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Abstract. We constructed a Mann-type iteration process for a finite family of multivalued mappings in modular

function spaces and the sequence of the algorithm is proved to be a common ρ-approximate fixed point sequence.
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By doing so we extended very recent results of Zegeye et al.
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The fixed point theory in metric and Banach spaces attracted the attention of well known

analysts for the last ten decades. Recently, many mathematicians put their effort in the study of

fixed point theory of multivalued mappings in Banach spaces (see eg. [18, 19, 20, 21] and the

references therein). Along with the study of fixed point theory on the metric and Banach spaces,

many mathematicians are interested in working to this theory on modular spaces, spaces that

generalize some classes of Banach spaces.

The idea of modular function spaces first initiated by Nakano [17] which are natural gen-

eralizations of both function and sequence variants of many important, from applications per-

spective, spaces such as Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, Calderon-

Lozanovskii spaces,(see eg.[16] and the references therein) and many others.

The importance for applications of modular function spaces consists in the richness of struc-

ture of modular function spaces, that besides being Banach spaces (or F-spaces in a more gen-

eral settings)are equipped with modular equivalents of norm or metric notions, and also are

equipped with almost everywhere convergence and convergence in submeasure. In many cases,

particularly in applications to integral operators, approximation and fixed point results, modular

type conditions are much more natural and modular type assumptions can be more easily veri-

fied than their metric or norm counterparts. There are also important results that can be proved

only using the apparatus of modular function spaces. Khamsi et al. [10] gave an example of

a mapping which is ρ−nonexpansive but it is not norm nonexpansive. They demonstrated that

for a mapping T to be norm nonexpansive in a modular function space Lρ , a stronger than

ρ−nonexpansiveness assumption is needed:

ρ(λ (T x−Ty))≤ ρ(λ (x− y)) for any λ ≥ 0.

Khamsi et al. [10] were the pioneer of the study of fixed point theory in the context of modular

function. Kozlowski [12] has contributed a lot towards the study of modular function spaces

both on his own and with his collaborators and also Kuman [13] obtained some fixed point

theorems for nonexpansive mappings in modular function spaces. In 2006, Dhompongsa et.al

in [4] proved the existence of fixed points of multivalued ρ− contarction and ρ- nonexpansive

mappings in modular function spaces.
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However, it has been also shown in [2] that there are fixed point free nonexpansive mppings

on, even weakly compact, subsets of uniformly convex Banach spaces. But in modular function

spaces the existence of fixed points of multivalued, more difficult than single valued mappings,

nonexpansive mappings is guaranteed(see eg. [4], Corollary 3.5)

In some cases the existence of fixed points can be guaranteed by inspection. In such cases

studying about the approximation technique is very important than the existence. Therefore, in

the fixed point theory, approximating fixed points of nonlinear mappings is an important isue

as the existence. Now a days, the approximation processes of fixed points of nonexpansive

mappings in modular function spaces is one of the flourishing areas of nonlinear analysis . In

2012, Dehaish and Kozlowski [3] initiated the approximation of fixed points in modular function

spaces by Mann iterative process for asymptotically pointwise nonexpansive mappings.

In 2014, Abdou et al. [1] have proved the convergence theorem on common fixed point of

two ρ-nonexpansive, single valued, mappings in modular function spaces.

In 2014, Khan and Abbas [7] generalized the results of Dehaish and Kozlowski [3] to the

multivalued mapping setting to approximate the fixed points of a ρ-nonexpansive mapping in

modular function space by using the Mann iteration process [15]. Zegeye et.al [22] extended

the results of [7] to the common fixed points of finite family of ρ- nonexpavsive multivalued

mappings.

