2ML f ewt
∫ t

0
e−ws |us− vs|D(A) ds.
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|u(t +θ)− v(t +θ)|D(A)≤



|ϕ1−ϕ2| if t +θ ≤ 0,

Mew(t+θ) |ϕ1−ϕ2|+Mew(t+θ)
α(t +θ)

∫ t+θ

0
|u(s)− v(s)|D(A) ds

+Mb(0)ew(t+θ)
∫ t+θ

0
e−ws |u(s)− v(s)|D(A) ds

+Mβ (t +θ)
∫ t+θ

0
|u(s)− v(s)|D(A) ds

+2ML f ew(t+θ)
∫ t+θ

0
e−ws |us− vs|D(A) ds, if t +θ ≥ 0.

If w≥ 0, then

e−wt |ut− vt |D(A) ≤M |ϕ1−ϕ2|+Mα(t)
∫ t

0
e−ws |us− vs|D(A) ds+Mb(0)

∫ t

0
e−ws |us− vs|D(A) ds

+Mβ (t)
∫ t

0
e−ws |us− vs|D(A) ds+2ML f

∫ t

0
e−ws |us− vs|D(A) ds

e−wt |ut− vt |D(A) ≤M |ϕ1−ϕ2|+M
[
b(0)+α(t)+β (t)+2L f

]∫ t

0
e−ws |us− vs|D(A) ds.

If w < 0, then

e−wt |ut− vt |D(A) ≤Me−wr |ϕ1−ϕ2|+Me−wr [b(0)+α(t)+β (t)+2L f
]∫ t

0
e−ws |us− vs|D(A) ds.

By Gronwall’s Lemma, the result follows. �

Proposition 3.8. Suppose the hypothesis of Theorem 3.4 and ϕ ∈ C . Suppose there exist

constants α0 and β0 such that
∫ t

0
e−ws(b(s) + c(s))ds ≤ α0, b(t)e−wt ≤ β0 for t ≥ 0, and

M(α0+β0+b(0)+k)+w =de f λ < 0 for some w < 0. Then the solutions of Eq.(1.1) are

exponentially asymptotically stable in the following sens: if u,v are the solutions of Eq.(1.1)

for u0 = ϕ1,v0 = ϕ2, respectively, then

|ut− vt |D(A) ≤Me−wr |ϕ1−ϕ2|eλ t , for t ≥ 0.

Proof. The proof following Proposition 3.7 by obseving that α(t) and β (t) satisfy α(t) ≤ α0

and β (t)≤ β0. �
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3.2 Existence of strict solutions

In this section we recall some fundamental results needed to establish our results. We consider

the inhomogeneous initial value problem

(3.4)


u′(t) = Au(t)+F(t) for t ≥ 0,

u(0) = x ∈X

where F : [0,a]−→X , is continuous.

Definition 3.9. A continuous function u : [0,+∞[→X is said to be strict solution of Eq.(3.4)

if

(i) u ∈ C 1 ([0,+∞[;X )∩C ([0,+∞[;D(A))

(ii) u satisfies Eq.(3.4) for all t ≥ 0.

If u is a strict solution of Eq.(3.4), then u is given by

(3.5) u(t) = T (t)x+
∫ a

0
T (t− s)F(s)ds for t ∈ [0,a].

The next Theorem provides sufficients conditions for the regularity of solution to Eq.(3.4).

Theorem 3.10. [30]. Let A be the infinitesimal generator of a C0-semigroup (T (t))t≥0. let F ∈

L1 (0,a;X ) be continuous on [0,a] and let

v(t) =
∫ t

0
T (t− s)F(s)ds t ∈ [0,a].

The Eq.(3.4) has a strict solution u on [0,a] for every x∈D(A) if one of the following conditions

is satisfied;

(1) v(t) is continuously differentiable on [0,a].

(2) v(t) ∈D(A) for 0 < t < a and Av(t) is continuous on [0,a]. If Eq.(3.4) has a strict solution

u on [0,a] for some x ∈D(A) then v satisfies both (1) and (2).

From Theorem 3.10 we dram the following useful Lemma.
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Lemma 3.11. [30]. Let A be the infinitesimal generator of a C0-semigroup (T (t))t≥0. If F ∈

L1 ([0,a];D(A)) be continuous on [0,a]. If F(s)∈D(A) for 0< s< a and AF ∈ L1 ([0,a];D(A))

then for every x ∈D(A) the Eq.(3.4) has a strict solution u on [0,a].

Theorem 3.12. Let u ∈ C ([0, t1];D(A)) the mild solution be defined by the formula (3.1). If

u0 ∈ D(A) and f ∈ L1 (R+×C ;D(A)) be continuous from R+×C to D(A), then u is a strict

solution of Eq.(1.1).

Proof. It is just a consequence of Theorem 3.10. In fact, let us suppose

v(t) =
∫ t

0
T (t− s)

∫ s

0
g(s− r,u(r))drds+

∫ t

0
T (t− s) f (s,us)ds for t ≥ 0.

We show that v satisfies the following two conditions

(i) v is continuously differentiable on [0, t1] and v′ is continuous on [0, t1],

(ii) v(t) ∈D(A) on [0, t1] and Av is continuous on [0, t1].

