

Available online at http://scik.org
Advances in Fixed Point Theory, 2 (2012), No. 2, 135-145
ISSN: 1927-6303

FIXED AND BEST PROXIMITY POINTS FOR CYCLIC WEAKLY CONTRACTION MAPPINGS

S. N. MISHRA ${ }^{1}$, RAJENDRA PANT ${ }^{1, *}$, AND DPRV SUBBA RAO ${ }^{2}$
${ }^{1}$ Department of Mathematics, Walter Sisulu University, Mthatha 5117, South Africa
${ }^{2}$ Department of Mathematics, IFHE University, Hyderabad 501504, India

Abstract

In this paper we obtain some fixed and best proximity point theorems for cyclic (ψ, φ)-weakly contraction mappings. The results obtained herein extend some recent results.

Keywords: Fixed point; best proximity point; cyclic weakly contraction.
2000 AMS Subject Classification: 54H25; 47H10

1. Introduction and Preliminaries

Thought this paper \mathbb{N} denotes the set of naturals and X a metric space (X, d). Let A and B be nonempty subsets of a metric space X. A mapping $T: A \cup B \rightarrow A \cup B$ is called a cyclic mapping if $T(A) \subseteq B$ and $T(B) \subseteq A$. A point $z \in A \cup B$ is said to be fixed point of T if $T z=z$ and a best proximity point of T if $d(z, T z)=d(A, B)$, where $d(A, B)=\inf \{d(x, y): x \in A, y \in B\}$. All mappings do not have fixed points. For example the mapping $T:[0, \infty) \rightarrow[0, \infty)$ defined by $T x=1+x$, has no fixed points, since x is never equal to $x+1$ for any $x \in[0, \infty)$. If the fixed-point equation $T x=x$ does not possesses a solution, it is contemplated to resolve a problem finding an element

[^0]Received April 16, 2012
x such that x is in proximity to $T x$ in some sense. Best proximity theorems analyze the conditions under which the optimization problem, namely $\min _{x \in A} d(x, T x)$ has a solution [9].

Kirk et al. [7] obtained the following interesting fixed point theorem for cyclic mappings.
Theorem 1.1. Let A and B be nonempty closed subsets of a complete metric space X and $T: A \cup B \rightarrow A \cup B$ be a cyclic mapping. Assume that there exists $\lambda \in(0,1)$ such that

$$
\begin{equation*}
d(T x, T y) \leq \lambda d(x, y) \tag{1.1}
\end{equation*}
$$

for all $x \in A$ and $y \in B$. Then T has a unique fixed point in $A \cap B$.
The condition (1.1) entails $A \cap B$ being nonempty. Eldred and Veeramani [4] modified the condition (1.1) for the case $A \cap B=\emptyset$ as follows:

$$
\begin{equation*}
d(T x, T y) \leq \lambda d(x, y)+(1-\lambda) d(A, B) \tag{1.2}
\end{equation*}
$$

for all $x \in A$ and $y \in B$, where $\lambda \in(0,1)$. The mapping T satisfying condition (1.2) is called a cyclic contraction. Eldred and Veeramani [4, Th. 3.10] obtained a unique best proximity point for the mapping T in a uniformly convex Banach space setting. Subsequently, a number of extensions and generalizations of their results appeared in [1, $2,5,10$] and many others.

Recently, Al-Tagafi and Shahzad [1] introduced the notion of cyclic φ-contractions and obtained some existence results for this new class of mappings. In this paper we, extend cyclic φ-contractions and introduce the notion of cyclic (ψ, φ)-weakly contractions. Subsequently, this notion is utilized to obtain some fixed and best proximity point theorems which generalize certain results of [1], [4] and [7].

2. Cyclic (ψ, φ)-weakly contractions

Throughout this section Φ denotes the class of the functions $\varphi:[0, \infty) \rightarrow[0, \infty)$ satisfying:
(a) φ is continuous and monotone nondecreasing,
(b) $\varphi(t)=0 \Leftrightarrow t=0$.