In 2016, Zegeye et al. [22] proved the convergence theorems of Mann-type iterative algo-

rithm to common fixed points of finite family of a multivalued ρ-nonexpansive mappings in

modular function spaces. The have defined Mann-type iteration process as follows and proved

the following theorems:

Let C ⊂ Lρ be nonempty convex set and Ti : C→ Pρ(C), i = 1,2, ...,m, be a finite family of

multi-valued mappings. Fix f1 ∈C and define a sequence { fn} ⊂C as follows:

fn+1 = αn,0 fn +αn,1gn,1 +αn,2gn,2 + ...+αn,mgn,m, (1.1)

where gn,i ∈ PTi
ρ ( fn) and {αn,i} ⊂ (0,1) is bounded away from 0 and 1 such that

m

∑
i=0

αn,i = 1.
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Theorem 1.1. [22] Let ρ ∈ R satisfy (UUC1) and ∆2-property. Let C ⊂ Lρ be ρ-closed,

ρ-bounded and convex set. Suppose Ti : C→ Pρ(C), i = 1,2, ...,m, be a finite family of multi-

valued mappings such that PTi
ρ is ρ-nonexpansive mapping for each i = 1,2, ...,m. Assume that

F :=
m⋂

i=1

Fρ(Ti) 6= /0. Let { fn} be as defined in equation (1.1). Then,

(1) lim
n→∞

ρ( fn− p) exists for all p ∈ F;

(2) lim
n→∞

dρ( fn,Ti( fn)) = 0, for all i = 1,2, ...,m.

Theorem 1.2. [22] Let ρ ∈ R satisfy (UUC1) and ∆2-property. Let C ⊂ Lρ be ρ-closed,

ρ-bounded and convex set. Suppose Ti : C→ Pρ(C), i = 1,2, ...,m, be a finite family of multi-

valued mappings such that PTi
ρ is ρ-nonexpansive mapping for each i = 1,2, ...,m. Let F :=

m⋂
i=1

Fρ(Ti) 6= /0 and { fn} be as defined in equation (1.1). Then, { fn} ρ-converges to a point in F

if and only if liminfn→∞ dρ( fn,F) = 0.

Theorem 1.3. [22] Let ρ ∈ R satisfy (UUC1) and ∆2-property. Let C ⊂ Lρ be ρ-closed,

ρ-bounded and convex set. Suppose Ti : C→ Pρ(C), i = 1,2, ...,m, be a finite family of multi-

valued mappings satisfying Condition (II) such that PTi
ρ is ρ-nonexpansive mapping for each

i = 1,2, ...,m. Assumethat F :=
m⋂

i=1

Fρ(Ti) 6= /0. Let { fn} be as defined in equation (1.1). Then

{ fn} ρ-converges to a point in F :=
m⋂

i=1

Fρ(Ti).

It is our purpose in this paper to construct a Mann-type algorithm and show that the sequence

is ρ-approximate common fixed pint sequence for a finite family of ρ-quasi-nonexpansive mul-

tivalued mappings and under certain mild conditions it ρ-converges to a common fixed point in

modular function spaces.

2. Preliminaries

Now, we recall some basic notions and facts about modular spaces as formulated by Ko-

zlowski [11]. For more details the reader may consult [6, 12] and the references therein.

Let Ω be a nonempty set and Σ be a nontrivial σ -algebra of subsets of Ω. Let P be a

nontrivial δ -ring of subsets of Ω such that E ∩A ∈P for any E ∈P and A ∈ Σ. Assume that

there exists an increasing sequence of sets Kn ∈P such that Ω = ∪n=1Kn. By E we denote
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the linear space of all simple functions with supports from P . By M∞ we denote the space

of all extended measurable functions, that is, all functions f : Ω −→ [−∞,∞] such that there

exists a sequence {gn} ⊂ E , |gn| ≤ | f | and gn(w)−→ f (w) for all w ∈Ω. By χA we denote the

characteristic function of the set A.

Definition 2.1. Let ρ : M∞ −→ [0,∞] be a nontrivial, convex and even function. We say that ρ

is a regular convex function pseudo-modular if it satisfies the following:

a) ρ(0) = 0;

b) ρ is monotone; that is, | f (w)| ≤ |g(w)| for all w ∈Ω implies ρ( f )≤ ρ(g) where f ,g ∈

M∞;

c) ρ is orthogonally subadditive; that is, ρ( f χA∪B) ≤ ρ( f χA)+ρ( f χB) for any A,B ∈ Σ

such that A∩B 6= /0, where f ∈M∞;

d) ρ has Fatou property; that is, | fn(w)| ↑ | f (w)| for all w ∈ Ω implies that ρ( fn) ↑ ρ( f )

where f ∈M∞ and

e) ρ is order continuous in E ; that is, gn ∈ E and |gn| ↓ 0 implies that ρ(gn) ↓ 0.

