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1. Introduction and Preliminaries

Thought this paper N denotes the set of naturals and X a metric space (X, d). Let

A and B be nonempty subsets of a metric space X. A mapping T : A ∪ B → A ∪ B is

called a cyclic mapping if T (A) ⊆ B and T (B) ⊆ A. A point z ∈ A ∪ B is said to be

fixed point of T if Tz = z and a best proximity point of T if d(z, Tz) = d(A,B), where

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}. All mappings do not have fixed points. For

example the mapping T : [0,∞) → [0,∞) defined by Tx = 1 + x, has no fixed points,

since x is never equal to x + 1 for any x ∈ [0,∞). If the fixed-point equation Tx = x

does not possesses a solution, it is contemplated to resolve a problem finding an element
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x such that x is in proximity to Tx in some sense. Best proximity theorems analyze the

conditions under which the optimization problem, namely min
x∈A

d(x, Tx) has a solution [9].

Kirk et al. [7] obtained the following interesting fixed point theorem for cyclic mappings.

Theorem 1.1. Let A and B be nonempty closed subsets of a complete metric space X

and T : A∪B → A∪B be a cyclic mapping. Assume that there exists λ ∈ (0, 1) such that

d(Tx, Ty) ≤ λd(x, y) (1.1)

for all x ∈ A and y ∈ B. Then T has a unique fixed point in A ∩B.

The condition (1.1) entails A∩B being nonempty. Eldred and Veeramani [4] modified

the condition (1.1) for the case A ∩B = ∅ as follows:

d(Tx, Ty) ≤ λd(x, y) + (1− λ)d(A,B) (1.2)

for all x ∈ A and y ∈ B, where λ ∈ (0, 1). The mapping T satisfying condition (1.2)

is called a cyclic contraction. Eldred and Veeramani [4, Th. 3.10] obtained a unique

best proximity point for the mapping T in a uniformly convex Banach space setting.

Subsequently, a number of extensions and generalizations of their results appeared in [1,

2, 5, 10] and many others.

Recently, Al-Tagafi and Shahzad [1] introduced the notion of cyclic ϕ-contractions and

obtained some existence results for this new class of mappings. In this paper we, extend

cyclic ϕ-contractions and introduce the notion of cyclic (ψ, ϕ)-weakly contractions. Sub-

sequently, this notion is utilized to obtain some fixed and best proximity point theorems

which generalize certain results of [1], [4] and [7].

2. Cyclic (ψ, ϕ)-weakly contractions

Throughout this section Φ denotes the class of the functions ϕ : [0,∞) → [0,∞)

satisfying:

(a) ϕ is continuous and monotone nondecreasing,

(b) ϕ(t) = 0⇔ t = 0.
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The function ϕ ∈ Φ is also known as altering distance function (see, for instance, [6]).

Now we introduce the following notion of a cyclic (ψ, ϕ)-weakly contraction mapping.

Definition 2.1. Let A and B be nonempty subsets of a metric space X and T : A∪B →

A∪B a cyclic mapping. The mapping T will be called a cyclic (ψ, ϕ)-weakly contraction

if, ψ, ϕ ∈ Φ and

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− ϕ(d(x, y)) + ϕ(d(A,B)), (2.1)

for all x ∈ A and y ∈ B (see also, [3, 8]).

Remark 2.2. We remark that:

1. A cyclic ϕ-contraction is cyclic (ψ, ϕ)-weakly contraction with ψ(t) = t for t ≥ 0.

2. A cyclic contraction is cyclic (ψ, ϕ)-weakly contraction with ψ(t) = t, ϕ(t) = (1− λ)t

for t ≥ 0 and λ ∈ (0, 1).

Recall that, a Banach space X is said to be:

(a) uniformly convex if there exists a strictly increasing function δ : (0, 2] → [0, 1] such

that the following implication holds for all x, y, p ∈ X, R > 0 and r ∈ [0, 2R]:

‖x− p‖ ≤ R

‖y − p‖ ≤ R

‖x− y‖ ≥ r

⇒
∥∥∥∥x+ y

2
− p
∥∥∥∥ ≤ (1− δ

( r
R

))
R;

(b) strictly convex if the following implication holds for all x, y, p ∈ X and R > 0:

‖x− p‖ ≤ R

‖y − p‖ ≤ R

x 6= y

⇒
∥∥∥∥x+ y

2
− p
∥∥∥∥ < R.

