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Abstract. In this paper, by using the classes C and Φu of functions to introduce a generalization of the known

class Ψ of 5-dimensional functions, we discuss the existence problems of common fixed points for two mappings

of integral type with semi-implicit contractive conditions and give more general results and some particular forms.
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1. Introduction and Preliminaries

Throughout this paper, we assume that R+ = [0,+∞) and

Φ= {φ : φ :R+→R+satisfying that φ is Lebesgue integral, summable on each compact

subset of R+ and
∫

ε

0 φ(t)dt > 0 for each ε > 0}

The famous Banach’s contraction principle is as follows:
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Theorem 1.1.[1] Let f be a self mapping on a complete metric space (X ,d) satisfying

d( f x, f y)≤ cd(x,y), ∀ x,y ∈ X , (1.1)

where c ∈ [0,1) is a constant. Then f has a unique fixed point x̂ ∈ X such that limn→∞ f nx = x̂

for each x ∈ X .

It is known that the Banach contraction principle has a lot of generalizations and various

applications in many directions, see, for examples, [2-12] and the references cited therein. Es-

pecially, in 1962, Rakotch[13] extended the Banach contraction principle with replacing the

contraction constant c in (1.1) by a contraction function γ and obtained the next theorem:

Theorem 1.2.[13] Let f be a self-mapping on a complete metric space (X ,d) satisfying

d( f x, f y)≤ γ(d(x,y))d(x,y), ∀ x,y ∈ X , (1.2)

where γ : R+→ [0,1) is a monotonically decreasing function. Then f has a unique fixed point

x̂ ∈ X such that limn→∞ f nx = x̂ for each x ∈ X .

In 2002, Branciari[14] gave an integral version of Theorem 1.1 as follows:

Theorem 1.3.[14] Let f be a self-mapping on a complete metric space (X ,d) satisfying∫ d( f x, f y)

0
φ(t)dt ≤ c

∫ d(x,y)

0
φ(t)dt, ∀ x,y ∈ X , (1.3)

where c ∈ (0,1) is a constant and φ ∈ Φ. Then f has a unique fixed point x̂ ∈ X such that

limn→∞ f nx = x̂ for each x ∈ X .

In 2011, Liu and Li[15] modified the method of Rakotch to generalize the Branciari’s fixed

point theorem with replacing the contraction constant c in (1.3) by contraction functions α and

β and established the following fixed point theorem:

Theorem 1.4.[15] Let f be a self-mapping on a complete metric space (X ,d) satisfying∫ d( f x, f y)

0
φ(t)dt ≤ α(d(x,y))

∫ d(x, f x)

0
φ(t)dt +β (d(x,y))

∫ d(y, f y)

0
φ(t)dt,∀ x,y ∈ X , (1.4)

where φ ∈Φ and α,β : R+→ [0,1) are two functions with

α(t)+β (t)< 1,∀ t ∈ R+; limsup
s→0+

β (s)< 1; limsup
s→t+

α(s)
1−β (s)

< 1, ∀ t > 0.

Then f has a unique fixed point a ∈ X such that limn→∞ f nx = a for each x ∈ X .
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In [16], Jin and Piao discussed the existence problems of unique common fixed points for

two mappings of integral type with variable coefficient in metric spaces and obtained the more

general results, the main results generalize and improve Theorem 1.4. Also they introduce the

following two definitions and obtain a unique common fixed point theorem for two mappings

of integral type with semi-implicit contractive conditions:

The function φ ∈Φ is called to be sub-additive if and only if for all a,b ∈ R+,

∫ a+b

0
φ(t)dt ≤

∫ a

0
φ(t)dt +

∫ b

0
φ(t)dt.

Let ψ ∈Ψ[16] if and only if ψ : R+5→R+ is a continuous and nondecreasing function about

the 4th and 5th variables and the following conditions hold:

(i) there exists h1 ∈ (0,1) such that u≤ ψ(v,u,v,0,u+ v) implies u≤ h1v;

(ii) there exists h2 ∈ (0,1) such that u≤ ψ(v,v,u,u+ v,0) implies u≤ h2v;

(iii) ψ(t,0,0, t, t)< t, ψ(0, t,0,0, t)< t and ψ(0,0, t, t,0)< t for all t > 0.