We say that a set A ∈ Σ is ρ-null if ρ(gχA) = 0 for every g ∈ E . We say that a property p holds

ρ-almost every where if the exceptional set {w ∈ Ω : p(w) does not hold} is ρ-null. As usual

we identify any pair of measurable functions f and g differing only on ρ-null set by f = g ρ-a.e.

With this in mind we define

M = { f ∈M∞ : | f (w)|< ∞ ρ−a.e},

where f ∈M is actually an equivalence class of functions equal ρ-a.e rather than an individual

function.

Definition 2.2. Let ρ be a regular convex function pseudo-modular.

a) We say that ρ is a regular convex function semi-modular if ρ(α f ) = 0 for every α > 0

implies that f = 0 ρ-a.e.

b) We say that ρ is a regular convex function modular if ρ( f ) = 0 implies that f = 0 ρ-a.e.

The class of all nonzero regular convex function modulars defined on Ω is denoted by R.
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Remark 2.1. Let us denote ρ( f ,E) = ρ( f χE) for f ∈M ,E ∈ Σ. Also by convention for α > 0

we will write ρ(α,E) instead of ρ(αχE). We will use these notations when convenient. It is

easy to prove that ρ( f ,E) is a convex function modular in the sense of Definition 2.1.

Remark 2.2. Note that if ρ is a regular convex function modular, then to verify that a set E is

ρ-null it suffices to prove that there exists α > 0 such that ρ(α,E) = 0.

Definition 2.3. Let ρ be a convex function modular.

(1) A modular function space is the vector space Lρ(Ω,Σ) or briefly Lρ , defined by

Lρ = { f ∈M : ρ(λ f )→ 0 as λ → 0}.

(2) The following formula defines a norm in Lρ frequently called the Luxemburg norm:

‖ f‖ρ = inf{α > 0 : ρ(
f
α
)≤ 1}.

Definition 2.4. [12] Let ρ ∈R.

a) We say that { fn} is ρ-convergent to f and write fn→ f (ρ)

if ρ( fn− f )→ 0.

b) A sequence { fn} in Lρ is called a ρ-Cauchy sequence if ρ( fn− fm)→ 0 as n,m→ ∞.

c) A set B⊂ Lρ is called ρ-closed if for any sequence of { fn} ⊂ B, the convergence fn→

f (ρ) implies that f belongs to B.

d) A set B ⊂ Lρ is called ρ-bounded if its ρ-diameter is finite; the ρ-diameter of B is

defined as

δρ(B) = sup{ρ( f −g) : f ∈ B,g ∈ B}.

e) A set B⊂ Lρ is called ρ-compact if for any { fn} in B, there exists a subsequence { fnk}

and an f ∈ B such that ρ( fnk− f )→ 0.

f) A set B ⊂ Lρ is called ρ- a.e closed if if for any { fn} in B,which ρ-a.e converges to

some f , we have f ∈ B.

g) A set B ⊂ Lρ is called ρ-a.e compact if for any { fn} in B, there exists a subsequence

{ fnk} which ρ-a.e converges to some f ∈ B.

h) Let f ∈ Lρ and B ⊂ Lρ . The ρ-distance between f and B is defined as dρ( f ,B) =

inf{ρ( f −g) : g ∈ B}.
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Theorem 2.1. [12] Let ρ ∈R. Lρ is complete with respect to ρ-convergence.

The following definition plays very crucial role in modular function space and following this

definition we get an important property that characterizes the convergence in function modular

by the norm ( Luxemburg norm)convergence(see the detail in [12]).

Definition 2.5. Let ρ ∈ R. We say that ρ has the ∆2 - property if ρ(2 fn)→ 0 whenever

ρ( fn)→ 0.

