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Abstract. The purpose of this paper is to establish fixed point results for a single mapping in a partially ordered

space, and to prove a common fixed point theorem for two self-maps satisfying some weak contractive inequalities.

We introduce an application to illustrate the usability of our results.
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1. Introduction and preliminaries

The fixed point theorem, on metric space, most cited in literature is Banach contraction map-

ping principle (see [5]), which asserts that if T is a self contractive mapping on complete metric

space X then T has a unique fixed point. Mizoguchi and Takahashi (see [12]) generalise the

contraction principle by the following theorem:
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Theorem 1.1. Let (X ,d) be a complete metric space and let T : X→ X be a mapping satisfying:

d(T x,Ty)≤ α(d(x,y))d(x,y) ∀(x,y) ∈ X2

where α : [0,+∞[→ [0,1[ is a function such that lim
t→r+

supα(t)< 1, for all r ≥ 0. Then T has a

unique fixed point.

The following theorem established by EL.Marhrani and K.Chaira in [4] is a generalisation of

the above result to space with two metrics.

Theorem 1.2. Let X be a nonempty set, d and δ two metrics of X , and T : X → X a mapping

such that:

(1) (X ,d,δ ) is an (M)-space.

(2) For all x,y ∈ X , one of the following conditions

(i): d(x,Ty)≤ δ (x,y)

(ii): δ (x,Ty)≤ d(x,y)

implies 
d(T x,Ty)≤ α(δ (x,y))δ (x,y)

δ (T x,Ty)≤ α(d(x,y))d(x,y)

Then T has a unique fixed point in X .

In recent times, There has been a rapid development of fixed point theory in partially ordered

metric spaces (see A.Bege [2], A.C.M.Ran and M.C.Reurings [3], S.Carl and S.Heikkila [9],

A.Abkar and B.S.Choudhury [1]). In parallel, some generalizations of the Banach contraction

fixed point theorem in a space with two metrics were proved (see EL.Marhrani and K.Chaira

[4]). In this work, we introduce a partial order in a space with two metrics and generalise the

above theorem. But before stating our main results let us give some basic definitions:

Definition 1.3. [11]

• A partial order (or just an order) on a nonempty set X is a binary relation ”� ” on X that

is reflexive, antisymmetric and transitive. The pair (X ,�) is called a partially ordered

set or poset.

• If x� y or y� x then x and y are said to be comparable
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• A mapping T : X → X is said to be nondecreasing, monotone or order preserving if

T x� Ty whenever x� y.

We say that a partially ordered metric space X verifies the property (P), if for every nonde-

creasing sequence (xn)n∈N in X : (xn)n∈N converges to x in X, implies that xn � x for all n ∈ N.

Definition 1.4. Let (X ,d) be a metric space. We say that a sequence (xn)n∈N of elements of X

is a Cauchy sequence provided that for every ε > 0, there is a natural number N such that for

all n,m≥ N, we have d(xn,xm)≤ ε .

Definition 1.5. [4] (X ,d,δ ) is called an (M)-space if for every Cauchy sequence (xn)n∈N in the

metric spaces (X ,d) and (X ,δ ), there exist x∗,y∗ ∈ X such that,

lim
n→+∞

d(xn,x∗) = lim
n→+∞

δ (xn,y∗) = 0.

2. Main results

Consider a function α : [0,+∞[→ [0,1[ such that for all r ≥ 0, lim
t→r+

supα(t)< 1.

Theorem 2.1. Let (X ,�) be a nonempty poset endowed with two metrics d and δ and let

T : X → X be an order preserving mapping such that:

(1) (X ,d,δ ) is an (M)-space.

(2) For all comparable elements x and y in X , one of the following assertions

(i) d(x,Ty)≤ δ (x,y)

(ii) δ (x,Ty)≤ d(x,y)

implies  d(T x,Ty)≤ α(δ (x,y))δ (x,y),

δ (T x,Ty)≤ α(d(x,y))d(x,y).

If there exists an element x0 ∈ X such that x0 � T x0 and X verifies the property (P) for d and δ ,

then T admits at least a fixed point in X.

Proof. We divide this proof into two steps.

Step.1. Let x0 be the element whose existence is assumed in the above theorem and defining

a sequence (xn)n in X by xn = T nx0 for each n ∈ N.
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Since T is order preserving, we have:

x0 � x1 � x2 � ...� xn � xn+1 � ...

Since d(xn+1,T xn) = d(xn+1,xn+1) = 0≤ δ (xn+1,xn) and xn � xn+1, then d(T xn,T xn+1)≤ α(δ (xn,xn+1))δ (xn,xn+1)

δ (T xn,T xn+1)≤ α(d(xn,xn+1))d(xn,xn+1)

So,  d(xn+1,xn+2)≤ α(δ (xn,xn+1))δ (xn,xn+1)

δ (xn+1,xn+2)≤ α(d(xn,xn+1))d(xn,xn+1)

Since 0≤ α(δ (xn,xn+1))< 1 and 0≤ α(d(xn,xn+1))< 1, then d(xn+1,xn+2)≤ α(δ (xn,xn+1))α(d(xn−1,xn))d(xn−1,xn)≤ d(xn−1,xn)

δ (xn+1,xn+2)≤ α(d(xn,xn+1))α(δ (xn−1,xn))δ (xn−1,xn)≤ δ (xn−1,xn)

Then, the sequences (d(x2p,x2p+1))p, (d(x2p+1,x2p+2))p ,(δ (x2p,x2p+1))p and (δ (x2p+1,x2p+2))p

are decreasing and bounded below. So, they converge, respectively, to l1, l2, l3 and l4.

