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Abstract. In this paper, we prove some fixed point theorems for sum of two mappings in locally convex space. The

results generalized the fixed point theorem of Cain and Nashed [2] for sum of two mappings on a convex subset of

a locally convex space to sum of two mappings defined on almost convex subset as well as star-shaped subset of a

locally convex space.
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1. Introduction

Let X be a nonempty closed convex and bounded subset of a Banach space E, and T : X→ E,

a contraction mapping and S : X→ E, a compact mapping. Krasnoselskii, in his 1995 paper [9],

proved the existence of a fixed point in X for the sum T +S of the two mappings T and S which

satisfy the condition T x+ Sy ∈ X for all x,y ∈ X . Since then, many authors have generalized

Krasnoselskii’s result in different directions. For instance, Nashed and Wong [10] proved the
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existence of fixed point for the sum T +S of a nonlinear contraction mapping T : X → E and a

compact mapping S : X → E.

In the setting of locally convex topological vector space, Cain and Nashed [2], extended

Krasnoselskii’s result to the sum T + S of a contraction mapping T : X → E and a continuous

mapping S : X → E, where X is a nonempty complete convex subset of a locally convex space

E. The fixed point result of Nashed and Wong [10] was proved in locally convex space setting

when Sehgal and Singh [13] extended the result of Cain and Nashed [2] to a sum T + S of a

nonlinear contraction mapping T : X → E and a continuous mapping S : X → E.

The classes of almost convex sets and star-shaped sets are wider than convex sets as every

convex set is almost convex and star-shaped. The purpose of this paper is to prove some ex-

tensions of a result of Cain and Nashed [2] for sum of two mappings on a convex subset of

a locally convex topological vector space to sum of two mappings defined on almost convex

subsets as well as star-shaped subsets of a locally convex topological vector space. Throughout

this paper, E denotes a Hausdorff locally convex topological vector space and (pα)α∈J , a family

of seminorms which defines the topology on E with J an indexing set.

2. Preliminaries

Definition 2.1. Let X be a nonempty subset of E. A mapping T : X → E is called contraction if

for each α ∈ J, there is a real number λα with 0 < λα < 1 such that pα(T x−Ty)≤ λα pα(x−y)

for all x,y ∈ X .

Cain and Nashed [2] proved the following extension of the Banach contraction mapping

principle.

Theorem 2.2. Let X be a nonempty sequentially complete subset of E and T : X → X, a

contraction mapping, then T has a unique fixed point x̄ ∈ X and T nx→ x̄ for all x ∈ X.

We state the following Tychonoff’s fixed point theorem [14] and consider some of its variants

and generalizations.

Theorem 2.3. Let X be a nonempty compact convex subset of E. If T : X→ X is any continuous

mapping, then T has a fixed point in X.
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The following is a variant of the Tychonoff’s theorem, known as the Shauder-Tychonoff fixed

point theorem(see [1] and [7]).

Theorem 2.4. Let X be a nonempty convex subset of E and T : X → X a compact continuous

mapping. Then T has a fixed point.

Himmelberg [3] introduced the following notion of almost convex set.

Definition 2.5. A nonempty subset X of a topological vector space E is called almost convex

if for any neighbourhood V of the origin 0 in E and for any finite set {x1,x2, . . . ,xn} ⊆ X ,

there exists a finite set {z1,z2, . . . ,zn} ⊆ X such that for each i ∈ {1,2,3 . . . ,n}, zi− xi ∈ V and

co{z1,z2, . . . ,zn} ⊆ X .

Definition 2.6. In the above definition, “co” stands for the convex hull of a set. If X is a

convex subset of E, then for every 0-neighbourhood V and any finite set {x1,x2, . . . ,xn} ⊆ X ,

choose zi ∈ (xi +V )∩X for i = 1,2,3, . . . ,n since (xi +V )∩X 6= /0. Clearly, zi− xi ∈ V and

co{z1,z2, . . . ,zn} ⊆ co(X) = X . Hence, X is almost convex. Therefore, every convex set is

almost convex but the converse is not true in general.

Park and Tan [11] proved the following generalization of the Shauder-Tychonoff fixed point

theorem.

Theorem 2.7. Let X be a nonempty almost convex subset of E, and T : X → X a compact

continuous mapping. Then T has a fixed point.

If X is compact, then we have the following:

Theorem 2.8. Let X be a nonempty compact almost convex subset of E, and T : X → X a

continuous mapping. Then T has a fixed point.

Definition 2.9. Let X be a subset of a vector space E. Then X is called star-shaped if there

exists p ∈ X such that t p+(1− t)x ∈ X for all x ∈ X , 0≤ t ≤ 1.