Proposition 2.2. [12] The following statements are equivalent:

(i) ρ satisfies the ∆2-condition.

(ii) ρ( fn− f )→ 0 if and only if ρ(λ ( fn− f ))→ 0, for all λ > 0 if and only if ‖ fn− f‖ρ →

0.

Definition 2.6. [12] Let ρ ∈ R. We say that ρ has the ∆2 - type condition if there exists a

constant 0 < k < ∞ such that for every f ∈ Lρ , we have ρ(2 f )≤ kρ( f ).

Remark 2.3. If ρ satisfies the ∆2 - type condition, then it satisfies ∆2 - property, and that the

converse is not true (see, e.g.,[12]).

Let ρ ∈R and C be a nonempty subset of the modular space Lρ . We denote a collection of

all nonempty ρ-closed and ρ- bounded subsets of C by Cρ(C) and a collection of all nonempty

ρ-compact subsets of C by Kρ(C).

Definition 2.7. [7] A set C ⊂ Lρ is called ρ-proximinal if for each f ∈ Lρ there exists an

element g ∈C such that

ρ( f −g) = dρ( f ,C) = inf{ρ( f −h) : h ∈C}.

We denote the family of nonempty ρ-bounded ρ-proximinal subsets of C by Pρ(C).

Definition 2.8. [7] We define a Hausdorff distance on Cρ(C) by,

Hρ(A,B) = max{sup
f∈A

dρ( f ,B), sup
g∈B

dρ(g,A)},

A,B ∈ Cρ(C).

Definition 2.9. [7] A multivalued mapping T : C→ Cρ(C) is called ρ-Lipschitzian if there

exists a number k ≥ 0 such that

Hρ(T ( f ),T (g))≤ kρ( f −g) f or all f ,g ∈C.
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If k ≤ 1 then, T is called ρ-nonexpansive and if k < 1, T is called ρ-contractive.

Definition 2.10. [22] A mapping T :C→Cρ(C) is said to be ρ-quasi-nonexpansive if Fρ(T ) 6= /0

and Hρ(T ( f ),T (h))≤ ρ( f −h) for all f ∈C and h ∈ Fρ(T ).

Remark 2.4. If a mapping T : C −→ Cρ(C) is ρ-nonexpansive with Fρ(T ) 6= /0, then T is

ρ-quasi-nonexpansive.

We find the following uniform convexity type property definitions of the function modular ρ

in [8] and [9].

Definition 2.11. Let ρ ∈R. Let t ∈ (0,1), r > 0, ε > 0. Define,

D1(r,ε) = {( f ,g) : f ,g ∈ Lρ , ρ( f )≤ r, ρ(g)≤ r, ρ( f −g)≥ εr}.

Let

δ
t
1(r,ε) = inf{1− 1

r
ρ(t f +(1− t)g : ( f ,g) ∈ D1(r,ε)}, i f D1(r,ε) 6= /0

and δ t
1(r,ε) = 1, i f D1(r,ε) = /0.

We will use the following notational convention: δ1 = δ
1
2

1 .

Definition 2.12. We say that ρ satisfies (UC1) if for every r > 0, ε > 0, δ1(r,ε) > 0. Note

that for every r > 0, D1(r,ε) 6= /0, for ε > 0 small enough. We say that ρ satisfies (UUC1) if for

every s≥ 0, ε > 0, there exists η1(s,ε)> 0 depending only on s and ε such that

δ1(r,ε)> η1(s,ε)> 0, f or any r > s.

Definition 2.13. A sequence {tn} ⊂ (0,1) is called bounded away from 0 if there exists 0 <

a < 1 such that tn ≥ a, for every n ∈ N. Similarly, {tn} ⊂ (0,1) is called bounded away from 1

if there exists 0 < b < 1 such that tn ≤ b, for every n ∈ N.

Lemma 2.3. [3] Let ρ satisfies (UUC1) and let {tn} ⊂ (0,1) be bounded away from both 0 and

1. If there exists R > 0 such that

limsup
n→∞

ρ( fn)≤ R, limsup
n→∞

ρ(gn)≤ R

and

lim
n→∞

ρ(tn fn +(1− tn)gn) = R, then
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lim
n→∞

ρ( fn−gn) = 0.