Since lim
t→l+2

supα(t)< 1 and lim
t→l+3

supα(t)< 1, there exist k1 ∈ [0,1[ and an integer p1 ∈ N such

that for all p≥ p1,

d(x2p+1,x2p+2)≤ k1 d(x2p−1,x2p)

Since lim
t→l+1

supα(t)< 1 and lim
t→l+4

supα(t)< 1, there exist k2 ∈ [0,1[ and an integer p2 ∈ N such

that for all p≥ p2,

d(x2p+2,x2p+3)≤ k2 d(x2p,x2p+1)

It follows that the series ∑p≥0 d(x2p,x2p+1) and ∑p≥1 d(x2p−1,x2p) converge, then, the series

∑n≥0 d(xn,xn+1) converges, and by the same arguments, we show that the series ∑n≥0 δ (xn,xn+1)

converges also. Hence, (xn)n∈N is a Cauchy sequence for d and δ in the (M)-space X . So, there

exist x∗ and y∗ in X such that lim
n→+∞

d(xn,x∗) = 0 and lim
n→+∞

δ (xn,y∗) = 0

Step.2. Let us prove that x∗ and y∗ are fixed points of T.

Consider the sets A and B defined by

A = {n ∈ N /d(x∗,T xn)≤ δ (x∗,xn)}
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and

B = {n ∈ N /δ (x∗,T xn)≤ d(x∗,xn)}

If we suppose that A and B are finite, there exists a finite integer N ∈N such that, for all n≥ N, d(T xn,x∗)> δ (xn,x∗)

δ (T xn,x∗)> d(xn,x∗),

which implies that d(xn+2,x∗)> d(xn,x∗), for all n≥ N.

Thereby, (d(x2n,x∗))n≥N is an increasing nonnegative sequence, which contradicts the fact that

limn d(xn,x∗) = 0. Hence, A or B is infinite.

Then, there exists a subsequence (xϕ(n))n∈N such that

d(T xϕ(n),x
∗)≤ δ (xϕ(n),x

∗) ∀n ∈ N

or

δ (T xϕ(n),x
∗)≤ d(xϕ(n),x

∗) ∀n ∈ N

Since the sequence (xϕ(n))n∈N is increasing and convergent by d to x∗, it follows, for every

n ∈ N, that xϕ(n) � x∗ and d(xϕ(n)+1,T x∗)≤ α(δ (xϕ(n),x∗))δ (xϕ(n),x∗)

δ (xϕ(n)+1,T x∗)≤ α(d(xϕ(n),x∗))d(xϕ(n),x∗)

And by passing to the limit we can assert the existence of k ∈ [0,1[ such that, d(x∗,T x∗)≤ k δ (y∗,x∗) (1)

δ (y∗,T x∗) = 0

Then, T x∗ = y∗, and if we replace in (1), we obtain

d(x∗,T x∗)≤ k δ (T x∗,x∗)

Consider the sets C and D defined by

C = {n ∈ N /d(y∗,T xn)≤ δ (y∗,xn)}

and

D = {n ∈ N /δ (y∗,T xn)≤ d(y∗,xn)}
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By the same arguments as above, we can assume that C or D is infinite. So, there exists a

subsequence (xψ(n)n∈N such that

d(T xψ(n),y
∗)≤ δ (xψ(n),y

∗) ∀n ∈ N

or

δ (T xψ(n),y
∗)≤ d(xψ(n),y

∗) ∀n ∈ N

Since the sequence (xψ(n))n∈N is increasing and convergent by δ to y∗, it follows, for every

n ∈ N, that xψ(n) � y∗ and d(xψ(n)+1,Ty∗)≤ α(δ (xψ(n),y∗))δ (xψ(n),y∗)

δ (xψ(n)+1,Ty∗)≤ α(d(xψ(n),y∗))d(xψ(n),y∗)

And by passing to the limit we can assert the existence of k
′ ∈ [0,1[ such that: d(x∗,Ty∗) = 0

δ (y∗,Ty∗)≤ k
′
d(x∗,y∗) (2)

Then, Ty∗ = x∗, and if we replace in (2) we obtain

δ (y∗,Ty∗)≤ k
′
d(x∗,T x∗)

In the end, we have  d(x∗,T x∗)≤ k δ (T x∗,x∗)

δ (T x∗,x∗)≤ k
′
d(x∗,T x∗)

Thus,

d(x∗,T x∗)≤ kk
′
d(x∗,T x∗)

which implies that T x∗ = x∗. Thereby, Ty∗ = y∗ and x∗ = y∗.

