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1. Introduction:  

A Fixed Point Theorem is a result that says that a function F will have at least one Fixed Point x 

for which (F(x) = x), under some conditions on F that can be stated in general terms. These 

results are the most generally useful in mathematics. 
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Random fixed point theorems for contraction mappings on separable complete metric spaces 

have been proved by several authors[8, 9, 10,12–14, 16–19, 26, 30, 31, 33–39].  The stochastic 

version of the well-known Schauder’s fixed point theorem was proved by Sehgal and Singh[34]. 

Study of fixed point results in partially ordered metric spaces is at center of activity in field of 

research due to importance of this subject in differential equations. Fixed points of mappings in 

partially ordered spaces are of great importance and have been investigated by many researchers 

[1–7, 11, 15,20–25, 28, 29, 32]. Recently Bhaskar and Lakshmikantham [5], Nieto and 

Rodriguez-Lopez [28], Nieto, Pouso and Rodriguez-Lopez [29], Ranand  Reurings [32], and 

Agarwal, El-Gebeily, and O’Regan [1] presented some new results for contractions in partially 

ordered metric spaces. V. Bhaskar and Lakshmikantham [5] introduced the concept of a coupled 

coincidence point of mapping F from X × X into X and a mapping g from X into X and studied 

fixed point theorems in partially ordered metric spaces. 

Shatanawi [37] extended the results of Bhaskar and Lakshmikantham to partially ordered cone 

metric spaces. In [21] V. Lakshmikantham and L. Ciric studied some fixed point theorems for 

nonlinear contractions in partially ordered metric spaces. Recently, L. Ciric and 

Lakshmikantham [9] studied two coupled random coincidence and coupled random fixed point 

theorems for a pair of random mappings XXgandXXXF  :)(:  under some 

contractive conditions. Lakshmikantham and Ciric [21] introduced the concept of g-monotone 

mapping and proved some coupled coincidence and coupled common fixed point theorems in 

partially ordered complete metric spaces. 

The purpose of this article is to prove coupled random coincidence and coupled random 

fixed point theorems for a pair of random mappings  :F X X X   and :g X X  . 

Thus we shall prove new results for random mixed monotone mappings, which are extensions of 

the corresponding results for deterministic mixed monotone mappings of Ciric and 

Lakshmikantham [9]. 

 

2. Preliminaries: 
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Definition 1.1 (Bhaskar and Lakshmikantham [5]). Let  ,X  be a partially ordered set and 

:F X X X  . The mapping F is said to has the mixed monotone property if F is monotone 

non-decreasing in its first argument and is monotone non-increasing in its second argument, that 

is, for any ,x y X . 

      1 2 1 2 1 2, ; , , ..... 1x x X x x F x y F x y     

and 

      1 2 1 2 1 2, ; , , ..... 2y y X y y F x y F x y     

Definition 1.2 (Bhaskar and Lakshmikantham [5]). An element  ,x y X X   is called a 

coupled fixed point of the mapping :F X X X   if  

     , , , .F x y x F y x y   

 The concept of the mixed monotone property is generalized in [20]. 

Definition 1.3 (Lakshmikantham and Ciric [21]). Let  ,X   be a partially ordered set and 

:F X X X  and :g X X . The mapping F is said to has the mixed g-monotone property if 

F is monotone g-non-decreasing in its first argument and is monotone g-non-increasing in its 

second argument, that is for any ,x y X . 

          1 2 1 2 1 2, , implies   , , ..... 3x x X g x g x F x y F x y    

and 

          1 2 1 2 1 2, , implies   , , ..... 4y y X g y g y F x y F x y    

Clearly, if g is the identity mapping, then Definition 1.3 reduces to Definition 1.1 . 

Definition 1.4 An element  ,x y X X   is called a coupled coincidence point of a mapping 

:F X X X   and :g X X if  

         , , , .F x y g x F y x g y 
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Definition 1.5 Let  ,X d  be a separable metric space,  ,   be a measurable space and 

 :F X X X    and :g X X   be mapping. We say F and g are commutative if 

          , , , , , , ,F g x g y g F x y      

for all   and all ,x y X . 

   Let  ,   be a measurable space with  sigma algebra of subsets of  and let 

 ,X d  be a metric space. A mapping :T X  is called  -measurable if for any open subset 

U of     1, :X T U T U     . In what follows, when we speak of measurability we will 

mean  measurability. A mapping :T X X   is called a random operator if for any 

 , .,x X T x  is measurable. A measurable mapping : X   is called a random fixed point 

for a random function : ,T X X   if     ,T      for every . A measurable 

mapping : X   is called a random coincidence of :T X X   and :g X X   if 

     , ,g T       for every . 