We begin with the following lemma.

Lemma 2.3. Let A and B be nonempty subsets of a metric space X and T : A∪B → A∪B

a cyclic (ψ, ϕ)-weakly contraction mapping. For x0 ∈ A∪B, define xn+1 := Txn for each

n ≥ 0. Then for all x ∈ A and y ∈ B,

(i) ϕ(d(A,B)) ≤ ϕ(d(x, y));
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(ii) d(Tx, Ty) ≤ d(x, y); and

(iii) d(xn+2, xn+1) = d(Txn+1, Txn) ≤ d(xn+1, xn) for each n ≥ 0.

Proof. (i) Since d(A,B) = d(x, y) for all x ∈ A and y ∈ B and ϕ ∈ Φ, we have

ϕ(d(A,B)) ≤ ϕ(d(x, y)).

(ii) Since T is a cyclic (ψ, ϕ)-weakly contraction, we have

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− ϕ(d(x, y)) + ϕ(d(A,B))

for all x ∈ A and y ∈ B.

From (i) ϕ(d(A,B)) ≤ ϕ(d(x, y)), hence

ψ(d(Tx, Ty)) ≤ ψ(d(x, y)).

Since ϕ ∈ Φ, it follows that d(Tx, Ty) ≤ d(x, y).

(iii) Since T is a cyclic (ψ, ϕ)-weakly contraction, we have

ψ(d(xn+2, xn+1)) = ψ(d(Txn+1, Txn))

≤ ψ(d(xn+1, xn))− ϕ(d(xn+1, xn)) + ϕ(d(A,B))

for all n ≥ 0. Using (i) and (ii), we get

ψ(d(xn+2, xn+1)) = ψ(d(Txn+1, Txn)) ≤ ψ(d(xn+1, xn)).

Now since ψ ∈ Φ, it follows that

d(xn+2, xn+1) = d(Txn+1, Txn) ≤ d(xn+1, xn).

Theorem 2.4. Let A and B be nonempty subsets of a metric space X and T : A ∪B →

A ∪ B a cyclic (ψ, ϕ)-weakly contraction mapping. For x0 ∈ A ∪ B, define xn+1 := Txn

for each n ≥ 0. Then lim
n→∞

d(xn, Txn) = d(A,B).

Proof. It follows from Lemma 2.3 (iii) that {d(xn, xn+1)} is a decreasing sequence. Thus

lim
n→∞

d(xn, xn+1) = r0 for some r0 ≥ d(A,B). If d(xn0 , xn0+1) = 0 for some n0 ≥ 1 then we



FIXED AND BEST PROXIMITY POINTS FOR CYCLIC WEAKLY CONTRACTION MAPPINGS 139

are done. Assume that d(xn, xn+1) > 0 for each n ≥ 1. Since T is a cyclic (ψ, ϕ)-weakly

contraction, we have

ψ(d(xn+1, xn+2)) ≤ ψ(d(xn, xn+1))− ϕ(d(xn, xn+1)) + ϕ(d(A,B)) (2.2)

for each n ≥ 1.

Now by Lemma 2.3 (i) and (2.2), we have

ϕ(d(A,B)) ≤ ϕ(d(xn, xn+1)) ≤ ψ(d(xn, xn+1))− ψ(d(xn+1, xn+2)) + (A,B). (2.3)

Since ψ, ϕ ∈ Φ and d(xn, xn+1) ≥ r0 ≥ d(A,B), it follows from (2.3) that

lim
n→∞

ϕ(d(xn, xn+1)) = ϕ(r0) = ϕ(d(A,B))

for each n ≥ 1. Since ϕ ∈ Φ, r0 = d(A,B).

In view of Remark 2.2 (1) and (2), Proposition 3.1 of [4] and Theorem 3 of [1] are

special cases of Theorem 2.4.