Theorem 2.2. With the same conditions of the theorem 2.1 and if we assume that any pair

{x,y} ⊆ X admits an upper bound or a lower bound in X, then T admits a unique fixed point in

X.
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Proof. Let x and y be two fixed points of T in X, and let z be an upper bound for the pair {x,y}.

Then, x� z and y� z, and since T is order preserving, we have for all n ∈ N, x� T nz = zn

y� T nz = zn

For every n ∈ N, one of the two following cases is verified

(i) d(zn,T x)≤ δ (zn,x)

(ii) δ (zn,T x)≤ d(zn,x)

Then, for every n ∈ N,  d(x,zn+1)≤ α(δ (x,zn))δ (x,zn)

δ (x,zn+1)≤ α(d(x,zn))d(x,zn)

thus, for every n ∈ N, d(x,zn+1)≤ α(δ (x,zn))α(d(x,zn−1))d(x,zn−1)

δ (x,zn+1)≤ α(d(x,zn))α(δ (x,zn−1))δ (x,zn−1)

which implies that the sequences (d(x,z2n+1))n∈N, (d(x,z2n))n∈N, (δ (x,z2n+1))n∈N and (δ (x,z2n))n∈N

converge respectively to d1, d2, δ1 and δ2

Then, there exist r1,r2 ∈ [0,1[ and a rank N ∈ N such that, for all n≥ N,

α(d(x,z2n−1))≤ r1 and α(δ (x,z2n))≤ r2

and then, for all n≥ N,

d(x,z2n+1)≤ r1r2 d(x,z2n−1)

Hence, lim
n

d(x,z2n+1) = 0. Analogously, we prove that lim
n

d(y,z2n+1) = 0.

By acting the limit on the triangular inequality:

d(x,y)≤ d(x,z2n+1)+d(y,z2n+1)

we obtain d(x,y) = 0 and so, x = y.

If z is a lower bound for the pair {x,y}, we copy exactly the above proof.

Corollary 2.3. Let (X ,d) be a complete metric space endowed with a partial order ” � ” such

that every pair has an upper bound or a lower bound and let T : X → X be an order preserving



SOME GENERALISED FIXED POINT THEOREMS... 505

mapping such that for all comparable elements x and y in X ,

d(x,Ty)≤ d(x,y)⇒ d(T x,Ty)≤ α(d(x,y))d(x,y)

If there exists an element x0 ∈ X such that x0 � T x0 and X verifies the property (P), then T

admits a unique fixed point in X.

Now, using two self-mappings on an (M)-space, we obtain the following:

Theorem 2.4. Let X be a nonempty set endowed with a partial order ” � ” and two metrics d

and δ and let T,S : X → X be two self-mappings such that:

(1) (X ,d,δ ) is an (M)-space.

(2) For all comparable elements x and y in X , one of the following assertions

(i) d(x,Sy)≤ δ (x,y)

(ii) δ (y,T x)≤ d(x,y)

implies  d(T x,Sy)≤ α(δ (x,y)) max{d(x,y),δ (x,T x),d(y,Sy)}

δ (T x,Sy)≤ α(d(x,y)) max{δ (x,y),d(x,T x),δ (y,Sy)}.

If there exists an element x0 ∈ X such that

x0 � Sx0 � T Sx0 � ST Sx0 � (T S)2x0 � S(T S)2x0 � (T S)3x0 � ...

and X verifies the property (P), then S and T have a common fixed point.

Proof. We divide our proof on three steps.

Step.1. Let x0 be an element of X whose the existence is assured by the conditions of the

theorem and let us define the sequence (xn)n∈N as follows

x2n+1 = Sx2n and x2n+2 = T x2n+1.

We have, for all n ∈ N,

x2n � x2n+1 � x2n+2

Since d(x2n+1,Sx2n) = 0≤ δ (x2n+1,x2n) and x2n � x2n+1, then

d(x2n+2,x2n+1) = d(T x2n+1,Sx2n)

≤ α(δ (x2n+1,x2n)) max{d(x2n+1,x2n),δ (x2n+1,T x2n+1),d(x2n,Sx2n)}
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and

δ (x2n+2,x2n+1) = δ (T x2n+1,Sx2n)

≤ α(d(x2n+1,x2n)) max{δ (x2n+1,x2n),d(x2n+1,T x2n+1),δ (x2n,Sx2n)}

Thus,  d(x2n+2,x2n+1)≤ α(δ (x2n+1,x2n)) max{d(x2n+1,x2n),δ (x2n+1,x2n)}

δ (x2n+2,x2n+1)≤ α(d(x2n+1,x2n)) max{δ (x2n+1,x2n),d(x2n+1,x2n)}

Since δ (x2n,T x2n−1) = 0≤ d(x2n,x2n−1) and x2n−1 � x2n, then

d(x2n,x2n+1) = d(T x2n−1,Sx2n)

≤ α(δ (x2n−1,x2n)) max{d(x2n−1,x2n),δ (x2n−1,T x2n−1),d(x2n,Sx2n)}

and

δ (x2n,x2n+1) = δ (T x2n−1,Sx2n)