Definition 2.14. [22] A family of mappings Ti : C→ Cρ(C), i = 1,2, ...,m is said to satisfy

Condition (II) if there exists a nondecreasing function ϕ : [0,∞)→ [0,∞) with ϕ(0) = 0, ϕ(r)>

0 for r ∈ (0,∞) such that

dρ( f ,Ti( f ))≥ ϕ(dρ( f ,∩m
i=1Fρ(Ti)))

for some i = 1,2, ...,m.

3. Main results

In what follows we shall use the following iteration scheme for finite family of mappings

in modular function spaces which was first introduced by Zegeye et al. [22]. Let C ⊂ Lρ be

nonempty convex set and Ti : C → Cρ(C), i = 1,2, ...,m, be a finite family of multi-valued

mappings. Fix f1 ∈C and define a sequence { fn} ⊂C as follows:

fn+1 = α0,n fn +α1,nu1,n +α2,nu2,n + ...+αm,num,n, , (3.1)

where ui,n ∈ Ti( fn) and {αi,n} ⊂ (0,1) is bounded away from 0 and 1 such that ∑
m
i=0 αi,n = 1.

Now we prove our first theorem.

Lemma 3.1. Let ρ ∈R and C be a nonempty ρ-closed, ρ-bounded and convex subset of Lρ .

Suppose Ti : C→ Cρ(C), i = 1,2, ...,m, is a finite family of ρ-quasi-nonexpansive multi-valued

mappings. Assume that F :=
m⋂

i=1

Fρ(Ti) 6= /0 and Ti(p) = {p} for all p ∈ F. Then, the common

fixed point set F is ρ-closed.

Proof. Let {gn} be a sequence in F such that lim
n→∞

ρ(gn− f ) = 0 for some f ∈C. We must show

that f ∈ F . Since gn ∈ Fρ(Ti) and Ti is ρ-quasi-nonexpansive for i = 1,2, ...,m,

Hρ(Tign,Ti f )≤ ρ(gn− f ).

Now, let hi ∈ Ti f for i = 1,2, ...,m. Then,

ρ(hi−gn)≤ Hρ(Ti f ,Tign)≤ ρ(gn− f ).
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Now, by convexity of ρ , we get

ρ(
hi− f

2
) = ρ(

hi−gn

2
+

gn− f
2

)

≤ 1
2
(ρ(hi−gn)+ρ(gn− f ))

≤ ρ(gn− f )→ 0 ,as n→ ∞.

This implies that, hi = f , that is, f ∈ Ti f for all i= 1,2, ...,m. Since Ti( f ) is ρ-closed, f ∈Fρ(Ti)

for all i = 1,2, ...,m. Thus, the common fixed point set is ρ-closed.

Theorem 3.2. Let ρ ∈ R satisfy (UUC1) and ∆2-property. Let C ⊂ Lρ be ρ-closed, ρ-

bounded and convex set. Suppose Ti : C→ Cρ(C), i = 1,2, ...,m, is a finite family of ρ-quasi-

nonexpansive multi-valued mappings. Assume that F :=
m⋂

i=1

Fρ(Ti) 6= /0 and Ti(p) = {p} for all

p ∈ F . Let { fn} be as defined in equation (3.1).Then,

(1) lim
n→∞

ρ( fn− p) exists for all p ∈ F ;

(2) lim
n→∞

dρ( fn,Ti( fn)) = 0, for all i = 1,2, ...,m.

Proof. Let p ∈ F be arbitrary. From equation (3.1), we have

ρ( fn+1− p) = ρ(α0,n fn +α1,nu1,n +α2,nu2,n + ...+αm,num,n− p)

= ρ(α0,n( fn− p)+α1,n(u1,n− p)+α2,n(u2,n− p)+ ...+αm,n(um,n− p))

≤ α0,nρ( fn− p)+α1,nρ(u1,n− p)+α2,nρ(u2,n− p)+ ...+αm,nρ(um,n− p)..
(3.2)

Since ui,n ∈ Ti( fn), Ti(p) = {p} and Ti is ρ-quasi-nonexpansive for i = 1,2, ...,m, we have

ρ(ui,n− p)≤ Hρ(Ti( fn),Ti(p))

≤ ρ( fn− p)
(3.3)

for all i = 1,2, ...,m.