The function $\varphi \in \Phi$ is also known as altering distance function (see, for instance, [6]).
Now we introduce the following notion of a cyclic (ψ, φ)-weakly contraction mapping.
Definition 2.1. Let A and B be nonempty subsets of a metric space X and $T: A \cup B \rightarrow$ $A \cup B$ a cyclic mapping. The mapping T will be called a cyclic (ψ, φ)-weakly contraction if, $\psi, \varphi \in \Phi$ and

$$
\begin{equation*}
\psi(d(T x, T y)) \leq \psi(d(x, y))-\varphi(d(x, y))+\varphi(d(A, B)) \tag{2.1}
\end{equation*}
$$

for all $x \in A$ and $y \in B$ (see also, $[3,8]$).
Remark 2.2. We remark that:

1. A cyclic φ-contraction is cyclic (ψ, φ)-weakly contraction with $\psi(t)=t$ for $t \geq 0$.
2. A cyclic contraction is cyclic (ψ, φ)-weakly contraction with $\psi(t)=t, \varphi(t)=(1-\lambda) t$ for $t \geq 0$ and $\lambda \in(0,1)$.

Recall that, a Banach space X is said to be:
(a) uniformly convex if there exists a strictly increasing function $\delta:(0,2] \rightarrow[0,1]$ such that the following implication holds for all $x, y, p \in X, R>0$ and $r \in[0,2 R]$:

$$
\left.\begin{array}{l}
\|x-p\| \leq R \\
\|y-p\| \leq R \\
\|x-y\| \geq r
\end{array}\right\} \Rightarrow\left\|\frac{x+y}{2}-p\right\| \leq\left(1-\delta\left(\frac{r}{R}\right)\right) R
$$

(b) strictly convex if the following implication holds for all $x, y, p \in X$ and $R>0$:

$$
\left.\begin{array}{c}
\|x-p\| \leq R \\
\|y-p\| \leq R \\
x \neq y
\end{array}\right\} \Rightarrow\left\|\frac{x+y}{2}-p\right\|<R .
$$

We begin with the following lemma.
Lemma 2.3. Let A and B be nonempty subsets of a metric space X and $T: A \cup B \rightarrow A \cup B$ a cyclic (ψ, φ)-weakly contraction mapping. For $x_{0} \in A \cup B$, define $x_{n+1}:=T x_{n}$ for each $n \geq 0$. Then for all $x \in A$ and $y \in B$,
(i) $\varphi(d(A, B)) \leq \varphi(d(x, y))$;
(ii) $d(T x, T y) \leq d(x, y)$; and
(iii) $d\left(x_{n+2}, x_{n+1}\right)=d\left(T x_{n+1}, T x_{n}\right) \leq d\left(x_{n+1}, x_{n}\right)$ for each $n \geq 0$.

Proof. (i) Since $d(A, B)=d(x, y)$ for all $x \in A$ and $y \in B$ and $\varphi \in \Phi$, we have $\varphi(d(A, B)) \leq \varphi(d(x, y))$.
(ii) Since T is a cyclic (ψ, φ)-weakly contraction, we have

$$
\psi(d(T x, T y)) \leq \psi(d(x, y))-\varphi(d(x, y))+\varphi(d(A, B))
$$

for all $x \in A$ and $y \in B$.
From (i) $\varphi(d(A, B)) \leq \varphi(d(x, y))$, hence

$$
\psi(d(T x, T y)) \leq \psi(d(x, y))
$$

Since $\varphi \in \Phi$, it follows that $d(T x, T y) \leq d(x, y)$.
(iii) Since T is a cyclic (ψ, φ)-weakly contraction, we have

$$
\begin{aligned}
\psi\left(d\left(x_{n+2}, x_{n+1}\right)\right) & =\psi\left(d\left(T x_{n+1}, T x_{n}\right)\right) \\
& \leq \psi\left(d\left(x_{n+1}, x_{n}\right)\right)-\varphi\left(d\left(x_{n+1}, x_{n}\right)\right)+\varphi(d(A, B))
\end{aligned}
$$

for all $n \geq 0$. Using (i) and (ii), we get

$$
\psi\left(d\left(x_{n+2}, x_{n+1}\right)\right)=\psi\left(d\left(T x_{n+1}, T x_{n}\right)\right) \leq \psi\left(d\left(x_{n+1}, x_{n}\right)\right)
$$

Now since $\psi \in \Phi$, it follows that

$$
d\left(x_{n+2}, x_{n+1}\right)=d\left(T x_{n+1}, T x_{n}\right) \leq d\left(x_{n+1}, x_{n}\right)
$$

Theorem 2.4. Let A and B be nonempty subsets of a metric space X and $T: A \cup B \rightarrow$ $A \cup B$ a cyclic (ψ, φ)-weakly contraction mapping. For $x_{0} \in A \cup B$, define $x_{n+1}:=T x_{n}$ for each $n \geq 0$. Then $\lim _{n \rightarrow \infty} d\left(x_{n}, T x_{n}\right)=d(A, B)$.