≤ α(d(x2n−1,x2n)) max{δ (x2n−1,x2n),d(x2n−1,T x2n−1),δ (x2n,Sx2n)}

Thus,  d(x2n,x2n+1)≤ α(δ (x2n−1,x2n)) max{d(x2n−1,x2n),δ (x2n−1,x2n)}

δ (x2n,x2n+1)≤ α(d(x2n−1,x2n)) max{δ (x2n−1,x2n),d(x2n−1,x2n)}

If we put, for every n ∈ N,

un = max{d(xn+1,xn),δ (xn+1,xn)}

and

αn = max{α(d(xn+1,xn)),α(δ (xn+1,xn))}

we obtain for every n ∈ N,

un+1 ≤ αn un

Thereby, the sequence (un)n∈N is decreasing and bounded below and accordingly it converges

to some l ≥ 0

Therefore, the two sequences (d(xn+1,xn))n and (δ (xn+1,xn))n are bounded and by Weier-

strass, there exists an increasing mapping ϕ : N→N such that (d(xϕ(n)+1,xϕ(n)))n converges to

some ld ≥ 0 and (δ (xϕ(n)+1,xϕ(n)))n converges to some lδ ≥ 0
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Since lim
t→l+d

supα(t)< 1 and lim
t→l+

δ

supα(t)< 1, there exist r ∈ [0,1[ and a positive integer N such

that

uϕ(n)+1 ≤ r uϕ(n), for all n≥ N

By passing to the limit, we have l = 0. And so,

lim
n→+∞

d(xn+1,xn) = lim
n→+∞

δ (xn+1,xn) = 0

Knowing that lim
t→0+

supα(t)< 1, we can assume the existence of k ∈ [0,1[ and a positive integer

N′ such that

un+1 ≤ k×un, for all n≥ N′

Thus, the series ∑un converges. Thereby, the series ∑d(xn+1,xn) and ∑δ (xn+1,xn) converge,

which implies that (xn)n is a Cauchy sequence for d and δ and then, there exist x∗,y∗ ∈ X such

that

lim
n→+∞

d(xn,x∗) = lim
n→+∞

δ (xn,y∗) = 0

Step.2. Let us prove that x∗ = y∗

Suppose that x∗ 6= y∗ and consider the set

A = {n ∈ N /δ (y∗,T x2n+1)≤ d(y∗,x2n+1)}

There are two cases to distinguish.

Case.1. A is finite.

There exists a positive integer p such that

δ (y∗,x2n+2)> d(y∗,x2n+1), for every n≥ p

and by passing to the limit, we obtain 0≥ d(x∗,y∗), which is a contradiction.

Case.2. A is infinite.

There exists an increasing mapping σ : N→ N such that

δ (y∗,T x2σ(n)+1)≤ d(y∗,x2σ(n)+1)

and since x2σ(n)+1 � y∗, then

d(T x2σ(n)+1,Sy∗)≤α(δ (x2σ(n)+1,y
∗)) max{d(x2σ(n)+1,y

∗),δ (x2σ(n)+1,T x2σ(n)+1),d(y
∗,Sy∗)}
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and

δ (T x2σ(n)+1,Sy∗)≤α(d(x2σ(n)+1,y
∗)) max{δ (x2σ(n)+1,y

∗),d(x2σ(n)+1,T x2σ(n)+1),δ (y
∗,Sy∗)}

It follows that there exist k1,k2 ∈ [0,1[ such that d(x∗,Sy∗)≤ k1 max{d(x∗,y∗),d(y∗,Sy∗)}

δ (y∗,Sy∗)≤ k2 δ (y∗,Sy∗)

and so, Sy∗ = y∗ and d(x∗,y∗)≤ k1 d(x∗,y∗), which is a contradiction too. Hence x∗ = y∗

Step.3. Let us prove that Sx∗ = T x∗ = x∗

Consider the two sets : A = {n ∈ N /δ (x∗,T x2n+1)≤ d(x∗,x2n+1)}

B = {n ∈ N /d(x∗,Sx2n)≤ δ (x∗,x2n)}

We can assert that A or B is infinite.

If A and B are finite, there exists a positive integer q such that, for all n≥ q,

d(x∗,x2n+1)> δ (x∗,x2n)> d(x∗,x2n−1).

thus, the sequence (d(x∗,x2n+1))n≥N is strictly increasing to 0, which is a false assertion.

If we assume that A is infinite, then, as the above, there exists k2 ∈ [0,1[ such that

δ (x∗,Sx∗)≤ k1 δ (x∗,Sx∗)

Then Sx∗ = x∗

If we assume that B is infinite, we obtain, by the same way, T x∗ = x∗. Then x∗ is a common

fixed point for T and S.

One can remark that FT = FS, when FT is the set of fixed points of T and FS is the set of fixed

points of S. Indeed, If x ∈ FT then, d(x,T x)≤ δ (x,x) which implies that

d(x,Sx)≤ α(0)d(x,Sx)

And Since 0≤ α(0)< 1, thus d(x,Sx) = 0. So x ∈ FS.

