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Abstract. The existence of best proximity point is an important aspect of optimization theory. We define the

concept of proximally monotone Lipschitzian mappings on a partially ordered metric space. Then we obtain

sufficient conditions for the existence and uniqueness of best proximity points for these mappings in partially

ordered CAT(0) spaces. This work is a continuation of the work of Ran and Reurings [Proc. Amer. Math.

Soc. 132 (2004), 1435–1443] and Nieto and Rodrı́guez-López [Order, 22 (2005), 223–239] for the new class of

mappings introduced herein.
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1. Introduction
The theory of fixed points is one of the most powerful tools of modern mathematics. It has

given a new impetus to modern fixed point theory via nonlinear functional analysis. For exam-

ple, the existence of solutions of elliptic partial differential equations, or the existence of closed
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periodic orbits in dynamical systems, and the existence of answer sets in logic programming

are usually translated into a fixed point problem.

Recently, a new direction has been discovered for the extension of Banach Contraction Prin-

ciple [2] to metric spaces endowed with a partial order. Ran and Reurings [23] have successfully

carried out the first attempt; in particular, they showed, how this extension is useful when deal-

ing with some special matrix equations. Another similar approach was given by Nieto and

Rodrı́guez-López [21] and they used it in solving some differential equations. Recently, Bachar

and Khamsi [1] studied existence of fixed points of monotone nonexpansive mappings defined

on partially ordered Banach spaces. Buthinah and Khamsi [7] have given an analogue of the

fixed point theorem of Browder and Göhde for monotone nonexpansive mappings on a very

general nonlinear domain.

If the fixed point equation T x = x of a given mapping T does not have a solution, then it

is of interest to find an approximate solution for it. In other words, we are in search of an

element in the domain of the mapping, whose image is as close to it as possible. This situation

motivated to develop the notion of ”best proximity point” (see, [9, 15, 18]). The best proximity

point theorems can be viewed as a generalization of fixed point theorems, since most fixed point

theorems can be derived as corollaries of best proximity point theorems.

In this paper, we obtain an extension of Banach Contraction Principle for best proximity

points in partially ordered CAT(0) spaces. The case of nonexpansive mappings is also discussed.

To the best of our knowledge, investigations on these lines have not been carried out so far.

2. Preliminaries

The extension of Banach Contraction Principle in metric spaces endowed with a partial order

was initiated by Ran and Reurings [23]. Let a metric space (X ,d) be endowed with a partial

order �. We will say that x,y ∈ X are comparable whenever x � y or y � x. Recall that an

order interval is a subset of the form [a,b] = {x ∈ X ;a � x � b}, [a,→) = {x ∈ X ;a � x},

(←,a] = {x ∈ X ;x� a}, for any a,b ∈ X .



120 S. A. SHUKRI, A. R. KHAN

The definition of proximally monotone mappings has roots in [3].

Let us define the concept of proximally monotone Lipschitzian mappings on a partially or-

dered metric space.

Definition 2.1. Let A,B be nonempty subsets of X . Define

d(A,B) = inf{d(a,b); a ∈ A, b ∈ B}.

Let T : A→ B be a mapping.

(1) T is said to be proximally monotone if it satisfies the condition:

x� y, d(u,T x) = d(A,B) and d(v,Ty) = d(A,B) imply u� v

for all x,y,u,v ∈ A.

(2) T is said to be proximally monotone Lipschitzian mapping if T is proximally monotone

and there exists k ≥ 0 such that

d(T x,Ty)≤ k d(x,y),

where x,y ∈ A and x and y are comparable.

If k < 1 (k = 1), then we say that T is a monotone contraction (nonexpansive) mapping.

(3) A point x ∈ A is said to be a best proximity point of T if

d(x,T x) = d(A,B).

If A = B, then the above definition coincides with the definition of monotone Lipschitzian

mappings [1] and the best proximity point x reduces to a fixed point of T .