Let   denote all functions :[0, ) [0, )    which satisfy 

(i)   is continuous and non-decreasing, 

(ii)   0t   if and only if 0t  , 

(iii)       , , [0, )t s t s t s         

and   denote all functions :[0, ) [0, )     which satisfy  lim 0t r t  for all 0r   and 

 0lim 0t t   . 
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For example, functions  1 t kt   where      2 30, , ln 1 ,
1

t
k t t t

t
    


and 

   4 min ,1t t   are in  ;  1 t kt  where  
 

2

ln 2 1
0,

2

t
k t


  , and 

 3

1, 0

, 0 1
1

1, 1

1
, 1

2

t

t
t

t
t

t

t t





  
 

 







 are in  . 

In [20] the following theorem is proved. 

Theorem 1.1 (Lakshmikantham and Ciric [21]). Let  ,X   be apartially ordered set and 

suppose there is a metric d on X such that  ,X d  is a complete metric space. Assume there is a 

function  

:[0, ) [0, )     with  t t   and  limr t r t    for each 0t   and also suppose 

:F X X X   and :g X X  are such that F has the mixed g-monotone property and  

     
         , ,

, , ,
2

d g x g u d g y g v
d F x y F u v 

 
  

 
 

 

for all , , ,x y u v X  for which    g x g u  and    g y g v . Suppose     ,F X X g X g   is 

continuous and commutes with F and also suppose either  

(a) F is continuous or  

(b) X has the following property: 

i. If a non-decreasing sequence   ,nx x  then nx x  for all n, 

ii. If a non-decreasing sequence   ,ny y  then ny y  for all n, 

If there exists 0 0,x y X  such that 

        0 0 0 0 0 0, and   , ,g x F x y g y F y x   

then there exist ,x y X  such that 
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        , and   g ,g x F x y y F y x   

That is, F and g have a coupled coincidence. 

Theorem 1.2 (Lakshmikantham and Ciric [9]): Let  ,X d be a complete separable metric space, 

 , E  be a measurable space and  :F X X X    and :g X X   be mappings such 

that 

(i)    ,. , ,.F g   are continuous for all  , 

(ii)    ., , .,F v g x  are measurable for all v X X   and x X , respectively, 

(iii)  :F X X X    and :g X X   are such that F has the mixed g-monotone 

property and  

 

 

      , , , , ,d F x y F u v   

         , , , , , ,

2

d g x g u d g y g v   

 

  
 
 

 

for all , , ,x y u v X  for which    , ,g x g u   and    , ,g y g v   for all  . Suppose 

 g X X   for each  , g is continuous and commutes with F and also suppose either 

(a) F is continuous or 

(b) X  has the following property: 

(i) if a non-decreasing sequence  nx x , then nx x  for all n, 

(ii) if a non-increasing sequence  ny y , then ny y  for all n. 

If there exist measurable mappings 0 0, : X    such that 
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0 0 0

0 0 0

, , , and

, , , for all ,

g F

g F

       

        



 
 

then there are measurable mappings , : X    such that 

                 , , , and  , , ,F g F g                  

for all  , that is , F and g have a coupled random coincidence. 

 

3. Main Results: 

The following theorem is our main result. 

Theorem 2.1 Let  ,X d  be a complete separable metric space,  ,  be a measurable space 

and  :F X X X   and :g X X   be mapping s such that 

(i)    , , , are continuous for all ,F g      

(ii)    , , , are measurable for all  and respectively,F v g x v X X x X      

(iii)  :F X X X   and :g X X   are such that F has the mixed g-monotone 

property and  

       

            

, , , , ,

1
, , , , , , ..... 5

2

d F x y F u v

d g x g u d g y g v

  

     

 

               
         , , , , , ,

2

d g x g u d g y g v   

 

  
 
 

 

for all , , ,x y u v X  for which    , ,g x g u   and    , ,g y g v   for all  . Suppose 

 g X X   for each , g is continuous and commutes with F and also suppose either 

(a) F is continuous or 

(b) X has the following property: 
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(i) if a non-decreasing sequence   ,nx x  then nx x  for all n,  …..(6) 

(ii) if a non-increasing sequence   ,ny y  then ny y  for all n,  …..(7) 

If there exist measurable mappings 0 0, : X    such that 

         0 0 0, , ,g F         and 

         0 0 0, , ,g F         for all  , 

then there are measurable mappings , : X    such that 

        , , ,F g        and         , , ,F g         

for all  , that is, F and g have a coupled random coincidence.  