If x∈ FS then, δ (x,Sx)≤ d(x,x) which implies that d(T x,x)≤α(0)d(T x,x). Then d(T x,x) = 0

and so x ∈ FT . Hence we have the equality.
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Corollary 2.5. Let (X ,d,δ ) be an (M)-space endowed with a partial order ” � ” such that

every pair has an upper bound, and let T,S : X −→ X be two self-mappings such that for all

comparable elements x and y in X , d(T x,Sy)≤ α(δ (x,y)) max{d(x,y),δ (x,T x),d(y,Sy)}

δ (T x,Sy)≤ α(d(x,y)) max{δ (x,y),d(x,T x),δ (y,Sy)}.

If, for every x ∈ X , x � Sx and x � T x and X verifies the property (P), then S and T have a

unique common fixed.

Proof. 1. The existence: One can see that for all x ∈ X ,

x� Sx� T Sx� ST Sx� (T S)2x� S(T S)2x� (T S)3x� S(T S)3x� ...

Then, accordingly to the theorem 2.4, T and S have a common fixed point in X.

2. The uniqueness: Let x and y be two common fixed points of T and S, let z be an upper

bound for the pair {x,y} and let us define the sequence (zn)n∈N as follows:

z0 = z and for every n ∈ N, z2n+1 = Sz2n and z2n+2 = T z2n+1

then,

z2n � z2n+1 � z2n+2, for every n ∈ N

As we have seen in the previous proof, (zn)n∈N is a Cauchy sequence, then, there exist zd,zδ ∈ X

such that,

lim
n→+∞

d(zn,zd) = lim
n→+∞

δ (zn,zδ ) = 0

One can see that, for every n ∈ N, x� z� z2n, then, for every n≥ N,

d(x,z2n+1)≤ α(δ (x,z2n)) max{d(x,z2n),d(z2n,z2n+1)}

Since lim
n→+∞

d(x,z2n) = d(x,zd) = d1 and limsup
t→d+

1

α(t)< 1, there exist k ∈ [0,1[ and p ∈N such

that, for every n≥ p,

d(x,z2n+1)≤ k max{d(x,z2n),d(z2n,z2n+1)}

By passing to the limit we obtain d(x,zd) = 0, which follows that x = zd .

And by the same way, we prove that y = zd . Then x = y.
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Example 2.6. Consider the space X = [0,1] ordered by ” � ” which is the reverse order of the

usual order between the reals (x� y⇔ x≥ y) and endowed with two distances d and δ defined

as follows:

d(x,y) = |x− y|

and

δ (x,y) =

 x+ y si x 6= y

0 si x = y

Consider the function α : t 7−→ 3
4 +

1
8e−t and the two self-mappings:

T : x 7−→ T (x) = x
4 and S : x 7−→ S(x) = x

2

Denote:

(S)

 d(T x,Sy)≤ α(δ (x,y)) max{d(x,y),δ (x,T x),d(y,Sy)}

δ (T x,Sy)≤ α(d(x,y)) max{δ (x,y),d(x,T x),δ (y,Sy)}

Let x and y be two elements in [0,1]. There are four cases to distinguish:

Case.1. x = 2y. Then (S) is obviously verified.

Case.2. x≺ y, i.e., x > y, and x 6= 2y. Then

(S)⇔

 | x4 −
y
2 | ≤ α(x+ y)) max{x− y, 5x

4 } (1)
x
4 +

y
2 ≤ α(x− y) max{x+ y, 3x

4 ,
3y
2 } (2)

If we set t = y
x we will have 0≤ t < 1 and,

(1)⇔ |1−2t| ≤ 4α(x+ y)(1− t) ou |1−2t| ≤ 5α(x+ y)

which is verified. And

(2)⇔ 2t +1≤ 4α(x− y)(1+ t) ou 2t +1≤ 3α(x− y) ou 2t +1≤ 6α(x− y)t

which is also verified. So the system (S) is verified.

Case.3. y≺ x, i.e., x < y. The system (S) is equivalent to | x4 −
y
2 |)≤ α(x+ y)) max{y− x, 5x

4 ,
y
2} (3)

x
4 +

y
2 ≤ α(x− y) max{x+ y, 3y

2 } (4)

If we set t = x
y , β = α(x+ y) and γ = α(x− y) then,
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(3)⇔ (4β −1)t−4β +2≤ 0 ou 2− t ≤ 5β t ou 2−2β ≤ t

If t < 2−2β then (4β −1)t−4β +2≤ 8β (3
4 −β )≤ 0.

Hence (3) is true.

(4)⇔ 2+ t ≤ 4γ (t +1) ou 2+ t ≤ 6γ

which is also true. Thus, the system (S) is verified.

Case.4. x = y. The system (S) is equivalent to x≤ 5xα(0)

x≤ 2xα(0)

which is true.

In all cases the system (S) is verified, and one can see that:

• (X ,d,δ ) is an (M)-space.

• X verifies the property (P).