Next, we introduce the concept of a hyperbolic space. Suppose that there exists a family F

of metric segments such that any two points x,y in X are endpoints of a unique metric segment

[x,y] ∈ F ([x,y] is an isometric image of the real line interval [0,d(x,y)]). We shall denote by

βx⊕ (1−β )y the unique point z of [x,y] which satisfies

d(x,z) = (1−β )d(x,y), and d(z,y) = βd(x,y),
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where β ∈ [0,1]. Such metric spaces with a family F of metric segments are usually called

convex metric spaces [20]. Moreover, if we have

d
(

α p⊕ (1−α)x,αq⊕ (1−α)y
)
≤ αd(p,q)+(1−α)d(x,y),

for all p,q,x,y in X , and α ∈ [0,1], then X is said to be a hyperbolic space (see [24]).

Obviously, normed linear spaces are hyperbolic spaces. As nonlinear examples, one can

consider the Hadamard manifolds [6], the Hilbert open unit ball equipped with the hyperbolic

metric [12], and the CAT(0) spaces [16, 17, 19]. We will say that a subset C of a hyperbolic

space X is convex if [x,y]⊂C whenever x,y are in C.

The definition of uniform convexity in Banach spaces finds its origin in [8]. The first attempt

to generalize this concept to metric spaces was made in [13]. The reader may also consult [12]

and [24].

Definition 2.2. [14] Let (X ,d) be a hyperbolic space. We say that X is uniformly convex if for

any a ∈ X , for every r > 0, and for each ε > 0

δ (r,ε) = inf
{

1− 1
r

d
(1

2
x⊕ 1

2
y,a
)

;d(x,a)≤ r,d(y,a)≤ r,d(x,y)≥ rε

}
> 0.

Example 2.1. Let (X ,d) be a metric space. A geodesic from x to y in X is a mapping c from a

closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y, and d (c(t) ,c(t ′)) = |t− t ′| for all

t, t ′ ∈ [0, l]. In particular, c is an isometry and d (x,y) = l. The image α of c is called a geodesic

(or metric) segment joining x and y. The space (X ,d) is said to be a geodesic space if any two

points of X are joined by a geodesic and X is said to be uniquely geodesic if there is exactly one

geodesic joining x and y for each x,y ∈ X , which we denote by [x,y], and call it the segment

joining x to y.

A geodesic triangle ∆(x1,x2,x3) in a geodesic metric space (X ,d) consists of three points

x1,x2,x3 in X (the vertices of ∆) and a geodesic segment between each pair of vertices (the

edges of ∆). A comparison triangle for geodesic triangle ∆(x1,x2,x3) in (X ,d) is a triangle

∆(x1,x2,x3) := ∆(x̄1, x̄2, x̄3) in R2 such that dR2
(
x̄i, x̄ j

)
= d

(
xi,x j

)
for i, j ∈ {1,2,3}. Such a
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triangle always exists (see [4]).

A geodesic metric space is said to be a CAT(0) space if all geodesic triangles of appropriate

size satisfy the following CAT(0) comparison axiom:

Let ∆ be a geodesic triangle in X and let ∆ ⊂ R2 be a comparison triangle for ∆. Then ∆ is

said to satisfy the CAT(0) inequality if for all x,y ∈ ∆ and all comparison points x̄, ȳ ∈ ∆, we

have

d (x,y)≤ d (x̄, ȳ) .

Complete CAT(0) spaces are often called Hadamard spaces (see [17]). If x,y1,y2 are points of

a CAT(0) space and y0 is the midpoint of the segment [y1,y2], which we denote by
y1⊕ y2

2
, then

the CAT(0) inequality implies:

d2
(

x,
y1⊕ y2

2

)
≤ 1

2
d2 (x,y1)+

1
2

d2 (x,y2)−
1
4

d2 (y1,y2) .

This inequality is the (CN) inequality of Bruhat and Tits [5]. The (CN) inequality implies that

CAT(0) spaces are uniformly convex with modulus of convexity [14]:

δ (r,ε) = 1−
√

1− ε2

4
.

We shall say that a subset C of a metric space (X ,d) is a Chebyshev set if to each point p in

X , there corresponds a unique point p0 in C such that d(p, p0) = inf{d(p,c) : c ∈C}. In this

case, we define the nearest point projection PC : X →C by assigning p to p0.

Lemma 2.1. [4] Let C be a closed and convex subset of a complete CAT(0) space. Then the

following hold:

(i) C is a Chebyshev set.

