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Abstract. In this paper, by using a resolvent operator technique of maximal monotone mappings and the property

of a fixed-point set of multi-valued contractive mapping, we study the behavior and sensitivity analysis of a solution

set for a parametric generalized mixed multi-valued implicit quasi-variational inclusion problem in Hilbert space.

Further, under some suitable conditions, we discuss the Lipschitz continuity (or continuity) of the solution set with

respect to the parameter. By exploiting the technique of this paper, one can generalize and improve many known

results in the literature.
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1. Introduction

Variational inequality theory has become very effective and powerful tool for studying a wide

range of problems arising in mechanics, optimization, operation research, equilibrium problems
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and boundary value problems, etc. Variational inequalities have been generalized and extended

in different directions using novel and innovative techniques. A useful and important general-

ization of variational inequality is called the variational inclusion. Hassouni and Moudafi [9],

Agarwal et al. [2], Ding [5,6], Ding and Luo [7], Fang and Huang [8], Huang [10] and Noor

[17,18] have used the resolvent operator technique to obtain some important extensions and

generalizations in existence results for some classes of variational inequalities (inclusions).

In recent years, much attention has been given to develop general techniques for the sensitiv-

ity analysis of solution set of various classes of variational inequalities (inclusions). From the

mathematical and engineering point of view, sensitivity properties of various classes of varia-

tional inequalities can provide new insight concerning the problem being studied and stimulate

ideas for solving problems. The sensitivity analysis of solution set for variational inequalities

have been studied extensively by many authors using quite different techniques. By using the

projection technique, Dafermos [4], Mukherjee and Verma [15], Ding and Luo [7] and Yen

[23] studied the sensitivity analysis of solution for some classes of variational inequalities with

single-valued mappings. By using the implicit function approach that makes use of so-called

normal mappings, Robinson [22] studied the sensitivity analysis of solutions for variational

inequalities in finite-dimensional spaces. By using resolvent operator technique, Adly [1], A-

garwal et al. [2], Lim [13], Liu et al. [14] and Noor [17] studied the sensitivity analysis of

solution for some classes of quasi-variational inclusions involving single-valued mappings.

Recently, by using projection and resolvent techniques, Agarwal et al. [3], Ding [5,6], Kazmi

and Alvi [11], Kazmi and Khan [12], Noor [18], Peng and Long [20] and Ram [21] studied the

behavior and sensitivity analysis of solution set for some classes of parametric generalized

variational inclusions involving multi-valued mappings.

Inspired and motivated by recent research work going in this direction, in this paper, we

introduce the notion of resolvent operator of a maximal monotone mapping and discuss some of

its properties. Further, we consider a parametric generalized mixed multi-valued implicit quasi-

variational inclusion problem (PGMMIQVIP, for short) involving maximal monotone mapping



QUASI-VARIATIONAL INCLUSION PROBLEMS 289

in Hilbert space. Further, by using a resolvent operator technique and the property of a fixed-

point set of multi-valued contractive mapping, we study the behavior and sensitivity analysis

of a solution set for the PGMMIQVIP. Furthermore, we discuss the Lipschitz continuity (or

continuity) of the solution set with respect to the parameter. The results presented in this paper

generalize and improve the results given in [3,6,11-13,18,20,21].

2. Preliminaries

We assume that H is a real Hilbert space equipped with inner product 〈·, ·〉 and norm ‖ ·‖; 2H

is the power set of H; C(H) is the family of all nonempty compact subsets of H; H (·, ·) is the

Hausdorff metric on C(H) defined by

H (A,B) = max
{

sup
x∈A

inf
y∈B

d(x,y), sup
y∈B

inf
x∈A

d(x,y)
}
, A,B ∈C(H).

First, we review the following concepts and known results.

Definition 2.1[19]. Let W : H → 2H be a maximal monotone mapping. For any fixed ρ > 0,

the mapping JW
ρ : H→ H, defined by

JW
ρ (x) = (I +ρW )−1(x), ∀x ∈ H,

is said to be the resolvent operator of W where I is the identity mapping on H.

Lemma 2.1[19]. Let W : H→ 2H be a maximal monotone mapping. Then the resolvent operator

JW
ρ : H→ H of W is nonexpansive, i.e.,

‖JW
ρ (x)− JW

ρ (y)‖ ≤ ‖x− y‖, ∀x,y ∈ H.

Lemma 2.2[16]. Let (X ,d) be a complete metric space. Suppose that T : X →C(X) satisfies

H (T (x), T (y)) ≤ ν d(x, y), ∀x,y ∈ X ,

where ν ∈ (0,1) is a constant. Then the mapping T has fixed point in X .
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Lemma 2.3[13]. Let (X ,d) be a complete metric space and let T1,T2 : X → C(X) be θ -H -

contraction mappings, then

H (F(T1), F(T2)) ≤ (1−θ)−1 sup
x∈X

H (T1(x), T2(x)),

where F(T1) and F(T2) are the sets of fixed points of T1 and T2, respectively.