Proof. It follows from Lemma 2.3 (iii) that $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is a decreasing sequence. Thus $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=r_{0}$ for some $r_{0} \geq d(A, B)$. If $d\left(x_{n_{0}}, x_{n_{0}+1}\right)=0$ for some $n_{0} \geq 1$ then we

FIXED AND BEST PROXIMITY POINTS FOR CYCLIC WEAKLY CONTRACTION MAPPINGS 139 are done. Assume that $d\left(x_{n}, x_{n+1}\right)>0$ for each $n \geq 1$. Since T is a cyclic (ψ, φ)-weakly contraction, we have

$$
\begin{equation*}
\psi\left(d\left(x_{n+1}, x_{n+2}\right)\right) \leq \psi\left(d\left(x_{n}, x_{n+1}\right)\right)-\varphi\left(d\left(x_{n}, x_{n+1}\right)\right)+\varphi(d(A, B)) \tag{2.2}
\end{equation*}
$$

for each $n \geq 1$.
Now by Lemma 2.3 (i) and (2.2), we have

$$
\begin{equation*}
\varphi(d(A, B)) \leq \varphi\left(d\left(x_{n}, x_{n+1}\right)\right) \leq \psi\left(d\left(x_{n}, x_{n+1}\right)\right)-\psi\left(d\left(x_{n+1}, x_{n+2}\right)\right)+(A, B) \tag{2.3}
\end{equation*}
$$

Since $\psi, \varphi \in \Phi$ and $d\left(x_{n}, x_{n+1}\right) \geq r_{0} \geq d(A, B)$, it follows from (2.3) that

$$
\lim _{n \rightarrow \infty} \varphi\left(d\left(x_{n}, x_{n+1}\right)\right)=\varphi\left(r_{0}\right)=\varphi(d(A, B))
$$

for each $n \geq 1$. Since $\varphi \in \Phi, r_{0}=d(A, B)$.
In view of Remark 2.2 (1) and (2), Proposition 3.1 of [4] and Theorem 3 of [1] are special cases of Theorem 2.4.

Theorem 2.5. Let A and B be nonempty subsets of a metric space X and $T: A \cup B \rightarrow$ $A \cup B$ a cyclic (ψ, φ)-weakly contraction mapping. For $x_{0} \in A$, define $x_{n+1}:=T x_{n}$ for each $n \geq 0$. If $\left\{x_{2 n}\right\}$ has a convergent subsequence in A, then there exists a point $z \in A$ such that $d(z, T z)=d(A, B)$.

Proof. Let $\left\{x_{2 n_{k}}\right\}$ be a subsequence of $\left\{x_{2 n}\right\}$ such that $\lim _{k \rightarrow \infty} x_{2 n_{k}}=z$. Since

$$
d(A, B) \leq d\left(z, x_{2 n_{k}-1}\right) \leq d\left(z, x_{2 n_{k}}\right)+d\left(x_{2 n_{k}}, x_{2 n_{k}-1}\right)
$$

for each $k \geq 1$, it follows from Theorem 2.4 that $\lim _{k \rightarrow \infty} d\left(x_{2 n_{k}}, x_{2 n_{k}-1}\right)=d(A, B)$. Since

$$
d(A, B) \leq d\left(x_{2 n_{k}}, T z\right)=d\left(x_{2 n_{k}-1}, z\right)
$$

for each $k \geq 1$, it follows that $d(z, T z)=d(A, B)$.
In view of Remark 2.2 (2), Proposition 3.2 of [4] is a special case of Theorem 2.5.
Corollary 2.6. [1, Theorem 4]. Let A and B be nonempty subsets of a metric space X and $T: A \cup B \rightarrow A \cup B$ a cyclic φ-weakly contraction mapping. For $x_{0} \in A$, define
$x_{n+1}:=T x_{n}$ for each $n \geq 0$. If $\left\{x_{2 n}\right\}$ has a convergent subsequence in A, then there exists a point $z \in A$ such that $d(z, T z)=d(A, B)$.