Theorem 2.5. Let A and B be nonempty subsets of a metric space X and T : A ∪B →

A ∪ B a cyclic (ψ, ϕ)-weakly contraction mapping. For x0 ∈ A, define xn+1 := Txn for

each n ≥ 0. If {x2n} has a convergent subsequence in A, then there exists a point z ∈ A

such that d(z, Tz) = d(A,B).

Proof. Let {x2nk
} be a subsequence of {x2n} such that lim

k→∞
x2nk

= z. Since

d(A,B) ≤ d(z, x2nk−1) ≤ d(z, x2nk
) + d(x2nk

, x2nk−1)

for each k ≥ 1, it follows from Theorem 2.4 that lim
k→∞

d(x2nk
, x2nk−1) = d(A,B). Since

d(A,B) ≤ d(x2nk
, T z) = d(x2nk−1, z)

for each k ≥ 1, it follows that d(z, Tz) = d(A,B).

In view of Remark 2.2 (2), Proposition 3.2 of [4] is a special case of Theorem 2.5.

Corollary 2.6. [1, Theorem 4]. Let A and B be nonempty subsets of a metric space

X and T : A ∪ B → A ∪ B a cyclic ϕ-weakly contraction mapping. For x0 ∈ A, define
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xn+1 := Txn for each n ≥ 0. If {x2n} has a convergent subsequence in A, then there exists

a point z ∈ A such that d(z, Tz) = d(A,B).

Proof. It comes from Theorem 2.5, when ϕ(t) = t.

Lemma 2.7. Let A and B be nonempty subsets of a uniformly convex Banach space X

such that A is convex. Let T : A ∪ B → A ∪ B be a cyclic (ψ, ϕ)-weakly contraction

mapping. For x0 ∈ A, define xn+1 := Txn for each n ≥ 0. Then

lim
n→∞

‖x2n+2 − x2n‖ = 0 and lim
n→∞

‖x2n+3 − x2n+1‖ = 0.

Proof. Suppose that lim
n→∞
‖x2n+2−x2n‖ > 0. Then there exists ε0 > 0 such that for each

k ≥ 1, there is an nk ≥ k satisfying

‖x2nk+2 − x2nk
‖ ≥ ε0. (2.4)

Choose 0 < γ < 1 such that
ε0
γ
> d(A,B) and choose ε such that

0 < ε < min

{
ε0
γ
− d(A,B),

d(A,B)δ(γ)

1− δ(γ)

}
.

By Theorem 2.4, there exist N1 and N2 such that

‖x2nk+2 − x2nk+1‖ ≤ d(A,B) + ε and ‖x2nk+1 − x2nk
‖ ≤ d(A,B) + ε (2.5)

for all nk ≥ N1, N2. Let N := max{N1, N2}. It follows from (2.4), (2.5) and the uniform

convexity of X that∥∥∥∥x2nk+2 + x2nk

2
− x2nk+1

∥∥∥∥ ≤ (1− δ
(

ε0
d(A,B) + ε

))
(d(A,B) + ε)

for all nk ≥ N . As
x2nk+2 + x2nk

2
∈ A, the choice of ε and the fact that δ is strictly

increasing imply that ∥∥∥∥x2nk+2 + x2nk

2
− x2nk+1

∥∥∥∥ < d(A,B),

for all nk ≥ N , a contradiction. Therefore lim
n→∞
‖x2n+2 − x2n‖ = 0. Similarly we can show

that lim
n→∞
‖x2n+3 − x2n+1‖ = 0.

Theorem 2.8. Let A and B be nonempty subsets of a uniformly convex Banach space

X such that A is convex. Let T : A ∪ B → A ∪ B be a cyclic (ψ, ϕ)-weakly contraction
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mapping. For x0 ∈ A define xn+1 := Txn for each n ≥ 0. Then for each ε > 0, there

exists a positive integer N0 such that for all m > n ≥ N0

‖x2m − x2n+1‖ < d(A,B) + ε.

Proof. Suppose the contrary. Then there exists ε0 > 0 such that for each k ≥ 1, there

exist mk > nk ≥ k satisfying

‖x2mk
− x2nk+1‖ ≥ d(A,B) + ε0 and ‖x2(mk−1) − x2nk+1‖ < d(A,B) + ε0. (2.6)

By the triangle inequality and (2.6), we have

d(A,B) + ε0 ≤ ‖x2mk
− x2nk+1‖

≤ ‖x2mk
− x2(mk−1)‖+ ‖x2(mk−1) − x2nk+1‖

< ‖x2mk
− x2(mk−1)‖+ d(A,B) + ε0.