(ii) The nearest point projection PC is a nonexpansive mapping.

We now introduce the terminology needed for the development of our results.

Let A,B be nonempty subsets of a metric space (X ,d). Then the proximity pair associated

with the pair (A,B), denoted by (A0,B0), is defined by

A0 = {x ∈ A : d(x,y) = d(A,B); for some y ∈ B},
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and

B0 = {y ∈ B : d(x,y) = d(A,B); for some x ∈ A}.

A pair of subsets (A,B) is said to be proximinal if and only if A = A0 and B = B0. It is said to

be sharp proximinal if and only if for any (x,y) ∈ A×B, there exist a unique x′ ∈ B and y′ ∈ A

such that

d(x,x′) = d(y,y′) = d(A,B).

It is clear that A0 is nonempty if and only if B0 is so. Espinola and Fernández-León [10] have

given more on the structure of the proximity pair associated with the pair (A,B) as follows:

Proposition 2.1. Let A and B be nonempty closed and convex subsets of a complete CAT(0)

space X . Then the pair (A0,B0) is nonempty, closed and convex (that is, both sets A0 and B0 are

nonempty, closed and convex subsets) in X .

Recently, based on geometrical properties of Hilbert spaces, the so-called Pythagorean prop-

erty is introduced.

Definition 2.3. [11] A sharp proximinal pair (A,B) in a metric space X is said to have the

Pythagorean property if and only if, for each (x,y) ∈ A×B,

d(x,y)2 = d(x,y′)2 +d(y′,y)2 and d(x,y)2 = d(y,x′)2 +d(x′,x)2,

where x′ and y′ are the (unique) points in B and A, respectively, such that d(x,x′) = d(A,B) and

d(y′,y) = d(A,B).

It is shown in [11] that the following facts hold in CAT(0) spaces.

Lemma 2.2. Let (A,B) be a nonempty, closed and convex pair in a complete CAT(0) space X .

Then the pair (A0,B0) is a sharp proximinal pair.

Theorem 2.1. Let A and B be nonempty, closed, convex and proximinal subsets of a complete

CAT(0) space. Then the pair (A,B) has the Pythagorean property.

We prove the following fact which will be needed in the next section.

Theorem 2.2. Let A and B be nonempty, closed and convex subsets of a complete CAT(0)

space X . Then the pair (A0,B0) has the Pythagorean property.

Proof. By Lemma 2.2, (A0,B0) is a sharp proximinal pair. Proposition 2.1 implies that the pair

(A0,B0) is nonempty, closed and convex in X . As (A0,B0) is proximinal pair, so Theorem 2.1
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implies that the pair (A0,B0) has the Pythagorean property. To see this, let (A00,B00) be the

proximity pair associated with the pair (A0,B0). Indeed, A00 ⊆ A0. Conversely, let x ∈ A0, then

there exists y ∈ B such that d(x,y) = d(A,B). Hence, y ∈ B0 and d(x,y) = d(A,B) = d(A0,B0).

i.e., x ∈ A00. Therefore, A0 ⊆ A00. Hence, A0 = A00. In a similar way, we can show that

B0 = B00. Therefor, the pair (A0,B0) is proximinal pair.

3. Main results

In this section, we obtain sufficient conditions for the existence and uniqueness of best prox-

imity points for proximally monotone mappings in partially ordered CAT(0) spaces.

The following best proximity point theorem provides an extended version of Banach Con-

traction Principle for proximally monotone contraction mappings on partially ordered CAT(0)

spaces.

Theorem 3.1. Let (A,B) be a pair of nonempty, bounded, closed, and convex subsets of a

partially ordered CAT(0) space (X ,d,�) such that order intervals are closed. Let T : A→ B be

a proximally monotone contraction mapping such that T (A0) ⊆ B0. If there exist x0,x1 ∈ A0

such that x0 � x1 and d(x1,T x0) = d(A,B), then T has a best proximity point x in A. Moreover,

if y in A is a best proximity point of T comparable to x, then y = x.

Proof. Since T x1 ∈ T (A0) ⊆ B0, therefore there exists x2 ∈ A0 such that d(x2,T x1) = d(A,B).