Proof. It comes from Theorem 2.5, when $\varphi(t)=t$.
Lemma 2.7. Let A and B be nonempty subsets of a uniformly convex Banach space X such that A is convex. Let $T: A \cup B \rightarrow A \cup B$ be a cyclic (ψ, φ)-weakly contraction mapping. For $x_{0} \in A$, define $x_{n+1}:=T x_{n}$ for each $n \geq 0$. Then

$$
\lim _{n \rightarrow \infty}\left\|x_{2 n+2}-x_{2 n}\right\|=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|x_{2 n+3}-x_{2 n+1}\right\|=0
$$

Proof. Suppose that $\lim _{n \rightarrow \infty}\left\|x_{2 n+2}-x_{2 n}\right\|>0$. Then there exists $\varepsilon_{0}>0$ such that for each $k \geq 1$, there is an $n_{k} \geq k$ satisfying

$$
\begin{equation*}
\left\|x_{2 n_{k}+2}-x_{2 n_{k}}\right\| \geq \varepsilon_{0} \tag{2.4}
\end{equation*}
$$

Choose $0<\gamma<1$ such that $\frac{\varepsilon_{0}}{\gamma}>d(A, B)$ and choose ε such that

$$
0<\varepsilon<\min \left\{\frac{\varepsilon_{0}}{\gamma}-d(A, B), \frac{d(A, B) \delta(\gamma)}{1-\delta(\gamma)}\right\}
$$

By Theorem 2.4, there exist N_{1} and N_{2} such that

$$
\begin{equation*}
\left\|x_{2 n_{k}+2}-x_{2 n_{k}+1}\right\| \leq d(A, B)+\varepsilon \text { and }\left\|x_{2 n_{k}+1}-x_{2 n_{k}}\right\| \leq d(A, B)+\varepsilon \tag{2.5}
\end{equation*}
$$

for all $n_{k} \geq N_{1}, N_{2}$. Let $N:=\max \left\{N_{1}, N_{2}\right\}$. It follows from (2.4), (2.5) and the uniform convexity of X that

$$
\left\|\frac{x_{2 n_{k}+2}+x_{2 n_{k}}}{2}-x_{2 n_{k}+1}\right\| \leq\left(1-\delta\left(\frac{\varepsilon_{0}}{d(A, B)+\varepsilon}\right)\right)(d(A, B)+\varepsilon)
$$

for all $n_{k} \geq N$. As $\frac{x_{2 n_{k}+2}+x_{2 n_{k}}}{2} \in A$, the choice of ε and the fact that δ is strictly increasing imply that

$$
\left\|\frac{x_{2 n_{k}+2}+x_{2 n_{k}}}{2}-x_{2 n_{k}+1}\right\|<d(A, B)
$$

for all $n_{k} \geq N$, a contradiction. Therefore $\lim _{n \rightarrow \infty}\left\|x_{2 n+2}-x_{2 n}\right\|=0$. Similarly we can show that $\lim _{n \rightarrow \infty}\left\|x_{2 n+3}-x_{2 n+1}\right\|=0$.

Theorem 2.8. Let A and B be nonempty subsets of a uniformly convex Banach space X such that A is convex. Let $T: A \cup B \rightarrow A \cup B$ be a cyclic (ψ, φ)-weakly contraction mapping. For $x_{0} \in A$ define $x_{n+1}:=T x_{n}$ for each $n \geq 0$. Then for each $\varepsilon>0$, there exists a positive integer N_{0} such that for all $m>n \geq N_{0}$

$$
\left\|x_{2 m}-x_{2 n+1}\right\|<d(A, B)+\varepsilon .
$$

Proof. Suppose the contrary. Then there exists $\varepsilon_{0}>0$ such that for each $k \geq 1$, there exist $m_{k}>n_{k} \geq k$ satisfying

$$
\begin{equation*}
\left\|x_{2 m_{k}}-x_{2 n_{k}+1}\right\| \geq d(A, B)+\varepsilon_{0} \text { and }\left\|x_{2\left(m_{k}-1\right)}-x_{2 n_{k}+1}\right\|<d(A, B)+\varepsilon_{0} \tag{2.6}
\end{equation*}
$$