Making k →∞ and using Lemma 2.7, we get

lim
k→∞
‖x2mk

− x2nk+1‖ = d(A,B) + ε0. (2.7)

Since T is a cyclic (ψ, ϕ)-weakly contraction, by Lemma 2.3 (i) and (ii), and the triangle

inequality, we obtain

ψ(‖x2mk
− x2nk+1‖) ≤ ψ(‖x2mk

− x2mk+2‖) + ψ(‖x2mk+2 − x2mk+3‖) + ψ(‖x2mk+3 − x2nk+1‖)

≤ ψ(‖x2mk
− x2mk+2‖) + ψ(‖x2mk+1 − x2mk+2‖) + ψ(‖x2mk+3 − x2nk+1‖)

≤ ψ(‖x2mk
− x2mk+2‖) + ψ(‖x2mk

− x2mk+1‖)

− ϕ(‖x2mk
− x2mk+1‖) + ϕ(d(A,B)) + ψ(‖x2mk+3 − x2nk+1‖)

≤ ψ(‖x2mk
− x2mk+2‖) + ψ(‖x2mk

− x2mk+1‖) + ψ(‖x2mk+3 − x2nk+1‖).
(2.8)

Since ψ ∈ Φ, (2.8) implies that

‖x2mk
− x2nk+1‖ ≤ ‖x2mk

− x2mk+2‖+ ‖x2mk
− x2mk+1‖ − ϕ(‖x2mk

− x2mk+1‖)

+ ϕ(d(A,B)) + ‖x2mk+3 − x2nk+1‖

≤ ‖x2mk
− x2mk+2‖+ ‖x2mk

− x2mk+1‖+ ‖x2mk+3 − x2nk+1‖.
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Making k →∞ and using (2.7) and Lemma 2.7, we get

d(A,B) + ε0 ≤ d(A,B) + ε0 − lim
k→∞

ϕ(‖x2mk
− x2mk+1‖) + ϕ(d(A,B))

≤ d(A,B) + ε0.

Hence

lim
k→∞

ϕ(‖x2mk
− x2mk+1‖) = ϕ(d(A,B)). (2.9)

Since ϕ ∈ Φ, by (2.6) and (2.9)

ϕ(d(A,B) + ε0) ≤ lim
k→∞

ϕ(‖x2mk
− x2mk+1‖)

= ϕ(d(A,B)) < ϕ(d(A,B) + ε0),

a contradiction and hence the Theorem.

Theorem 2.9. Let A and B be nonempty subsets of a uniformly convex Banach space X

such that A is closed. Let T : A∪B → A∪B be cyclic (ψ, ϕ)-weakly contraction mapping.

For x0 ∈ A define xn+1 := Txn for each n ≥ 0. If d(A,B) = 0, then T has a unique fixed

point z ∈ A ∩B.

Proof. Let ε > 0 be given. By Theorem 2.4, there exists N1 such that

‖x2n − x2n+1‖ < ε

for all n ≥ N1. By Theorem 2.8, there exists N2 such that

‖x2m − x2n+1‖ < ε

for all m > n ≥ N2. Let N := max{N1, N2}. Then

‖x2m − x2n‖ ≤ ‖x2m − x2n+1‖+ ‖x2n+1 − x2n‖ < 2ε

for all m > n ≥ N . Thus {x2n} is a Cauchy sequence in A. Since X is complete and

A is closed, it follows that x2n → z ∈ A as n → ∞. Now by Theorem 2.5, we have

d(z, Tz) = d(A,B) = 0, and z is a fixed point of T . The uniqueness of fixed point follows

easily.

Corollary 2.10.[1, Theorem 6]. Let A and B be nonempty subsets of a uniformly convex

Banach space X such that A is closed. Let T : A ∪ B → A ∪ B be cyclic ϕ-weakly
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contraction mapping. For x0 ∈ A define xn+1 := Txn for each n ≥ 0. If d(A,B) = 0,

then T has a unique fixed point z ∈ A ∩B.