Proof: Let  : X   be a family of measurable mappings. Define a function 

:h X R   as follows: 

     , , ,h x d x g x  . 

Since  ,x g x is continuous for all  , we conclude that  ,h   is continuous for all 

 . Also, since  ,g x   is measurable for all x X , we conclude that  ,h x  is 

measurable for all   (see Wagner [38], p. 868). Thus,  ,h x  is the Caratheordory function. 

Therefore, if : X   is a measurable mapping, then   ,h     is also measurable (see 

[32]). Also, for each    the function : X   defined by     ,g      is 

measurable, that is,  . 

Now we shall construct two sequences of measurable mappings  n and  n in  , and two 

sequences    , ng     and    , ng     in X as follows. Let 0 0,    be such that 

        0 0 0, , ,g F         and         0 0 0, , ,g F         for all  . 

Since        0 0, ,F X g X        , by a sort of Filippov measurable implicit function 
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theorem [4, 15, 18, 26] there is 1   such that         1 0 0, , ,g F        . Similarly, 

as        0 0, ,F g X       , there is  1    such that 

        1 0 0, , ,g F        . Now      1 1, ,F       and      1 1, ,F      are 

well defined. Again from      1 1, ,F      ,        1 1, ,F g X       , there are 

2 2,    such that         2 1 1, , ,g F         and 

        2 1 1, , ,g F        . Continuing this process we can construct sequences 

  n   and   n   in X such that 

         1, , ,n n ng F                and 

         1, , ,n n ng F               for  all 0n  .   …..(8) 

 We shall prove that 

       1, ,n ng g         fro all 0n      …..(9) 

and  

       1, ,n ng g         fro all 0n      …..(10) 

The proof will be given by the mathematical induction. Let 0n  . By assumption we have 

        0 0 0, , ,g F         and         0 0 0, , ,g F        .  

Since         1 0 0, , ,g F         and         1 0 0, , ,g F        , we have 

            0 1 0 1, , and , ,g g g g              

Therefore, (9) and (10) hold for 0n   . 

 Suppose now that (9) and (10) hold for some fixed 0n  . Then, since 

     1, ,n ng g       and      1, ,n ng g      , and as F is monotone g-non-

decreasing in its first argument, from (3) and (8), 

            1, , , , ;n n n nF F w          
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              1, , , , . ..... 11n n n nF F            

Similarly, from (4) and (8), as      1, ,n ng g        and      1, ,n ng g      , 

            1 1 1, , , , ;n n n nF F             

              1 1 1, , , , . ..... 12n n n nF F             

Now from (11), (12), and (8) we get 

        1 2, , ..... 13n ng g        

and  

        1 2, , ..... 14n ng g        

Thus, by the mathematical induction we conclude that (9) and (10) hold for all 0.n   

Denote 

               1 1, , , , , , . ..... 15n n n n nd g g d g g              

 

Since from (9) and (10) we have      1, ,n ng g        and 

     1, ,n ng g       , then from (8) and (5) we get 

       1, , ,n nd g g        

             1 1, , , , ,n n n nd F F             

              1 1

1
, , , , , ,

2
n n n nd g g d g g                

              
 

1 1, , , , , ,
..... 16

2

n n n nd g g d g g           


 
 
 
 
 

 

Similarly, from (8) and (5), as      1, ,n ng g       and      1, ,n ng g      ,  

       1, , ,n nd g g        

             1 1, , , , ,n n n nd F F             

              1 1

1
, , , , , ,

2
n n n nd g g d g g                
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1 1, , , , , ,
..... 17

2

n n n nd g g d g g           


 
 
 
 
 

 

By adding (16) and (17),  

               1 1, , , , , ,n n n nd g g d g g                

              1 1, , , , , ,n n n nd g g d g g                

              1 1, , , , , ,
2 .....(18)

2

n n n nd g g d g g           


 
  

By property (iii) of  , we have 

             1 1, , , , , ,n n n nd g g d g g             
 
 

 

               1 1, , , , , , .....(19)n n n nd g g d g g                 

From (18) and (19) we have 

             1 1, , , , , ,n n n nd g g d g g             
 
 

 

             1 1, , , , , ,n n n nd g g d g g             
  
 

 

             1 1, , , , , ,
2 .....(20)