Theorem 1.5.[16] Let (X ,d) be a complete metric space, f ,g : X → X two mappings. If for

each x,y ∈ X ,

∫ d( f x,gy)

0
φ(t)dt ≤ψ

(∫ d(x,y)

0
φ(t)dt,

∫ d(x, f x)

0
φ(t)dt,

∫ d(y,gy)

0
φ(t)dt,

∫ d(x,gy)

0
φ(t)dt,

∫ d(y, f x)

0
φ(t)dt

)
,

(1.5)

where φ ∈Φ is sub-additive and ψ ∈Ψ. Then f and g have a unique common fixed point.

The aim of this paper is to use two classes C and Φu of real functions to introduce a real

generalization of the above class Ψ and to discuss the unique existence problems of common

fixed points for two self-mappings of integral type with a new semi-implicit limitation in a non-

complete metric space. The obtained results further generalize and improve the corresponding

conclusions in the literature.

To do this, we introduce the definitions of C and Φu and give a well-known lemma.

The following concept of class C of functions was introduced by A.H.Ansari [17].

Definition 1.6.[17]A mapping F : [0,∞)2→ R is called C-class function if it is continuous and

satisfies following axioms:

(1)F(s, t)≤ s;

(2) F(s, t) = s implies that either s = 0 or t = 0 for all s, t ∈ [0,∞).
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Note for some F we have that F(0,0) = 0.

We denote C-class functions as C .

Example 1.7.[17]The following functions F : [0,∞)2→ R are elements of C , for all

s, t ∈ [0,∞):

(1) F(s, t) = s− t, F(s, t) = s⇒ t = 0;

(2) F(s, t) = ms, 0<m<1, F(s, t) = s⇒ s = 0;

(3) F(s, t) = s
(1+t)r ; r ∈ (0,∞), F(s, t) = s⇒ s = 0 or t = 0;

(4) F(s, t) = log(t +as)/(1+ t), a > 1, F(s, t) = s⇒ s = 0 or t = 0;

(5) F(s, t) = ln(1+as)/2, a > e, F(s,1) = s⇒ s = 0;

(6) F(s, t) = (s+ l)(1/(1+t)r)− l, l > 1,r ∈ (0,∞), F(s, t) = s⇒ t = 0;

(7) F(s, t) = s logt+a a, a > 1, F(s, t) = s⇒ s = 0 or t = 0;

(8) F(s, t) = s− (1+s
2+s)(

t
1+t ), F(s, t) = s⇒ t = 0;

(9) F(s, t) = sβ (s), β : [0,∞)→ [0,1) is continuous, F(s, t) = s⇒ s = 0;

(10) F(s, t) = s−ϕ(s),F(s, t) = s⇒ s = 0,here ϕ : [0,∞)→ [0,∞) is a continuous function

such that ϕ(t) = 0⇔ t = 0;

(11) F(s, t) = sh(s, t),F(s, t) = s⇒ s = 0,here h : [0,∞)× [0,∞)→ [0,∞)is a continuous

function such that h(t,s)< 1 for all t,s > 0;

(12) F(s, t) = s− (2+t
1+t )t, F(s, t) = s⇒ t = 0;

(13) F(s, t) = n
√

ln(1+ sn), F(s, t) = s⇒ s = 0;

(14) F(s, t) = φ(s),F(s, t) = s⇒ s = 0,here φ : [0,∞)→ [0,∞) is a upper semicontinuous

function such that φ(0) = 0, and φ(t)< t for t > 0,

(15) F(s, t) = s
(1+s)r ; r ∈ (0,∞), F(s, t) = s⇒ s = 0 ;

(16) F(s, t) = ϑ(s); ϑ : R+×R+→ R is a generalized Mizoguchi-Takahashi type function

, F(s, t) = s⇒ s = 0;

(17) F(s, t) = s
Γ(1/2)

∫
∞

0
e−x
√

x+t dx, where Γ is the Euler Gamma function.