Based on the formula (3.1) we have: v(t) = u(t)−T (t)ϕ(0) is differentiable for t > 0 as the

difference of two such differentiable functions and v′(t) = u′(t)−T (t)Aϕ(0) is obviously con-

tinuous on (0, t1). Therefore (i) is satisfied. Also if ϕ ∈D(A) T (t)ϕ ∈D(A) for t ≥ 0 and there-

fore v(t) = u(t)−T (t)ϕ(0) ∈ D(A) for t > 0 and Av(t) = Au(t)−AT (t)ϕ = u′(t)−
∫ t

0
g(t−

s,u(s))ds− f (t,ut)−T (t)Aϕ is continuous on (0, t1). Thus also (ii) is satisfaied.

On the other hand, it is easy to verify for h > 0 the identify

(3.6)

(
T (h)− I

h

)
v(t) =

v(t +h)− v(t)
h

−1
h

∫ t+h

t
T (t +h− s) [k(s)+ f (s,us]ds.

From the continuity of k(s) =
∫ t

0
g(t− s,u(s))ds and f it is clear that the second therm on the

right-hand side of (3.6) has the limit k(s) =
∫ t

0
g(t−s,u(s))ds+ f (t,ut) as h→ 0. If v(t) is con-

tinuously differentiable on (0, t1) then it follows from (3.6) that v(t) ∈D(A) for 0 < t < t1 and

Av(t) = v′(t)−
[∫ t

0
g(t− s,u(s))ds+ f (t,ut)

]
. Since v(0) = 0 it follows that u(t) = T (t)ϕ(0)+
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v(t) is the solution of Eq.(1.1) for ϕ(0)∈D(A). If v(t)∈D(A) it follows from (3.6) that v(t) is

differentiable from the right at t and the right derivative D+v(t) of v satisfies D+v(t) = Av(t)+∫ t

0
g(t−s,u(s))ds+ f (t,ut). Since D+v(t) is continuous, v(t) is continuously differentiable and

v′(t) = Av(t)+k(t)+ f (t,ut). Since v(0) = 0, u(t) = T (t)ϕ(0)+v(t) is the solution of Eq.(1.1)

for ϕ ∈D(A) and the proof is complete. �

4. Application

For illustration, we propose to study the existence of solutions for the following model

(4.1)



∂

∂ t
y(t,x) =

∂ 2

∂x2 y(t,x)+
∫ t

0
β (t− s,

∂ 2

∂x2 y(s,x))ds

+
∫ 0

−r
h(θ ,y(t +θ ,x))dθ for t ≥ 0, 0≤ x≤ 1,

y(t,0) = y(t,1) = 0 for t ≥ 0,

y(θ ,x) = ϕ0(θ ,x) for θ ∈ [−r,0] and 0≤ x≤ 1,

where h : [−r,0]×R→ R is continuous and Lipschitzian with respect to the second argument,

β : R+×R→ R is bounded uniformly continuous, continuously differentiable in its first place

and the derivative ∂β

∂ t exists and is Lipschitzian continuous. The function ϕ0 : [−r,0]× [0,1]→

R will be specified later. To rewrite Eq.(4.1) in the abstract from, we introduce the space

X = L2([0,1];R). Let A : D(A)→X be defined by


D(A) = H2(0,1)∩H1

0 (0,1),

Az = z′′.

Let g : R+×D(A)→X by g(t,z) = β (t,Az) for t ≥ 0. Let f : R+×C →X be defined by

f (t,ϕ)(x) =
∫ 0

−r
h(θ ,ϕ(θ)(x))dθ , for 0≤ x≤ 1 and t ≥ 0.

The initial data ϕ(θ)(x) = ϕ0(θ ,x), for θ ∈ [−r,0] and x ∈ [0,1].
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Let us suppose v(t) = y(t, .). Then Eq.(4.1) takes the following abstract from

(4.2)


d
dt

v(t) = Av(t)+
∫ t

0
g(t− s,v(s))ds+ f (t,vt) for t ≥ 0,

v0 = ϕ.

It is well known that A is the generator of C0-semigroup (T (t))t≥0 in X . In addition, we

suppose that

(i) h ∈ C ([−r,0]×R,R) is continuous and Lipshitzian with respect to the second argument.

(ii) β ∈ C (R+×R,R) is bounded uniformly continuous, continuously differentiable in its first

place and the derivative βt exists and is Lipschitzian continuous.

(iii) The initial data ϕ ∈ C ([−r,0]× [0,1],D(A)) , ϕ0(0,0) = ϕ0(0,1) = 0 is continuous from

[−r,0]× [0,1] to D(A). From the assumption (i), f satisfies the hypothesis (H1). Moreover,

from assumption (ii), it follows that g satisfies the hypothesis (H2). Finally, from assumption

(iii) and Theorem 3.4, we deduce that Eq.(4.1) has a unique mild solution which is defined for

all t ≥ 0. For the regularity, we impose the following conditions which imply the hypotheses of

Theorem 3.12.

(iv) h ∈ L1([−r,0]×R;R) be continuous on [−r,0]×R,

(v) ϕ0 ∈ C ([−r,0];D(A)) such that ϕ0(0, .) ∈D(A).

Consequently, by Theorem 3.12, we obtain the following existence result.

Proposition 4.1. Under the above assumptions, Eq.(4.1) has a unique strict solution v and the

solution u defined by u(t,x) = v(t)(x) for t ≥ 0 and x ∈ [0,1] is a solution Eq.(4.1).
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