The point p is called a star-point and the set of all the star-points of X is called the star-core

of X .

Clearly, the star-core is a convex subset of X .

Definition 2.10. A mapping T on a convex set X is called affine if it satisfies the identity

T (tx+(1− t)y) = tT x+(1− t)Ty

where 0 < t < 1, x,y ∈ X .
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Hu [4,5] showed that:

Theorem 2.11. If X is a compact star-shaped subset of E and C is the corresponding star-core

of X. Then C is a compact convex subset of X.

Hu and Heng [6] proved the following results.

Theorem 2.12. Let X be a nonempty compact star-shaped subset of a topological vector space

E. Then every decreasing chain of nonempty compact and star-shaped subsets of X has a

nonempty intersection that is compact and star-shaped.

Theorem 2.13. Suppose X is a star-shaped subset of a topological vector space E and T : X →

X a surjective mapping that is affine on X. Then the star-core of X is invariant under T .

Applying the above results, we have the following:

Theorem 2.14. Let X be a nonempty compact and star-shaped subset of a Hausdorff locally

convex space E. If T : X → X is an affine continuous mapping, then T has a fixed point in X.

Proof. Since affine maps preserve star-shapedness and continuous maps preserve compactness,

we define a decreasing chain of nonempty, compact and star-shaped subsets of X by X1 = X and

Xn+1 = T Xn, n = 1,2,3, ... Clearly, T X1 ⊆ X1. Suppose T Xn ⊆ Xn. Then

T Xn+1 = T (T Xn)⊆ T Xn = Xn+1

Hence by induction T Xn ⊆ Xn ∀ n.

Applying theorem 2.12 and Zorn’s lemma, we get a minimal nonempty, compact and star-

shaped subset M of X which is invariant under T . We claim that T M = M. Suppose that T M =

S ⊂ M. Since T is affine and continuous, S is nonempty compact and star-shaped and T S ⊆

T M = S. That is, S is a nonempty compact and star-shaped subset of X which is invariant under

T . This contradicts the minimality of M. Hence, T M = M, that is, T : M→M is surjective.

Now, let C be the star-core of M. By theorems 2.11 and 2.13, C is a compact convex subset of

M and T : C→C. Hence, by the Tychonoff fixed point theorem, T has a fixed point in C ⊂ X .

Theorems 2.8 and 2.14 generalize the Tychonoff’s theorem [14] to almost convex and star-

shaped subsets of E respectively.

3. Main results
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The following are extensions of a result of Cain and Nashed [2](theorem 3.1) to a sum of a

contraction mapping and a continuous mapping defined on an almost convex subset and star-

shaped subset of a Hausdorff locally convex space. The proofs follow the same line of argument

as in [2].

Theorem 3.1. Let X be a nonempty compact almost convex subset of E. Let T,S : X → E be

mappings such that T x+Sy ∈ X for all x,y ∈ X. If T is a contraction and S is continuous, then

there is a point x̄ ∈ X such that T x̄+Sx̄ = x̄.

Proof. For each y ∈ X , we define a mapping F : X → X by

Fx = T x+Sy

For x1,x2 ∈ X and α ∈ J, we have

pα(Fx1−Fx2) = pα(T x1 +Sy−T x2−Sy)

= pα(T x1−T x2)

≤ λα pα(x1− x2)

Hence F is a contraction on X. By theorem 2.2, F has a unique fixed point in X . Denote this

fixed point by Hy. That is,

Hy = F(Hy) = T (Hy)+Sy

Thus for all u1,u2 ∈ X , we have

Hu1−Hu2 = T (Hu1)+Su1−T (Hu2)−Su2

= T (Hu1)−T (Hu2)+Su1−Su2

So that

pα(Hu1−Hu2)≤ pα(T (Hu1)−T (Hu2))+ pα(Su1−Su2)

≤ λα pα(Hu1−Hu2)+ pα(Su1−Su2)

This implies

pα(Hu1−Hu2)≤ (1−λα)
−1 pα(Su1−Su2)
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As S is continuous, it follows that H is continuous. By theorem 2.8, H has a fixed point x̄ ∈ X

and

x̄ = Hx̄ = T (Hx̄)+Sx̄

= T x̄+Sx̄

This completes the proof.

Mimicking the proof above and applying theorems 2.2 and 2.14 we establish the following:

Theorem 3.2. Let X be a nonempty compact complete star-shaped subset of E. Let T,S : X→ E

be mappings such that T x+ Sy ∈ X for all x,y ∈ X. If T is a contraction mapping and S is an

affine continuous mapping, then there is a point x̄ ∈ X such that T x̄+Sx̄ = x̄.
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