Definition 1.8. Let Φu be a set of all functions ϕ :R+→R+ satisfying the following conditions:

(1) ϕ is continuous;

(2) ϕ(t)> 0 if t > 0 and ϕ(0)≥ 0.
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Lemma 1.9.[18] Suppose (X ,d) is a metric space. Let {xn} be a sequence in X such that

d(xn,xn+1)→ 0 as n→ ∞. If {xn} is not a Cauchy sequence, then there exist an ε > 0 and

sequences of positive integers {m(k)} and {n(k)} with m(k) > n(k) > k for each k ∈ N such

that d(xm(k),xn(k))≥ ε , d(xm(k)−1,xn(k))< ε and the following result holds

lim
k→∞

d(xm(k)−1,xn(k)+1) = lim
k→∞

d(xm(k),xn(k)) = lim
k→∞

d(xm(k)−1,xn(k)) = ε.

Remark 1.10. Under the conditions of Lemma 1.9, We easily obtian the following result:

lim
k→∞

d(xm(k),xn(k)+1)= lim
k→∞

d(xm(k)+1,xn(k))= lim
k→∞

d(xm(k)+1,xn(k)+1)= lim
k→∞

d(xm(k),xn(k)−1)= ε.

2. Common fixed points

Lemma 2.1.[15] Let φ ∈Φ and {rn}n∈N be a nonnegative sequence with limn→∞ rn = a. Then

lim
n→∞

∫ rn

0
φ(t)dt =

∫ a

0
φ(t)dt.

Lemma 2.2.[15] Let φ ∈Φ and {rn}n∈N be a nonnegative sequence. Then

lim
n→∞

∫ rn

0
φ(t)dt = 0⇐⇒ lim

n→∞
rn = 0.

Now, we give a new and real generalization of the class Ψ in [16] as follows.

Let ψ ∈Ψ∗ if and only if ψ : R+5→ R+ is a continuous and nondecreasing function about

the 4th and 5th variables and the following conditions hold:

(i) there exists F1 ∈ C ,ϕ1 ∈Φu, such that u≤ ψ(v,u,v,0,u+ v) implies u≤ F1(v,ϕ1(v));

(ii) there exists F2 ∈ C ,ϕ2 ∈Φu, such that u≤ ψ(v,v,u,u+ v,0) implies u≤ F2(v,ϕ2(v));

(iii) ψ(t,0,0, t, t)< t, ψ(0, t,0,0, t)< t and ψ(0,0, t, t,0)< t for all t > 0.

Example 2.1. Define ψ : R+5→ R+ as follows

ψ(x1,x2,x3,x4,x5) = a1x1 +a2x2 +a3x3 +a4x4 +a5x5,∀x1,x2,x3,x4,x5 ∈ R+,

where ai ≥ 0 for all i = 1,2,3,4,5 and ∑
3
i=1 ai +2∑

5
i=4 ai < 1, and ϕ1(t) = h1t, ϕ2(t) = h2t for

all t ∈ [0,∞), where h1 ∈ (0, 1−(a1+a2+a3+2a5)
1−a2−a5

) and h2 ∈ (0, 1−(a1+a2+a3+2a4)
1−a3−a4

) are two constants,

and F1(s, t) = F2(s, t) = s− t for all s, t ≥ 0. Then it is easy to check that ψ,F1,F2,ϕ1,ϕ2 satisfy

all of the conditions of ψ ∈Ψ∗.
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We also know that the definition of ψ ∈Ψ∗ is a proper generalization of ψ ∈Ψ.

The function φ ∈Φ is called to be strictly increasing about integral type if for any x,y∈ [0,∞)

with x < y,

∫ x

0
φ(t)dt <

∫ y

0
φ(t)dt.

Example 2.2. Let φ : R+→R+, φ(t) = 1
1+t for each t ∈R+. Then obviously φ ∈Φ and for all

a,b ∈ R+,

∫ a+b

0
φ(t)dt = ln(1+a+b) ≤ ln(1+a+b+ab) = ln(1+a)(1+b) =

∫ a

0
φ(t)dt +

∫ b

0
φ(t)dt.

And for 0≤ x < y,

∫ x

0

1
1+ t

dt = ln(1+x) < ln(1+y) =
∫ y

0

1
1+ t

dt.

Hence φ(t) = 1
1+t is a sub-additive and strictly increasing function about integral type.

The following results is the main common fixed point theorem.