• for every x ∈ X , we have x� T x and x� Sx.

Then, the assertions of the above corollary are verified and the mappings T and S have a unique

common fixed point which is 0.

If we assume that T = S, we obtain the following result:

Corollary 2.7. Let (X ,d,δ ) be an (M)-space endowed with a partial order ”� ” such that every

pair has an upper bound, and let T : X −→ X be a self-mapping such that for all comparable

elements x and y in X , one of the following assertions:

(i) d(x,Ty)≤ δ (x,y)

(ii) δ (y,T x)≤ d(x,y)

implies the system: d(T x,Ty)≤ α(δ (x,y)) max{d(x,y),δ (x,T x),d(y,Ty)}

δ (T x,Ty)≤ α(d(x,y)) max{δ (x,y),d(x,T x),δ (y,Ty)}

If for every element x ∈ X , x� T x and X verifies the property (P), then T admits a unique fixed

point in X .
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Proof. 1. The existence: Since for every x ∈ X ,

x� T x� T 2x� ...� T nx� T n+1x� ...

then, accordingly to the theorem 2.4, T admits a fixed point in X.

2. The uniqueness: Let x and y be two common fixed points of T, let z be an upper bound for

the pair {x,y} and let us define the sequence (zn)n∈N as follows:

z0 = z and for every n ∈ N, zn+1 = T z2n

As we have seen in the previous proof, (zn)n∈N is a Cauchy sequence, there exist zd,zδ ∈ X such

that,

lim
n→+∞

d(zn,zd) = lim
n→+∞

δ (zn,zδ ) = 0

One can see that, for every n ∈ N, x� z� zn and y� z� zn.

Consider the sets

F = {n ∈ N /d(zn,x)≤ δ (zn,x)}

and

G = {n ∈ N /δ (zn,x)≤ d(zn,x)}

If we suppose that F and G are finite, there exists a positive integer N such that

d(zn,x)> δ (zn,x)> d(zn,x), for all n≥ N

which is absurd. Then F or G is infinite. So, there exist an increasing function ϕ : N→ N such

that for every n ∈ N,

d(zϕ(n)+1,x)≤ α(δ (zϕ(n),x)) max{d(zϕ(n),x),δ (zϕ(n),zϕ(n)+1)},

or for every n ∈ N,

d(x,zϕ(n)+1)≤ α(δ (x,zϕ(n))) max{d(x,zϕ(n)),d(zϕ(n),zϕ(n)+1)}

By passing to the limit in the two cases, we can assert the existence of a real k in [0,1[ such that,

d(x,zd)≤ k d(x,zd), which implies that x = zd .

And by the same way, we obtain y = zd . Then x = y.

Remark 2.8. An alternative of the above result is obtained if we assume that:

• every pair {x,y} ⊆ X admits a lower bound in X.

• for all x ∈ X , T x� x
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• for every decreasing sequence (xn)n∈N, if it converges to z either by d or by δ , then

z� xn for all n ∈ N

Example 2.9. Consider the space X = [0,1] ordered by ” � ” which is the reverse order of the

usual order between the reals (x� y⇔ x≥ y) and endowed with two distances d and δ defined

as follows:

d(x,y) = |x− y| and δ (x,y) = 2|x− y|

Let us consider the self-mapping

T : x 7−→ T (x) =

 x
8 si x ∈ [0,1[

0 si x = 1

and α(t) = 2
15 +

1
106e−t .

Denote

 (i) d(x,Ty)≤ δ (x,y)

(ii) δ (y,T x)≤ d(x,y)
and

(S)

 d(T x,Ty)≤ α(δ (x,y)) max{d(x,y),δ (x,T x),d(y,Ty)}

δ (T x,Ty)≤ α(d(x,y)) max{δ (x,y),d(x,T x),δ (y,Ty)}

Let x and y two elements in [0,1]. There are three cases to distinguish:

Case.1. If x,y ∈ [0,1[ then, the system (S) is equivalent to

(S)⇔

 1
8 |x− y| ≤ α(2|x− y|) max{|x− y|,2|x− x

8 |, |y−
y
8 |}

2
8 |x− y| ≤ α(|x− y|) max{2|x− y|, |x− x

8 |,2|y−
y
8 |}

which is always true since α(t)≥ 1
8 , for all t ∈ R+.

Case.2. If x ∈ [0,1[ and y = 1 then

((i) or (ii))⇔ x ∈ [0,
2
3
]

And for all x ∈ [0, 2
3 ] the system (S) is equivalent to

( x
8 ≤ α(2(1− x))14

8 x or x
8 ≤ α(2(1− x))

)
x
8 ≤ α(1− x)



514 K.CHAIRA, A.ELADRAOUI, M.KABIL

which is true.