Definition 2.2[5,11,12]. A multi-valued mapping R : H×Ω→C(H) is said to be:

(i) δ -strongly monotone if there exists a constant δ > 0 such that

〈s1− s2, x− y〉 ≥ δ‖x− y‖2, ∀(x,y,λ ) ∈ H×H×Ω, s1 ∈ R(x,λ ), s2 ∈ R(y,λ );

(ii) LR-Lipschitz continuous if there exists a constant LR > 0 such that

H (R(x,λ ), R(y,λ )) ≤ LR ‖x− y‖, ∀(x,y,λ ) ∈ H×H×Ω.

Definition 2.3[11,12]. A multi-valued mapping A : H×Ω→ C(H) is said to be (LA, lA)-H -

mixed Lipschitz continuous if there exist constants LA, lA > 0 such that

H (A(x1,λ1),A(x2,λ2)) ≤ LA‖x1− x2‖+ lA‖λ1−λ2‖, ∀(x1,λ1),(x2,λ2) ∈ H×Ω.

Definition 2.4[11,12,20]. Let A,B,C : H ×Ω→ C(H) be multi-valued mappings. A single-

valued mapping N : H×H×H×Ω→ H is said to be:

(i) α-strongly mixed monotone with respect to A, B and C if there exists a constant α > 0

such that

〈N(u1,v1,w1,λ )−N(u2,v2,w2,λ ), x− y〉 ≥ α‖x− y‖2, ∀(x,y,λ ) ∈ H×H×Ω,

u1 ∈ A(x,λ ), u2 ∈ A(y,λ ), v1 ∈ B(x,λ ), v2 ∈ B(y,λ ), w1 ∈C(x,λ ), w2 ∈C(y,λ );

(ii) (L(N,1),L(N,2),L(N,3), lN)-mixed Lipschitz continuous if there exist constants L(N,1), L(N,2), L(N,3),

lN > 0 such that

‖N(x1,y1,z1,λ1)−N(x2,y2,z2,λ2)‖ ≤ L(N,1)‖x1− x2‖+L(N,2)‖y1− y2‖

+L(N,3)‖z1− z2‖+ lN‖λ1−λ2‖,

∀(x1,y1,z1,λ1), (x2,y2,z2,λ2) ∈ H×H×H×Ω.
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3. Formulation of problem

Let Ω be a nonempty open subset of H in which the parameter λ takes values. Let N : H×

H×H×Ω→ H and m, f : H×Ω→ H be single-valued mappings, and let A,B,C,G,P,Q,R :

H×Ω→C(H) be multi-valued mappings. Suppose that W : H×H×Ω→ 2H is a multi-valued

mapping such that for each given (z,λ ) ∈ H×Ω, W (·,z,λ ) : H → 2H is a maximal monotone

mapping with (R(H,λ )−m(H,λ ))∩domW (·,z,λ ) 6= /0. In this paper, we will consider the fol-

lowing parametric generalized mixed multi-valued implicit quasi-variational inclusion problem

(PGMMIQVIP):

For each fixed λ ∈Ω, find x(λ )∈H, u(λ )∈A(x(λ ),λ ), v(λ )∈B(x(λ ),λ ), w(λ )∈C(x(λ ),λ ),

z(λ ) ∈ G(x(λ ),λ ), n(λ ) ∈ P(x(λ ),λ ), t(λ ) ∈ Q(x(λ ),λ ) and s(λ ) ∈ R(x(λ ),λ ) such that

0 ∈W (s(λ )−m(n(λ ),λ ),z(λ ),λ )−N(u(λ ),v(λ ),w(λ ),λ )+ f (t(λ ),λ ). (3.1)

Some special cases:

(1) If N(u(λ ),v(λ ),w(λ ),λ ) ≡ N(u(λ ),v(λ ),λ ), then the PGMMIQVIP (3.1) reduces to

the following parametric generalized quasi-variational inclusion problem: for each fixed

λ ∈Ω, find x(λ )∈H, u(λ )∈A(x(λ ),λ ), v(λ )∈B(x(λ ),λ ), z(λ )∈G(x(λ ),λ ), n(λ )∈

P(x(λ ),λ ), t(λ ) ∈ Q(x(λ ),λ ), s(λ ) ∈ R(x(λ ),λ ) such that

0 ∈W (s(λ )−m(n(λ ),λ ),z(λ ),λ )−N(u(λ ),v(λ ),λ )+ f (t(λ ),λ ), (3.2)

which has been considered and studied by Ram [21].

(2) If f (t(λ ),λ ) ≡ 0, then the PGQVIP (3.2) reduces to the following parametric gen-

eralized quasi-variational inclusion problem: for each fixed λ ∈ Ω, find x(λ ) ∈ H,

u(λ ) ∈ A(x(λ ),λ ), v(λ ) ∈ B(x(λ ),λ ), z(λ ) ∈ G(x(λ ),λ ), n(λ ) ∈ P(x(λ ),λ ), s(λ ) ∈

R(x(λ ),λ ) such that

0 ∈W (s(λ )−m(n(λ ),λ ),z(λ ),λ )−N(u(λ ),v(λ ),λ ), (3.3)

which has been introduced and studied by Ding [5].
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(3) If R ≡ g : H ×Ω→ H is a single-valued mapping and P(x,λ ) ≡ x, for all (x,λ ) ∈

H×Ω, then the PGQVIP (3.3) reduces to the following parametric generalized quasi-

variational inclusion problem: for each fixed λ ∈Ω, find x(λ ) ∈ H, u(λ ) ∈ A(x(λ ),λ ),

v(λ ) ∈ B(x(λ ),λ ), z(λ ) ∈ G(x(λ ),λ ) such that

0 ∈W (g(x(λ ),λ )−m(x(λ ),λ ),z(λ ),λ )−N(u(λ ),v(λ ),λ ). (3.4)

Similar type problems have been studied by many authors given in [5,11,12,18,20,21].