Theorem 2.3. Let (X ,d) be a metric space, f ,g : X → X two mappings. Suppose that for each

x,y ∈ X ,

∫ d( f x,gy)

0
φ(t)dt ≤ψ

(∫ d(x,y)

0
φ(t)dt,

∫ d(x, f x)

0
φ(t)dt,

∫ d(y,gy)

0
φ(t)dt,

∫ d(x,gy)

0
φ(t)dt,

∫ d(y, f x)

0
φ(t)dt

)
,

(2.1)

where φ ∈ Φ is sub-additive and strictly increasing about the integral type and ψ ∈ Ψ∗. If f X

or gX is complete, then f and g have a unique common fixed point.

Proof. We take any element x0 ∈ X and consider the sequence {xk} constructed by x2k+1 = f x2k

and x2k+2 = gx2k+1 for all k = 0,1,2, · · · . Let dn = d(xn,xn+1) for all n = 0,1,2, · · · .
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Since∫ d2n

0
φ(t)dt =

∫ d( f x2n,gx2n−1)

0
φ(t)dt

≤ψ

(∫ d(x2n,x2n−1)

0
φ(t)dt,

∫ d(x2n, f x2n)

0
φ(t)dt,

∫ d(x2n−1,gx2n−1)

0
φ(t)dt,

∫ d(x2n,gx2n−1)

0
φ(t)dt,∫ d(x2n−1, f x2n)

0
φ(t)dt

)
=ψ

(∫ d2n−1

0
φ(t)dt,

∫ d2n

0
φ(t)dt,

∫ d2n−1

0
φ(t)dt,0,

∫ d(x2n−1,x2n+1)

0
φ(t)dt

)
≤ψ

(∫ d2n−1

0
φ(t)dt,

∫ d2n

0
φ(t)dt,

∫ d2n−1

0
φ(t)dt,0,

∫ d2n−1+d2n+1

0
φ(t)dt

)
≤ψ

(∫ d2n−1

0
φ(t)dt,

∫ d2n

0
φ(t)dt,

∫ d2n−1

0
φ(t)dt,0,

∫ d2n−1

0
φ(t)dt +

∫ d2n

0
φ(t)dt

)
.

So by (i), ∫ d2n

0
φ(t)dt ≤ F1

(∫ d2n−1

0
φ(t)dt,ϕ1(

∫ d2n−1

0
φ(t)dt)

)
. (2.2)

Similarly,

∫ d2n+1

0
φ(t)dt =

∫ d(x2n+1,x2n+2)

0
φ(t)dt =

∫ d( f x2n,gx2n+1)

0
φ(t)dt

≤ψ

(∫ d(x2n,x2n+1)

0
φ(t)dt,

∫ d(x2n, f x2n)

0
φ(t)dt,

∫ d(x2n+1,gx2n+1)

0
φ(t)dt,

∫ d(x2n,gx2n+1)

0
φ(t)dt,∫ d(x2n+1, f x2n)

0
φ(t)dt

)
=ψ

(∫ d2n

0
φ(t)dt,

∫ d2n

0
φ(t)dt,

∫ d2n+1

0
φ(t)dt,

∫ d(x2n,x2n+2)

0
φ(t)dt,0

)
≤ψ

(∫ d2n

0
φ(t)dt,

∫ d2n

0
φ(t)dt,

∫ d2n+1

0
φ(t)dt,

∫ d2n+d2n+1

0
φ(t)dt,0

)
≤ψ

(∫ d2n

0
φ(t)dt,

∫ d2n

0
φ(t)dt,

∫ d2n+1

0
φ(t)dt,

∫ d2n

0
φ(t)dt +

∫ d2n+1

0
φ(t)dt,0

)
.