Case.3. If y ∈ [0,1[ and x = 1, the system (S) becomes
y
8 ≤ α(2(1− y)) max{1− y,2, 7y

8 }
y
4 ≤ α(1− y) max{2(1− y),1, 7y

4 }

and, ((i) or (ii))⇔ y ∈ [0, 8
15 ]∪ [0,

1
3 ] = [0, 8

15 ]

For all y ∈ [0, 8
15 ], the system (S) is equivalent to

y
16 ≤ α(2(1− y))(

y
8 ≤ α(1− y)(1− y) or y

4 ≤ α(1− y) or y
4 ≤

7yα(1−y)
4

)
which is true. And, for every y ∈]454

795 ,1], both of (i) and (ii) are false, and if we assume that(
y
8
≤ α(1− y)(1− y) or

y
4
≤ α(1− y) or

y
4
≤ 7yα(1− y)

4

)
then,

( 227
1590 ≥ α(1− y)> 454

2728 or ey−1 > 1
)
, which is a contradiction.

Thus, the system (S) is false.

In all cases one of the assertions (i) or (ii) implies the system (S, and then T admits a unique

fixed point in X which is 0.

If we assume, in the above theorem, that d = δ and α is a constant function, we obtain a

generalisation of contraction type Kannan [6]

Theorem 2.10. Let (X ,d) be a complete metric space endowed with a partial order ”� ” such

that any pair {x,y} ⊆ X admits an upper bound or a lower bound, and T : X −→ X be an order

preserving mapping such that, for all comparable elements x and y in X ,

d(x,Ty)≤ d(x,y)⇒ d(T x,Ty)≤ r (d(x,T x)+d(y,Ty))

where 0≤ r < 1
2 .

If there exists an element x0 ∈ X such that x0 � T x0 and X verifies the property (P), then T

admits a unique fixed point.

Proof. 1. The existence: Since, for all x,y ∈ X ,

d(x,T x)+d(y,Ty)≤ 2 max{d(x,y),d(x,T x),d(y,Ty)}
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then, for all comparable elements x and y in X ,

d(x,Ty)≤ d(x,y)⇒ d(T x,Ty)≤ 2r max{d(x,y),d(x,T x),d(y,Ty)}

Since x0 � T x0 and T is an order preserving, then

x0 � T x0 � T 2x0 � ...� T nx0 � T n+1x0 � ...

And by applying the theorem 2.4, T admits a fixed point in X.

2. The uniqueness: Let x and y be two fixed points of T in X, and let z be an upper bound for

the pair {x,y}, then x� z and y� z. Since T is order preserving, we have, for all n ∈ N, x� T nz = zn

y� T nz = zn

Since d(zn,T x)≤ d(zn,x) and x� zn, then, for every n ∈ N,

d(zn+1,x)≤ r d(zn,zn+1)≤ r d(zn,x)+ r d(zn+1,x),

which implies that

d(zn+1,x)≤ r
1−r d(zn,x), for all n ∈ N

Since 0≤ r
1−r < 1, then lim

n
d(zn,x) = 0

By the same way, we can prove that lim
n

d(zn,y) = 0, and by acting the limit on the triangular

inequality d(x,y)≤ d(zn,x)+d(zn,y), we conclude that x = y.

If z is a lower bound for the pair {x,y}, we copy exactly the above proof.

3. Application

Consider the space X = {x ∈ C 1([0,1],R) /x(0) = 0} endowed with two metrics d∞ and δ∞

defined for all (x,y) ∈ X as follows:

d∞(x,y) = ‖x− y‖∞ = sup
t∈[0,1]

|x(t)− y(t)|

and

δ∞(x,y) = ‖x′− y′‖∞ = sup
t∈[0,1]

|x′(t)− y′(t)|
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X is partially ordered by the order defined as follows:

x� y⇔ x(t)≤ y(t) ∀t ∈ [0,1]

Let us consider the following integral equations system:

(IES) :

 x(t) =
∫ 1

0 f (t,y(s))ds+a(t) ∀t ∈ [0,1]

y(t) =
∫ 1

0 g(t,x(s))ds+a(t) ∀t ∈ [0,1]

when a ∈ X and f ,g : [0,1]×R→ R are two mappings such that

(i). f and g are of the class C1 on [0,1]×R and are nondecreasing with respect to the second

coordinate

(ii). for every x ∈ R, f (0,x) = g(0,x) = 0

(iii). there exists an element x0 ∈ X such that for all s ∈ [0,1],

x0 � f (.,x0(s))+a and x0 � g(.,x0(s))+a

Let us consider the two mappings T and S defined in X as follows:
T x(t) =

∫ 1
0 f (t,x(s))ds+a(t)

t ∈ [0,1]

Sx(t) =
∫ 1

0 g(t,x(s))ds+a(t)

From (i) and (ii), we have for all x ∈ X , T x and Sx are in X.

Lemma 3.1. Consider the set E of the elements x ∈ X verifying:

x� T x and x� Sx

The space (E,d∞,δ∞) is an (M)-space.

Proof. Since x0 ∈ E, then E is nonempty. Let (xn)n∈N be a Cauchy sequence in E for d and δ .