Applying the definition of proximally monotone mappings to x = x0,y = u = x1,v = x2, we

obtain x1 � x2.

Continuing this process, we can find a sequence {xn} in A0 such that, for all n ∈ N, xn−1 � xn

and d(xn,T xn−1) = d(A,B).

By Theorem 2.2, the pair (A0,B0) has the Pythagorean property. Hence, we have

d(xn+1,T xn)
2 +d(A,B)2 = d(xn,T xn)

2

d(xn,T xn−1)
2 +d(A,B)2 = d(xn,T xn)

2

=⇒ d(xn+1,xn) = d(T xn,T xn−1),

for any n≥ 1.

As T is a proximally monotone contraction, so there exists k < 1 such that

d(xn+1,xn) = d(T xn,T xn−1)≤ kd(xn,xn−1),
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for any n≥ 1, which implies that

d(xn+1,xn)≤ knd(x1,x0),

for any n≥ 1. Hence ∑
n∈N

d(xn+1,xn) is convergent which implies that {xn} is Cauchy. Since X

is complete, therefore there exists x ∈ X such that {xn} converges to x. Since {xn} ⊂ A0 and by

Proposition 2.1 A0 is closed, we conclude that x ∈ A0. As the order intervals are closed, so we

conclude that xn � x, for any n ∈ N. Furthermore, d(T xn,T x) ≤ kd(xn,x)→ 0 as n→ ∞. So

{T xn} converges to T x ∈ B0. By d(xn+1,T xn) = d(A,B), we get d(x,T x) = d(A,B), i.e., x ∈ A0

and T x ∈ B0. Clearly, x is a best proximity point of T in A.

Next, we prove that if y in A is a best proximity point of T comparable to x, then y = x.

Without loss of any generality, assume that x� y. Since T is a proximally monotone contraction

mapping, therefore by the Pythagorean property, we have

d(x,T x) = d(A,B)

d(y,Ty) = d(A,B)

=⇒ d(x,y) = d(T x,Ty).

As T is a contraction mapping, so we get

d(x,y) = d(T x,Ty)< d(x,y),

which implies d(x,y) = 0, i.e., y = x.

Remark 3.1. If A = B in Theorem 3.1, then d(A,B) = 0 i.e., x1 = T x0. Therefore, x0 � T x0.

Hence, our result extends the work of Ran and Reurings [23] and Nieto and Rodrı́guez-López

[21] for best proximity points.

One may wonder what happens to the conclusion of Theorem 3.1 if T is proximally monotone

nonexpansive.

To answer this quastion, we recall the following result.

Theorem 3.2. [7] Let (X ,d,�) be a partially ordered hyperbolic space such that order intervals

are closed and convex. Assume that (X ,d) is uniformly convex. Let C be a nonempty, convex,

closed and bounded subset of X not reducible to one point. Let T : C → C be a monotone
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nonexpansive mapping. Assume there exists x0 ∈C such that x0 and T x0 are comparable. Then

T has a fixed point.

Armed with Theorem 3.2, we extend the conclusion of Theorem 3.1 for proximally monotone

nonexpansive mappings as follows:

Theorem 3.3. Let (A,B) be a pair of nonempty, bounded, closed, and convex subsets of a

partially ordered CAT(0) space (X ,d,�) such that order intervals are closed and convex with

A0 not reducible to one point. Let T : A→ B be a proximally monotone nonexpansive mapping

such that T (A0)⊆ B0. If there exist x0,x1 ∈ A0 such that x0 � x1 and d(x1,T x0) = d(A,B), then

T has a best proximity point x in A.

Proof. Note that, for any y0 ∈ B0, there exists unique x0 ∈ A0 such that d(x0,y0) = d(A,B).

Hence

d(A,B)≤ d(A,y0)≤ d(A0,y0)≤ d(x0,y0) = d(A,B).

That is, d(A,y) = d(A0,y) = d(A,B), for all y ∈ B0.

Consider the mapping PA0 ◦ T : A0 → A0. By Lemma 2.1 (ii), the nearest point projection

PA0 is nonexpansive. Furthermore, our assumption on the mapping T implies that PA0 ◦ T is

monotone nonexpansive.