Now, from (3.2), (3.3) and the assumption
m

∑
i=0

αi,n = 1 , we obtain that

ρ( fn+1− p)≤ ρ( fn− p), for all p ∈ F.

Therefore, lim
n→∞

ρ( fn− p) exists for all p ∈ F .

Let
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lim
n→∞

ρ( fn− p) = r (3.4)

for some r ≥ 0. So from (3.3) and (3.4), we have

limsup
n→∞

ρ(um,n− p)≤ r. (3.5)

Next, observe that

ρ

(
α0,n

1−αm,n
( fn− p)+

1
1−αm,n

m−1

∑
i=1

αi,n(ui,n− p)
)
≤

α0,n

1−αm,n
ρ( fn− p)+

1
1−αm,n

m−1

∑
i=1

αi,nρ(ui,n− p)

≤ 1
1−αm,n

m−1

∑
i=0

αi,nρ( fn− p)

= ρ( fn− p).

Therefore, from (3.4) we obtain

limsup
n→∞

ρ

(
α0,n

1−αm,n
( fn− p)+

1
1−αm,n

m−1

∑
i=1

αi,n(ui,n− p)
)
≤ r. (3.6)

Thus (3.4), (3.5), (3.6) and Lemma 2.3, give that

lim
n→∞

ρ

(
α0,n

1−αm,n
fn +

1
1−αm,n

m−1

∑
i=1

αi,nui,n−um,n

)
= 0. (3.7)

Now,

ρ( fn+1−um,n) = ρ

(
α0,n fn +

m

∑
i=1

αi,nui,n−um,n

)
= ρ

(
α0,n fn +

m−1

∑
i=1

αi,nui,n− (1−αn,m)um,n

)
= ρ

(
(1−αm,n)

[
α0,n

1−αm,n
fn +

1
1−αm,n

m−1

∑
i=1

αi,nui,n−um,n

])
.

From (3.7) by the ∆2- property of ρ and Proposition 2.2, we get that

lim
n→∞

ρ( fn+1−um,n) = 0.

In the same way, we can show that

lim
n→∞

ρ( fn+1− fn) = 0
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and

lim
n→∞

ρ( fn+1−ui,n) = 0,

for all i = 1,2, ...,m−1.

Now by the convexity of ρ , we get

ρ(
fn−ui,n

2
) = ρ(

fn− fn+1

2
+

fn+1−ui,n

2
)

≤ ρ( fn− fn+1)

2
+

ρ( fn+1−ui,n)

2
.

Hence,

lim
n→∞

ρ(
fn−ui,n

2
) = 0.

Since ρ satisfies ∆2- property by Proposition 2.2 we obtain

lim
n→∞

ρ( fn−ui,n) = 0, (3.8)

for all i = 1,2, ...,m.

Since ui,n ∈ Ti( fn), we have

dρ( fn,Ti( fn))≤ ρ( fn−ui,n)

for all i = 1,2, ...,m.

Therefore,

lim
n→∞

dρ( fn,Ti( fn)) = 0

follows immediately from (3.8) for all i = 1,2, ...,m.

Theorem 3.3. Let ρ ∈ R satisfy (UUC1) and ∆2-property. Let C ⊂ Lρ be ρ-closed, ρ-

bounded and convex set. Suppose Ti : C → Cρ(C), i = 1,2, ...,m, is a finite family of ρ-

quasi-nonexpansive multi-valued mappings. Let F :=
m⋂

i=1

Fρ(Ti) 6= /0 with Ti(p) = {p} for all

p ∈ F and { fn} be as defined in (3.1). Then, { fn} ρ-converges to a point in F if and only if

liminf
n→∞

dρ( fn,F) = 0.