By the triangle inequality and (2.6), we have

$$
\begin{aligned}
d(A, B)+\varepsilon_{0} & \leq\left\|x_{2 m_{k}}-x_{2 n_{k}+1}\right\| \\
& \leq\left\|x_{2 m_{k}}-x_{2\left(m_{k}-1\right)}\right\|+\left\|x_{2\left(m_{k}-1\right)}-x_{2 n_{k}+1}\right\| \\
& <\left\|x_{2 m_{k}}-x_{2\left(m_{k}-1\right)}\right\|+d(A, B)+\varepsilon_{0} .
\end{aligned}
$$

Making $k \rightarrow \infty$ and using Lemma 2.7, we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|x_{2 m_{k}}-x_{2 n_{k}+1}\right\|=d(A, B)+\varepsilon_{0} \tag{2.7}
\end{equation*}
$$

Since T is a cyclic (ψ, φ)-weakly contraction, by Lemma 2.3 (i) and (ii), and the triangle inequality, we obtain

$$
\begin{align*}
\psi\left(\left\|x_{2 m_{k}}-x_{2 n_{k}+1}\right\|\right) & \leq \psi\left(\left\|x_{2 m_{k}}-x_{2 m_{k}+2}\right\|\right)+\psi\left(\left\|x_{2 m_{k}+2}-x_{2 m_{k}+3}\right\|\right)+\psi\left(\left\|x_{2 m_{k}+3}-x_{2 n_{k}+1}\right\|\right) \\
& \leq \psi\left(\left\|x_{2 m_{k}}-x_{2 m_{k}+2}\right\|\right)+\psi\left(\left\|x_{2 m_{k}+1}-x_{2 m_{k}+2}\right\|\right)+\psi\left(\left\|x_{2 m_{k}+3}-x_{2 n_{k}+1}\right\|\right) \\
& \leq \psi\left(\left\|x_{2 m_{k}}-x_{2 m_{k}+2}\right\|\right)+\psi\left(\left\|x_{2 m_{k}}-x_{2 m_{k}+1}\right\|\right) \\
& -\varphi\left(\left\|x_{2 m_{k}}-x_{2 m_{k}+1}\right\|\right)+\varphi(d(A, B))+\psi\left(\left\|x_{2 m_{k}+3}-x_{2 n_{k}+1}\right\|\right) \\
& \leq \psi\left(\left\|x_{2 m_{k}}-x_{2 m_{k}+2}\right\|\right)+\psi\left(\left\|x_{2 m_{k}}-x_{2 m_{k}+1}\right\|\right)+\psi\left(\left\|x_{2 m_{k}+3}-x_{2 n_{k}+1}\right\|\right) \tag{2.8}
\end{align*}
$$

Since $\psi \in \Phi$, (2.8) implies that

$$
\begin{aligned}
\left\|x_{2 m_{k}}-x_{2 n_{k}+1}\right\| & \leq\left\|x_{2 m_{k}}-x_{2 m_{k}+2}\right\|+\left\|x_{2 m_{k}}-x_{2 m_{k}+1}\right\|-\varphi\left(\left\|x_{2 m_{k}}-x_{2 m_{k}+1}\right\|\right) \\
& +\varphi(d(A, B))+\left\|x_{2 m_{k}+3}-x_{2 n_{k}+1}\right\| \\
& \leq\left\|x_{2 m_{k}}-x_{2 m_{k}+2}\right\|+\left\|x_{2 m_{k}}-x_{2 m_{k}+1}\right\|+\left\|x_{2 m_{k}+3}-x_{2 n_{k}+1}\right\| .
\end{aligned}
$$

Making $k \rightarrow \infty$ and using (2.7) and Lemma 2.7, we get

$$
\begin{aligned}
d(A, B)+\varepsilon_{0} & \leq d(A, B)+\varepsilon_{0}-\lim _{k \rightarrow \infty} \varphi\left(\left\|x_{2 m_{k}}-x_{2 m_{k}+1}\right\|\right)+\varphi(d(A, B)) \\
& \leq d(A, B)+\varepsilon_{0}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \varphi\left(\left\|x_{2 m_{k}}-x_{2 m_{k}+1}\right\|\right)=\varphi(d(A, B)) \tag{2.9}
\end{equation*}
$$

Since $\varphi \in \Phi$, by (2.6) and (2.9)

$$
\begin{aligned}
\varphi\left(d(A, B)+\varepsilon_{0}\right) & \leq \lim _{k \rightarrow \infty} \varphi\left(\left\|x_{2 m_{k}}-x_{2 m_{k}+1}\right\|\right) \\
& =\varphi(d(A, B))<\varphi\left(d(A, B)+\varepsilon_{0}\right)
\end{aligned}
$$

a contradiction and hence the Theorem.
Theorem 2.9. Let A and B be nonempty subsets of a uniformly convex Banach space X such that A is closed. Let $T: A \cup B \rightarrow A \cup B$ be cyclic (ψ, φ)-weakly contraction mapping. For $x_{0} \in A$ define $x_{n+1}:=T x_{n}$ for each $n \geq 0$. If $d(A, B)=0$, then T has a unique fixed point $z \in A \cap B$.