2

n n n nd g g d g g           


 
 
 
 
 

 

which implies 

              1 1, , , , , ,n n n nd g g d g g               

              1 1, , , , , ,n n n nd g g d g g                

Using the fact that   is non decreasing, we get  

             1 1, , , , , ,n n n nd g g d g g              

             1 1, , , , , ,n n n nd g g d g g               

Therefore 1n n    
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It follows that  n  is the monotone decreasing sequence of positive reals. Therefore, there is 

some 0  such that 

              1 1lim lim , , , , , ,n n n n n
n n

d g g d g g              
 

   
 

 

We show that 0  . Suppose, to the contrary, that 0  . Then, taking the limit in (20) when 

n    and have in mind that we assume that  lim 0
t r

t


  for all 0r  and   in continuous, 

we have 

      1
1lim lim 2

2

n
n n

n n


       


 

  
     

  
  

 

 

1

12 lim
2n

n

 


  

 







 
   

 



 

a contradiction. Thus, 0  , 

 that is 

             1 1, , , , , , 0 .....(21)n n n nd g g d g g               

Now we prove that    , ng     and    , ng    are Cauchy sequences. Suppose, to the 

contrary, that at least one of    , ng     or    , ng     is not a Cauchy sequence. Then 

there exist an 0   and two subsequences of positive integers          , ,l k m k m k l k k   

with  

          , , ,k l k m k
r d g g       

            , , , for   1,2,... . .....(22)
l k m k

d g g k          

We may also assume 

                     1 1
, , , , , , ....(23)

l k m k l k m k
d g g d g g            

 
 

 

by choosing  m k to be the smallest number exceeding  l k  for which (18) holds. Such  m k  

for which (23) holds exists, because 0n  . From (22), (23) and by the triangle inequality, 
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          1

, , ,k l k m k
r d g g      


   

          1
, , ,

m k m k
d g g     


  

          1
, , ,

l k m k
d g g     


  

          1
, , ,

m k m k
d g g     


  

          1
, , ,

l k m k
d g g     


  

            1 1
, , ,

l k m k m k
d g g      

 
   

  1m k
 


      . 

Taking the limit as k   we get 

 

 

 lim . ..... 24k
k

r 


   

By (22) and the triangle inequality, 

                     , , , , , ,k l k m k l k m k
r d g g d g g              

          1
, , ,

l k l k
d g g     


  

          1 1
, , ,

l k m k
d g g     

 
  

          1
, , ,

m k m k
d g g     


  

          1
, , ,

l k l k
d g g     


  

          1 1
, , ,

l k m k
d g g     

 
  

          1
, , ,

m k m k
d g g     


  

                        1 1
, , , , , ,

l k l k l k l k
d g g d g g           

 
  
  

 

                     1 1
, , , , , ,

m k m k m k m k
d g g d g g           
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          1 1
, , ,

l k m k
d g g     

 
  

          1 1
, , , .

l k m k
d g g     

 
  

Hence, 

                           1 1 1 1
, , , , , , ..... 25k l k m k l k m k l k m k

r d g g d g g             
   

   

Using the property of  , we have  

                           

                

             

1 1 1 1

1 1

1 1

, , , , , ,

, , ,

, , , ..... 26

k l k m k l k m k l k m k

n k m k l k m k

l k m k

r d g g d g g

d d g g

d g g

               

         

      

   

 

 

    
  

  



 

Since from (9) and (10) we conclude that  

         , ,
l k m k

g g       and 
         , ,

l k m k
g g      ,  

from (5) and (8), 

           1 1
, , ,

l k m k
d g g      

 
 

                   , , , , ,
l k l k m k m k

d F F           

                    1
, , , , , ,

2
l k m k l k m k

d g g d g g              

                   , , , , , ,

2

l k m k l k m k
d g g d g g          



 
 
 
 
 

 

   
1

..... 27
2 2

k
k

r
r 

 
   

 
 

Also from (5) and (8), as 
         , ,

m k l k
g g       and 

         , ,
m k l k

g g      , 

            1 1
, , ,

m k l k
d g g      

 
 

                   , , , , ,
m k m k l k l k

d F F           
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                      1
, , , , , ,

2
m k l k m k l k

d g g d g g               

                     , , , , , ,

2

m k l k m k l k
d g g d g g           



 
 
 
 
 

 

   
1

..... 28
2 2

k
k

r
r 

 
   

 
 

Inserting (26) and (28) in (25) we obtain 

         2
2

k
k kn k m k

r
r r     

 
     

 
 

Letting k   we get, by 17(a) and (20), 

           0 2lim 2 lim ..... 29
2 2k

k k

k r

r r


          

 

   
        

   
 

a contradiction. Therefore, our supposition (22) was wrong. Thus, we proved that    , ng     

and    , ng     are Cauchy sequences in X.  