Moreover, let x0,x1 ∈ A0 such that x0 � x1 and d(x1,T x0) = d(A,B). By Lemma 2.1 (i), A0

is a Chebyshev subset, so PA0(T (x0)) = x1. Hence, x0 � PA0(T (x0)).

Since A0 is a nonempty, closed and convex subset of A, therefore A0 is bounded. As CAT(0)

spaces are uniformly convex hyperbolic spaces, so Theorem 3.2 implies that PA0 ◦T has a fixed

point x ∈ A0, i.e., x = PA0(T x). Then, we have x ∈ A0 and T x ∈ B0. Hence

d(x,T x) = d(PA0(T x),T x) = d(T x,A0) = d(A,B).

Therefore, x is a best proximity point of T in A.

As nonexpansive mappings may fail to have a fixed point, so there is no reason to seek unique-

ness of the best proximity point result obtained here.

Remark 3.2. Theorem 3.3 generalizes the corresponding results in [1] and [7] for the best

proximity points.
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We now set out to give an example to illustrate Theorems 3.1 and 3.3.

Definition 3.1. [22] A pair (A,B) of nonempty subsets of a normed linear space X is said to

have the d-property if and only if

||x− x′||= d(A,B)

||y′− y||= d(A,B)

=⇒ ||x− y′||= ||x′− y||,

whenever x,y′ ∈ A and x′,y ∈ B.

Definition 3.2. [22] A normed linear space X is said to have the d-property if and only if every

pair (A,B) of nonempty, closed and convex subsets of X has the d-property.

Raj and Eldred have established a simple characterization of strictly convex normed linear

spaces as follows:

Theorem 3.4. [22] Let X be a normed linear space, then X is strictly convex if and only if it

has the d-property.

Let X be the Euclidean vector space R2. Let A = {(x,0) : 0≤ x≤ 1} and B = {(x,1) : 0≤ x≤

1} be nonempty subsets of X . Clearly, the pair (A,B) is nonempty, bounded, closed, and convex

in X . Hence, by Theorem 3.4, the pair (A,B) has the d-property. Moreover, A0 = A,B0 = B and

d(A,B) = 1.

We claim that the pair (A,B) has the Pythagorean property. We note that for any ((x,0),(y,1))∈

A×B, there exists unique (x,1) ∈ B and (y,0) ∈ A such that

||(x,0)− (x,1)||= ||(y,0)− (y,1)||= d(A,B).

Hence, the pair (A,B) is sharp proximinal.

Moreover, armed with the d-property, we have

||(x,0)− (y,1)||2 = ||(x,0)− (y,0)||2 + ||(y,0)− (y,1)||2,

||(x,0)− (y,1)||2 = ||(y,1)− (x,1)||2 + ||(x,1)− (x,0)||2.

Therefore, the sharp proximinal pair (A,B) has the Pythagorean property. Obviously, the

CAT (0) inequality holds in X and so it is a CAT (0) space. The Pythagorean property and

the d-property coincide on X .
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Consider the product order � on X , i.e. (a,b)� (c,d) iff a≤ c and b≤ d.

Clearly, order intervals are closed and convex.

Define a mapping T : A→ B by

T ((x,0)) = (kx,1),

for k ∈ [0,1].

Now, T (A0)⊆B0. Let x0 = x1 =(0,0). Then x0� x1 and ||x1−T x0||= ||(0,0)−T ((0,0))||=

||(0,0)− (0,1)||= 1.

We now show that T is a proximally monotone Lipschitzian mapping. For (x,0),(y,0),(u,0),(v,0)∈

A with (x,0) � (y,0), ||(u,0)−T ((x,0))|| = 1 and ||(v,0)−T ((y,0))|| = 1, we have (u,0) =

(kx,0) and (v,0) = (ky,0). Hence, (u,0)� (v,0).

Moreover, ||T ((x,0))−T ((y,0))||= ||(kx,1)− (ky,1)||= k||(x,0)− (y,0)||.

If k < 1, then T is a proximally monotone contraction mapping and (0,0) ∈ A is the best

proximity point of T .

Finally, If k = 1, then T is a proximally monotone nonexpansive mapping and any x ∈ A is a

best proximity point of T .
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