So by (ii), ∫ d2n+1

0
φ(t)dt ≤ F2

(∫ d2n

0
φ(t)dt,ϕ2(

∫ d2n

0
φ(t)dt)

)
. (2.3)

Combining (2.3) and (2.4) and using the property of F1 and F2, we have

∫ dn+1

0
φ(t)dt ≤

∫ dn

0
φ(t)dt, ∀n ∈ N. (2.4)
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If there exists n0 ∈N such that dn0+1 > dn0 , then by the strictly increasing property of φ about

integral type, we obtain ∫ dn0+1

0
φ(t)dt >

∫ dn0

0
φ(t)dt,

which is a contradiction with (2.4), hence we have

dn+1 ≤ dn,∀ n = 0,1,2, · · · . (2.5)

So there is u ∈ R+ such that limn→∞ dn = u. If u > 0, then by Lemma 2.1 and (2.2),∫ u

0
φ(t)dt = lim

n→∞

∫ d2n

0
φ(t)dt ≤ F1( lim

n→∞

∫ d2n−1

0
φ(t)dt, lim

n→∞
ϕ1(
∫ d2n−1

0
φ(t)dt))

=F1(
∫ u

0
φ(t)dt,ϕ1(

∫ u

0
φ(t)dt)).

So
∫ u

0 φ(t)dt = 0 or ϕ1(
∫ u

0 φ(t)dt) = 0 by the property of F1, thus
∫ u

0 φ(t)dt = 0, which is a

contradiction with the condition of φ . Therefore, u = 0, i.e., limn→∞ dn = 0.

We claim that {xn} is Cauchy. Otherwise, by Lemma 1.9 and Remark 1.10, there exists ε > 0

such that for each k ∈ N, there exist m(k),n(k) ∈ N with m(k) > n(k) such that the parity of

m(k) and n(k) is different and the following result holds

lim
k→∞

d(xm(k),xn(k))= lim
k→∞

d(xm(k)+1,xn(k))= lim
k→∞

d(xm(k)+1,xn(k)+1)= lim
k→∞

d(xm(k),xn(k)+1)= ε.

(2.6)

If m(k) is even and n(k) is odd, then by Lemma 2.1, (2.1), (2.6) and (iii),

0 <
∫

ε

0
φ(t)dt = lim

k→∞

∫ d(xm(k)+1,xn(k)+1)

0
φ(t)dt = lim

k→∞

∫ d( f xm(k),gxn(k))

0
φ(t)dt

≤ lim
k→∞

ψ

(∫ d(xm(k),xn(k))

0
φ(t)dt,

∫ d(xm(k), f xm(k))

0
φ(t)dt,

∫ d(xn(k),gxn(k))

0
φ(t)dt,∫ d(xm(k),gxn(k))

0
φ(t)dt,

∫ d( f xm(k),xn(k))

0
φ(t)dt

)
=ψ

(∫ ε

0
φ(t)dt,0,0,

∫
ε

0
φ(t)dt,

∫
ε

0
φ(t)dt

)
<
∫

ε

0
φ(t)dt.

This is a contradiction. Similarly, we obtain the same contradiction for the case that m(k) is odd

and n(k) is even. Hence, {xn} is a Cauchy sequence.
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If f X is complete, then {xn} is a Cauchy sequence and x2n+1 ∈ f X(for all n = 0,1,2, · · · )

implies there exists x∗ ∈ f X such that x2n+1→ x∗. Hence

d(x2n+2,x∗)≤ d(x2n+2,x2n+1)+d(x2n+1,x∗)

implies x2n+2→ x∗, therefore xn→ x∗ as n→ ∞. Similarly we have xn→ y∗ for some y∗ ∈ gX

for the case that gX is complete. Hence we can assume that xn→ x∗ ∈ f X ∪ gX as n→ ∞ for

any case.

If f x∗ 6= x∗, then d( f x∗,x∗)> 0, hence by Lemma 2.1 and (2.1) and (iii),

0 <
∫ d( f x∗,x∗)

0
φ(t)dt = lim

n→∞

∫ d( f x∗,gx2n+1)

0
φ(t)dt

≤ limψ

(∫ d(x∗,x2n+1)

0
φ(t)dt,

∫ d(x∗, f x∗)

0
φ(t)dt,

∫ d(x2n+1,gx2n+1)

0
φ(t)dt,∫ d(x∗,gx2n+1)

0
φ(t)dt,

∫ d( f x∗,x2n+1)

0
φ(t)dt

)
=ψ

(
0,
∫ d( f x∗,x∗)

0
φ(t)dt,0,0,

∫ d( f x∗,x∗)

0
φ(t)dt

)
<
∫ d( f x∗,x∗)

0
φ(t)dt.