Proof. It comes from Theorem 2.9, when ψ(t) = t.

Theorem 2.11. Let A and B be nonempty subsets of a uniformly convex Banach space

X such that A is closed and convex. Let T : A ∪ B → A ∪ B be cyclic (ψ, ϕ)-weakly

contraction mapping. For x0 ∈ A define xn+1 := Txn for each n ≥ 0. Then {x2n} ∈ A

and {x2n+1} ∈ B are Cauchy sequences.

Proof. If d(A,B) = 0, the result follows from Theorem 2.9. So assume that d(A,B) > 0.

Suppose that the sequence {x2n} is not Cauchy. Then there exists ε0 > 0 such that for

each k ≥ 1, there exist mk > nk ≥ k satisfying

‖x2mk
− x2nk

‖ ≥ ε0. (2.10)

Choose 0 < γ < 1 such that
ε0
γ
> d(A,B) and choose ε such that

0 < ε < min

{
ε0
γ
− d(A,B),

d(A,B)δ(γ)

1− δ(γ)

}
.

By Theorem 2.4, there exists N1 such that

‖x2nk
− x2nk+1‖ < d(A,B) + ε. (2.11)

for all nk ≥ N1. By Theorem 2.8, there exists N2 such that

‖x2mk
− x2nk+1‖ < d(A,B) + ε. (2.12)

for all nk ≥ N2. Let N := max{N1, N2}. It follows from (2.11), (2.12) and the uniform

convexity of X that∥∥∥∥x2nk+2 + x2nk

2
− x2nk+1

∥∥∥∥ ≤ (1− δ
(

ε0
d(A,B) + ε

))
(d(A,B) + ε)

for all nk ≥ N . The choice of ε and the fact that δ is strictly increasing imply that∥∥∥∥x2nk+2 + x2nk

2
− x2nk+1

∥∥∥∥ < d(A,B),

for all nk ≥ N , a contradiction. Thus {x2n} is a Cauchy sequence in A. Similarly, we can

show that {x2n+1} is a Cauchy sequence in B.
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Theorem 2.12. Let A and B be nonempty subsets of a uniformly convex Banach space

X such that A is closed and convex. Let T : A ∪ B → A ∪ B be cyclic (ψ, ϕ)-weakly

contraction mapping. For x0 ∈ A define xn+1 := Txn for each n ≥ 0. Then there exists a

unique z ∈ A such that x2n → z, T 2z = z and ‖z − Tz‖ = d(A,B).

Proof. By Theorem 2.11, {x2n} is a Cauchy sequence in A and hence x2n → z ∈ A as

n→∞. By Theorem 2.5, ‖z − Tz‖ = d(A,B). To show that z is unique we assume that

there exists a y ∈ A such that ‖y − Ty‖ = d(A,B) with T 2y = y. By Lemma 2.3 (i) and

(ii), we have

‖Ty − z‖ = ‖Ty − T 2z‖ ≤ ‖y − Tz‖ and ‖Tz − y‖ = ‖Tz − T 2y‖ ≤ ‖z − Ty‖.

Thus ‖Tz − y‖ = ‖z − Ty‖. In fact ‖z − Ty‖ = d(A,B); otherwise ‖z − Ty‖ > d(A,B)

and since T is cyclic (ψ, ϕ)-weakly contraction, it follows that

ψ(‖Tz − y‖) = ψ(‖Tz − T 2y‖)

≤ ψ(‖z − Ty‖)− ϕ(‖z − Ty‖) + ϕ(d(A,B))

< ψ(‖z − Ty‖)− ϕ(A,B) + ϕ(A,B)

= ψ(‖z − Ty‖) = ψ(Tz − y‖),

a contradiction. Thus ‖z − Ty‖ = d(A,B) = ‖y − Tz‖. Now by convexity of A and X

0 <

∥∥∥∥y + z

2
− Ty

∥∥∥∥ =

∥∥∥∥y − Ty2
+
z − Ty

2

∥∥∥∥ < d(A,B),

a contradiction. Thus y = z.

In view of Remark 2.2 (1), Theorem 8 of [1] is a special case of Theorem 2.12.
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