Proof. Let $\varepsilon>0$ be given. By Theorem 2.4, there exists N_{1} such that

$$
\left\|x_{2 n}-x_{2 n+1}\right\|<\varepsilon
$$

for all $n \geq N_{1}$. By Theorem 2.8, there exists N_{2} such that

$$
\left\|x_{2 m}-x_{2 n+1}\right\|<\varepsilon
$$

for all $m>n \geq N_{2}$. Let $N:=\max \left\{N_{1}, N_{2}\right\}$. Then

$$
\left\|x_{2 m}-x_{2 n}\right\| \leq\left\|x_{2 m}-x_{2 n+1}\right\|+\left\|x_{2 n+1}-x_{2 n}\right\|<2 \varepsilon
$$

for all $m>n \geq N$. Thus $\left\{x_{2 n}\right\}$ is a Cauchy sequence in A. Since X is complete and A is closed, it follows that $x_{2 n} \rightarrow z \in A$ as $n \rightarrow \infty$. Now by Theorem 2.5, we have $d(z, T z)=d(A, B)=0$, and z is a fixed point of T. The uniqueness of fixed point follows easily.

Corollary 2.10.[1, Theorem 6]. Let A and B be nonempty subsets of a uniformly convex Banach space X such that A is closed. Let $T: A \cup B \rightarrow A \cup B$ be cyclic φ-weakly contraction mapping. For $x_{0} \in A$ define $x_{n+1}:=$ Tx for each $n \geq 0$. If $d(A, B)=0$, then T has a unique fixed point $z \in A \cap B$.

Proof. It comes from Theorem 2.9, when $\psi(t)=t$.
Theorem 2.11. Let A and B be nonempty subsets of a uniformly convex Banach space X such that A is closed and convex. Let $T: A \cup B \rightarrow A \cup B$ be cyclic (ψ, φ)-weakly contraction mapping. For $x_{0} \in A$ define $x_{n+1}:=T x_{n}$ for each $n \geq 0$. Then $\left\{x_{2 n}\right\} \in A$ and $\left\{x_{2 n+1}\right\} \in B$ are Cauchy sequences.

Proof. If $d(A, B)=0$, the result follows from Theorem 2.9. So assume that $d(A, B)>0$. Suppose that the sequence $\left\{x_{2 n}\right\}$ is not Cauchy. Then there exists $\varepsilon_{0}>0$ such that for each $k \geq 1$, there exist $m_{k}>n_{k} \geq k$ satisfying

$$
\begin{equation*}
\left\|x_{2 m_{k}}-x_{2 n_{k}}\right\| \geq \varepsilon_{0} . \tag{2.10}
\end{equation*}
$$

Choose $0<\gamma<1$ such that $\frac{\varepsilon_{0}}{\gamma}>d(A, B)$ and choose ε such that

$$
0<\varepsilon<\min \left\{\frac{\varepsilon_{0}}{\gamma}-d(A, B), \frac{d(A, B) \delta(\gamma)}{1-\delta(\gamma)}\right\}
$$

By Theorem 2.4, there exists N_{1} such that

$$
\begin{equation*}
\left\|x_{2 n_{k}}-x_{2 n_{k}+1}\right\|<d(A, B)+\varepsilon . \tag{2.11}
\end{equation*}
$$

for all $n_{k} \geq N_{1}$. By Theorem 2.8, there exists N_{2} such that

$$
\begin{equation*}
\left\|x_{2 m_{k}}-x_{2 n_{k}+1}\right\|<d(A, B)+\varepsilon . \tag{2.12}
\end{equation*}
$$

for all $n_{k} \geq N_{2}$. Let $N:=\max \left\{N_{1}, N_{2}\right\}$. It follows from (2.11), (2.12) and the uniform convexity of X that