This is a contradiction, hence f x∗ = x∗. Similarly, we obtain gx∗ = x∗. Therefore, x∗ is a

common fixed point of f and g.

If y∗ is another common fixed point of f and g, then d(x∗,y∗)> 0, hence by (2.1) and (iii),

0 <
∫ d(x∗,y∗)

0
φ(t)dt =

∫ d( f x∗,gy∗)

0
φ(t)dt

≤ψ

(∫ d(x∗,y∗)

0
φ(t)dt,

∫ d(x∗, f x∗)

0
φ(t)dt,

∫ d(y∗,gy∗)

0
φ(t)dt,

∫ d(x∗,gy∗)

0
φ(t)dt,

∫ d( f x∗,y∗)

0
φ(t)dt

)
=ψ

(∫ d(x∗,y∗)

0
φ(t)dt,0,0,

∫ d(x∗,y∗)

0
φ(t)dt,

∫ d(x∗,y∗)

0
φ(t)dt

)
<
∫ d(x∗,y∗)

0
φ(t)dt.

This is also a contradiction, hence x∗ is the unique common fixed point of f and g.

Using Theorem 2.3 and Example 2.2, we have the next result.
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Theorem 2.4. Let (X ,d) be a metric space, f ,g : X → X two mappings. Suppose that for all

x,y ∈ X ,

ln(1+d( f x,gy)) ≤ ψ

(
ln(1+d(x,y)), ln(1+d(x, f x)), ln(1+d(y,gy)), ln(1+d(x,gy)), ln(1+d(y, f x))

)
,

where ψ ∈Ψ∗. If f X or gX is complete, then f and g have a unique common fixed point.

Combining Theorem 2.4 and Example 2.1, we obtain the following result.

Theorem 2.5. Let (X ,d) be a metric space, f ,g : X → X two mappings. Suppose that for

each x,y ∈ X ,

1+d( f x,gy)≤ (1+d(x,y))a1(1+d(x, f x))a2(1+d(y,gy))a3(1+d(x,gy))a4(1+d(y, f x))a5,

where ai ≥ 0 for all i = 1,2,3,4,5 and a1 +a2 +a3 +2a4 +2a5 < 1. If f X or gX is complete,

then f and g have a unique common fixed point u.

From Theorem 2.3, we obtain the next more general common fixed point theorem.

Theorem 2.6. Let (X ,d) be a metric space, m,n ∈ N and f ,g : X → X two mappings. Suppose

that for each x,y ∈ X ,∫ d( f mx,gny)

0
φ(t)dt

≤ψ

(∫ d(x,y)

0
φ(t)dt,

∫ d(x, f mx)

0
φ(t)dt,

∫ d(y,gny)

0
φ(t)dt,

∫ d(x,gny)

0
φ(t)dt,

∫ d(y, f mx)

0
φ(t)dt

)
,

(2.7)

where φ ∈ Φ is sub-additive and strictly increasing about integral type and ψ ∈Ψ∗. If f mX or

gnX is complete, then f and g have a unique common fixed point.

Proof. Let F = f m and G = gn, then F and G satisfy all of the conditions of Theorem 2.3, hence

there exists an unique element u ∈ X such that f mu = Fu = u = Gu = gnu. If f u 6= u, then by

(2.7) and (iii),

0 <
∫ d( f u,u)

0
φ(t)dt =

∫ d( f m f u,gnu)

0
φ(t)dt

≤ψ

(∫ d( f u,u)

0
φ(t)dt,

∫ d( f u, f m f u)

0
φ(t)dt,

∫ d(u,gnu)

0
φ(t)dt,

∫ d( f u,gnu)

0
φ(t)dt,

∫ d(u, f m f u)

0
φ(t)dt

)
=ψ

(∫ d( f u,u)

0
φ(t)dt,0,0,

∫ d( f u,u)

0
φ(t)dt,

∫ d(u, f u)

0
φ(t)dt

)
<
∫ d( f u,u)

0
φ(t)dt,
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which is a contradiction. Hence f u = u. Similarly, we can obtain gu = u. So u is the common

fixed point of f and g. The uniqueness is obvious.
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