Proof. The necessity is straight forward. Now, we prove the other way round. Suppose that

liminf
n→∞

dρ( fn,F) = 0. By Theorem 3.2, we have

ρ( fn+1− p)≤ ρ( fn− p), for all p ∈ F.
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This implies that

dρ( fn+1,F)≤ dρ( fn,F).

So that lim
n→∞

dρ( fn,F) exists. But by hypothesis, liminf
n→∞

dρ( fn,F) = 0. Therefore, it must be the

case that

lim
n→∞

dρ( fn,F) = 0.

Consider a subsequence { fnk} of { fn} and a sequence {pk} in F such that

ρ( fnk− pk)<
1
3k and ρ( fnk+ j − fnk)<

1
3k+ j for all k, j ≥ 1.

We show that {pk} is a ρ-Cauchy sequence in F . Observe that for j ≥ 1,

ρ(
pk+ j− pk

3
) = ρ(

pk+ j− fnk+ j + fnk+ j − fnk + fnk− pk

3
)

≤ 1
3

ρ(pk+ j− fnk+ j)+
1
3

ρ( fnk+ j − fnk)+
1
3

ρ( fnk− pk)

<
1

3k+ j+1 +
1

3k+1 +
1

3k+ j+1 −→ 0 as k, j→ ∞.

Since ρ-satisfies ∆2-condition, by Proposition 2.2, {pk} is a ρ-Cauchy sequence in F . But,

we know that Lρ is complete with respect to ρ-convergence and F is ρ-closed, by Lemma 3.1,

{pk} ρ-converges to a point in F , say p. Next we show that { fn} ρ-converges to p. In fact, by

convexity of ρ , we have

ρ(
fnk− p

2
) = ρ(

fnk− pk + pk− p
2

)

≤ ρ( fnk− pk)+ρ(pk− p)→ 0 as k→ ∞.

By the ∆2-condition of ρ , we have ρ( fnk − p)→ 0, as k→ ∞. Since lim
n→∞

ρ( fn− p) exists, the

sequence { fn} ρ-converges to p. Which completes the proof.

Theorem 3.4 Let ρ ∈R satisfy (UUC1) and ∆2-property. Let C ⊂ Lρ be ρ-closed, ρ-bounded

and convex set. Suppose Ti :C→Cρ(C), i= 1,2, ...,m, is a finite family of ρ-quasi-nonexpansive

multi-valued mappings satisfying Condition (II). Assume that F :=
m⋂

i=1

Fρ(Ti) 6= /0 and Ti(p) =

{p} for all p ∈ F . Let { fn} be as defined in (3.1). Then { fn} ρ-converges to a point in

F := ∩m
i=1Fρ(Ti).
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Proof. From Theorem 3.2, we have lim
n→∞

dρ( fn, Ti( fn)) = 0 and dρ( fn+1,F)≤ dρ( fn,F). Hence,

lim
n→∞

dρ( fn,F) exists. It then follows from the definition of Condition (II) that,

0 = lim
n→∞

dρ( fn,Ti( fn))≥ lim
n→∞

ϕ(dρ( fn,F))

for some i = 1,2, ...,m.

Thus, lim
n→∞

ϕ(dρ( fn,F)) = 0. Since ϕ is nondecreasing, ϕ(0) = 0, and ϕ(t) > 0 for all t ∈

(0,∞), we have

lim
n→∞

dρ( fn,F) = 0.

The rest of the proof follows from the proof of Theorem 3.3, as desired.

The following example supports that, the class of ρ-quasi-nonexpansive multivalued map-

pings is superior than the class of ρ-nonexpansive multi-valued mappings in modular function

spaces.

Example 3.1. Consider Lρ = R. Consider ρ(x) = |x|, the usual absolute value on reals. Then

clearly, ρ is convex function modular on R. Let C ⊂ Lρ be given by C = [0,5]. Define T : C→

Cρ(C) by

T (x) =


[0, x

5 ], i f x 6= 5

{1}, i f x = 5

then T is ρ-quasi-nonexpansive ; but it is not ρ-nonexpansive.

Remark 3.1. All the results obained in this paper, extede the results of Zegey et al. [22] in that

the class of mappings we have used includes the class of mappings used in [22].
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