Since X is complete and  g X X  , there exist 0 0,   such that 

     0lim , ,n ng g        and      0lim , ,n ng g       . Since   0,g     

and   0,g     are measurable, then the functions    and    , defined by 

    0,g      and     0,g     , are measurable. Thus 

 

           lim , and   lim , ..... 30n n
n n

g g         
 

   

From (30) and continuity of g, 

 

               lim , , , and   lim , , , ..... 31n n
n n

g g g g g g             
 

   

Form (8) and commutativity of F and g, 
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            1

, , , ,

, , , , , ..... 32

n n

n n n

F g g

g F g g

      

          
 

 

       
            1

, , , ,

, , , , , ..... 33

n n

n n n

F g g

g F g g

      

          
 

We now show that if the assumption a) or b) holds, then 

                 , , , and , , , .g F g F                  

Suppose at first that the assumption (a) holds. Then from (31), (32) and (33), and continuity of F 

we get 

 

      

       

       
     

1, lim , ,

lim , , , ,

, lim , , lim ,

, ,

n
n

n n
n

n n
n n

g g g

F g g

F g g

F

      

      

      

    






 









 

 

      

       

       
     

1, lim , ,

lim , , , ,

, lim , , lim ,

, , .

n
n

n n
n

n n
n n

g g g

F g g

F g g

F

      

      

      

    






 









 

Thus, we proved that 

                 , , , and   , , , ,F g F g                  

that is,     , X X       is a coupled random coincidence of F and g. 

Suppose now that (b) holds. Since from (9),    , ng     is non-decreasing, and as 

     , , ,ng g       from (6) we have      , ,ng g       for all n. Also, as 
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from (10),    , ng     is non-increasing and      , ,ng g      , from (7) we have 

     , ,ng g       for all n. Thus by the triangle inequality, (32) and (5) we get 

 

         
                  1 1

, , , ,

, , , , , , , , ,n n

d g F

d g g g d g g F

       

                 
 

       
       

              
1, , , ,

, , , , , , ,

n

n n

d g g g

d F g g F

      

           




 

Therefore 

         , , , ,d g F          

                      1, , , , , , , , , ,n n nd g g d F g g F                    

 

        

                
               

1, , , ,

1
, , , , , , , ,

2

, , , , , , , ,

2

n

n n

n n

d g g g

d g g g d g g g

d g g g d g g g

       

              

             




 

 
 
 
 

 

Letting ,n  from (30) and the property of   we get 

          , , , , 0.d g F           

Thus          , , , , 0d g F          

Hence         , , , .F g         

Similarly one can show that         , , ,F g        . Thus we proved that 

    , X X       is a random coupled coincidence point of F and g. 
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Corollary 2.2: Let  ,X d  be a complete separable metric space,  ,   be a measurable space 

and  :F X X X    has the mixed monotone property and such that 

(i)  , is continuous for all .F     

(ii)  ,  is measurable for all ,F v v X X    

(iii) There exists a    such that F satisfies the following condition: 

      
         , , , , , ,

, , , , ,
2

d g x g u d g y g v
d F x y F u v

   
 


  

         
 

, , , , , ,
..... 34

2

d g x g u d g y g v   



  

for all , , ,x y u v X  for which        , , and , ,g x g u g v g y      for all  . 

Assume that F and g satisfies the following conditions. 

(i)    , , , are continuous for all .F g      

(ii)    , , ,  are measurable for all   and , respectively,F v g v v X X x X      

(iii)   for each ,F X X     

(iv) g  is continuous and commutes with F and also suppose either. 

(a) F is continuous or 

(b) X has the following property: 

(i) if a non-decreasing sequence    ,  then  for all , ..... 35n nx x x x n   

(ii) if a non-increasing sequence    ,  then  y for all . ..... 36n ny y y n   

If there exist measurable mappings 0 0, : X    such that 

 
       

       

0 0 0

0 0 0

, , and

, ,   for all ,

F

F

      

       



 
 

then there are measurable mappings , : X    such that  

                , , and  , ,F F                
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for all ,  that is, F has a random coupled fixed point. 

Proof: In Theorem 2.1 taking  t t  , we get Corollary 2.1 
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