Since (X ,d,δ ) is a (M)-space (see[4]), there exist x∗,y∗ ∈ X such that

lim
n→+∞

d(xn,x∗) = lim
n→+∞

δ (xn,y∗) = 0

Since the sequence (xn)n∈N converges uniformly to x∗, we have:

lim
n→+∞

∫ 1

0
f (t,xn(s))ds =

∫ 1

0
f (t,x∗(s))ds



SOME GENERALISED FIXED POINT THEOREMS... 517

and

lim
n→+∞

∫ 1

0
g(t,xn(s))ds =

∫ 1

0
g(t,x∗(s))ds

By applying the limit on the two following inequalities,

xn(t)≤
∫ 1

0 f (t,xn(s))ds+a(t) and xn(t)≤
∫ 1

0 g(t,xn(s))ds+a(t)

we obtain,

x∗(t)≤ T x∗(t) and x∗(t)≤ Sx∗(s) for all t ∈ [0,1]

Then, x∗ ∈ E.

Since (x′n)n∈N converges uniformly to (y∗)′ and xn(0) = 0 for every n ∈ N, then (xn)n∈N con-

verges uniformly to y∗. Thus, y∗ = x∗ ∈ E and we conclude that E is an (M)-space.

Theorem 3.2. Consider a function G : [0,1]→ [0,1] and a nondecreasing function α : [0,+∞[→

[0,1[ such that for all r ≥ 0, lim
t→r+

supα(t)< 1

If, for every s, t ∈ [0,1] and for all comparable elements x,y∈ X , one of the following assertions

(i) |x(s)−Sy(s)| ≤ δ∞(x,y)

(ii) |y′(s)− (T x)′(s)| ≤ d∞(x,y)

implies the system | f (t,x(s))−g(t,y(s))| ≤ α(|x′(s)− y′(s)|)G(t) |x(s)− y(s)|

|∂ f
∂ t (t,x(s))−

∂g
∂ t (t,y(s))| ≤ α(|x(s)− y(s)|)G(t)(|x′(s)− y′(s)|)

Then the system (IES) admits at least a solution which belongs to the diagonal of X2.

Proof. Since for each t ∈ [0,1], f (t, .) and g(t, .) are nondecreasing in R, the mappings T and

S are order preserving in X. When x ∈ E, we have x � T x and x � Sx. Then T x ≺ T 2x and

Sx≺ S2x, which implies that T x ∈ E and Sx ∈ E. So T and S are two self-mappings in E.

Let x and y be two comparable elements in E. If we assume that

d∞(x,Sy)≤ δ∞(x,y) or δ∞(y,T x)≤ d∞(x,y)

then, for every s ∈ [0,1], one of the following assertions is verified |x(s)−Sy(s)| ≤ δ∞(x,y)

|y′(s)− (T x)′(s)| ≤ d∞(x,y)
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Which implies that | f (t,x(s))−g(t,y(s))| ≤ α(|x′(s)− y′(s)|)G(t) |x(s)− y(s)|

|∂ f
∂ t (t,x(s))−

∂g
∂ t (t,y(s))| ≤ α(|x(s)− y(s)|)G(t)(|x′(s)− y′(s)|)

And since α is nondecreasing, we have | f (t,x(s))−g(t,y(s))| ≤ α(δ∞(x,y))G(t)d∞(x,y)

|∂ f
∂ t (t,x(s))−

∂g
∂ t (t,y(s))| ≤ α(d∞(x,y))G(t)δ∞(x,y)

Since

‖T x−Sy‖∞ = sup
t∈[0,1]

|T x(t)−Sy(t)| ≤ sup
t∈[0,1]

∫ 1

0
| f (t,x(s))−g(t,y(s))|ds

then,

d∞(T x,Sy)≤ α(δ∞(x,y))d∞(x,y)

And since,

‖(T x)′− (Sy)′‖∞ = sup
t∈[0,1]

|(T x)′(t)− (Sy)′(t)| ≤ sup
t∈[0,1]

∫ 1

0
|∂ f

∂ t
(t,x(s))− ∂g

∂ t
(t,y(s))|ds

then,

δ∞(T x,Sy)≤ α(d∞(x,y))δ∞(x,y)

Therefore, for all comparable elements x,y ∈ E, one of the following assertions

(i) d∞(x,Sy)≤ δ∞(x,y)

(ii) δ∞(y,Ty)≤ d∞(x,y)

implies the system d∞(T x,Sy)≤ α(δ∞(x,y)) max{d∞(x,y),δ∞(x,T x),d∞(y,Sy)}

δ∞(T x,Sy)≤ α(d∞(x,y)) max{δ∞(x,y),d∞(x,T x),δ∞(y,Sy)}

In addition, (E,d∞,δ∞) is an (M)-space, E verifies the property (P), and

x0 � Sx0 � T Sx0 � ST Sx0 � (T S)2x0 � S(T S)2x0 � ...

Then, accordingly to the theorem 2.4, T and S have a common fixed point in E, i.e., there exists

an element x∗ ∈E such that (x∗,x∗) verifies the system (IES) and so,
∫ 1

0 f (t,x∗(s)ds=
∫ 1

0 g(t,x∗(s)ds

for all t ∈ [0,1].

Then, the sysetm (IES) admits at least a solution in X2 which belongs to the diagonal of X2.
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