$$
\left\|\frac{x_{2 n_{k}+2}+x_{2 n_{k}}}{2}-x_{2 n_{k}+1}\right\| \leq\left(1-\delta\left(\frac{\varepsilon_{0}}{d(A, B)+\varepsilon}\right)\right)(d(A, B)+\varepsilon)
$$

for all $n_{k} \geq N$. The choice of ε and the fact that δ is strictly increasing imply that

$$
\left\|\frac{x_{2 n_{k}+2}+x_{2 n_{k}}}{2}-x_{2 n_{k}+1}\right\|<d(A, B),
$$

for all $n_{k} \geq N$, a contradiction. Thus $\left\{x_{2 n}\right\}$ is a Cauchy sequence in A. Similarly, we can show that $\left\{x_{2 n+1}\right\}$ is a Cauchy sequence in B.

Theorem 2.12. Let A and B be nonempty subsets of a uniformly convex Banach space X such that A is closed and convex. Let $T: A \cup B \rightarrow A \cup B$ be cyclic (ψ, φ)-weakly contraction mapping. For $x_{0} \in A$ define $x_{n+1}:=T x_{n}$ for each $n \geq 0$. Then there exists a unique $z \in A$ such that $x_{2 n} \rightarrow z, T^{2} z=z$ and $\|z-T z\|=d(A, B)$.

Proof. By Theorem 2.11, $\left\{x_{2 n}\right\}$ is a Cauchy sequence in A and hence $x_{2 n} \rightarrow z \in A$ as $n \rightarrow \infty$. By Theorem 2.5, $\|z-T z\|=d(A, B)$. To show that z is unique we assume that there exists a $y \in A$ such that $\|y-T y\|=d(A, B)$ with $T^{2} y=y$. By Lemma 2.3 (i) and (ii), we have

$$
\|T y-z\|=\left\|T y-T^{2} z\right\| \leq\|y-T z\| \text { and }\|T z-y\|=\left\|T z-T^{2} y\right\| \leq\|z-T y\|
$$

Thus $\|T z-y\|=\|z-T y\|$. In fact $\|z-T y\|=d(A, B)$; otherwise $\|z-T y\|>d(A, B)$ and since T is cyclic (ψ, φ)-weakly contraction, it follows that

$$
\begin{aligned}
\psi(\|T z-y\|) & =\psi\left(\left\|T z-T^{2} y\right\|\right) \\
& \leq \psi(\|z-T y\|)-\varphi(\|z-T y\|)+\varphi(d(A, B)) \\
& <\psi(\|z-T y\|)-\varphi(A, B)+\varphi(A, B) \\
& =\psi(\|z-T y\|)=\psi(T z-y \|)
\end{aligned}
$$

a contradiction. Thus $\|z-T y\|=d(A, B)=\|y-T z\|$. Now by convexity of A and X

$$
0<\left\|\frac{y+z}{2}-T y\right\|=\left\|\frac{y-T y}{2}+\frac{z-T y}{2}\right\|<d(A, B)
$$

a contradiction. Thus $y=z$.
In view of Remark 2.2 (1), Theorem 8 of [1] is a special case of Theorem 2.12.

References

[1] M. A. Al-Thagafi and N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Anal. 70 (2009), 3665-3671.
[2] C. Di Bari, T. Suzuki and C. Vetro, Best proximity points for cyclic Meir-Keeler contractions, Nonlinear Anal. 69 (2008), 3790-3794.
[3] P. N. Dutta and B. S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl. (2008), pages 1-8.
[4] A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323 (2006), 1001-1006.
[5] S. Karpagam and Sushama Agrawal, Best proximity point theorems for cyclic orbital Meir-Keeler contraction maps, Nonlinear Anal. 74 (2011), 1040-1046.
[6] M. S. Khan, M. Swleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30 (1984), 1-9.
[7] W. A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory 4 (2003), 79-89.
[8] H. K. Nashine and B. Samet, Fixed point results for (ψ, φ)-weakly contractive conditions in partially ordered metric spaces, Nonlinear Anal. 74 (2011), 2201-2209.
[9] P. S. Srinivasan and P. Veeramani, On best proximity pair theorems and fixed point theorems, Abst. Appl. Anal. 2003 (2003), 33-47.
[10] T. Suzuki, M. Kikkawa and C. Vetro, The existence of best proximity points in metric spaces with the property UC, Nonlinear Anal. 71 (2009), 2918-2926.

[^0]: *Corresponding author