(4) If m(x(λ ),λ )≡ 0, for all (x,λ ) ∈H×Ω, then the PGQVIP (3.4) reduces to the follow-

ing parametric generalized quasi-variational inclusion problem: for each fixed λ ∈ Ω,

find x(λ ) ∈ H, u(λ ) ∈ A(x(λ ),λ ), v(λ ) ∈ B(x(λ ),λ ), z(λ ) ∈ G(x(λ ),λ ) such that

0 ∈W (g(x(λ ),λ ),z(λ ),λ )−N(u(λ ),v(λ ),λ ), (3.5)

which has been introduced and studied by Noor [17,18].

In brief, for appropriate and suitable choices of the mappings A,B,C,G,P,Q,R,N,W,m, f , and

the space H, it is easy to see that the PGMMIQVIP (3.1) includes a number of known classes

of parametric variational inclusions studied by many authors given in [3,5,6,11-13,18,20,21].

Now, for each fixed λ ∈Ω, the solution set S(λ ) of the PGMMIQVIP (3.1) is denoted as

S(λ ) :=
{

x(λ ) ∈ H : ∃ u(λ ) ∈ A(x(λ ),λ ), v(λ ) ∈ B(x(λ ),λ ), w(λ ) ∈C(x(λ ),λ ),

z(λ ) ∈ G(x(λ ),λ ), n(λ ) ∈ P(x(λ ),λ ), t(λ ) ∈ Q(x(λ ),λ ), s(λ ) ∈ R(x(λ ),λ ) such that

0 ∈W (s(λ )−m(n(λ ),λ ),z(λ ),λ )−N(u(λ ),v(λ ),w(λ ),λ )+ f (t(λ ),λ )
}
. (3.6)

The main aim of this paper is to study the behavior and sensitivity analysis of the solution set

S(λ ), and the conditions on these mappings A,B,C,G,P,Q,R,N,W,m, f under which the solu-

tion set S(λ ) of the PGMMIQVIP (3.1) is nonempty and Lipschitz continuous (or continuous)

with respect to the parameter λ ∈Ω.

4. Sensitivity analysis of solution set S(λ )

First, we transfer the PGMMIQVIP (3.1) into a parametric fixed-point problem.
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Theorem 4.1. For each fixed λ ∈ Ω, x(λ ) ∈ S(λ ) is a solution of the PGMMIQVIP (3.1) if

and only if there exist u(λ ) ∈ A(x(λ ),λ ), v(λ ) ∈ B(x(λ ),λ ), w(λ ) ∈C(x(λ ),λ ), z(λ ) ∈ G(x(λ ),λ ),

n(λ ) ∈ P(x(λ ),λ ), t(λ ) ∈ Q(x(λ ),λ ), s(λ ) ∈ R(x(λ ),λ ) such that the following relation holds:

s(λ ) = m(n(λ ),λ )+ JW (·,z(λ ),λ )
ρ (s(λ )−m(n(λ ),λ )−ρN(u(λ ),v(λ ),w(λ ),λ )+ f (t(λ ),λ )), (4.1)

where ρ > 0 is a constant.

Proof. For each fixed λ ∈Ω, by the definition of the resolvent operator JW (·,z(λ ),λ )
ρ of W (·,z(λ ),λ ),

we have that there exist x(λ ) ∈ H, u(λ ) ∈ A(x(λ ),λ ), v(λ ) ∈ B(x(λ ),λ ), w(λ ) ∈C(x(λ ),λ ),

z(λ )∈G(x(λ ),λ ), n(λ )∈ P(x(λ ),λ ), t(λ )∈Q(x(λ ),λ ) and s(λ )∈ R(x(λ ),λ ) such that (4.1)

holds if and only if

s(λ )−m(n(λ ),λ )−ρN(u(λ ),v(λ ),w(λ ),λ )+ f (t(λ ),λ )

∈ s(λ )−m(n(λ ),λ )+ρW (s(λ )−m(n(λ ),λ ),z(λ ),λ ). (4.2)

The above relation holds if and only if

0 ∈W (s(λ )−m(n(λ ),λ ),z(λ ),λ )−N(u(λ ),v(λ ),w(λ ),λ )+ f (t(λ ),λ ).

By the definition of S(λ ), we obtain that x(λ ) ∈ S(λ ) is a solution of the PGMMIQVIP (3.1)

if and only if there exist x(λ ) ∈ H, u(λ ) ∈ A(x(λ ),λ ), v(λ ) ∈ B(x(λ ),λ ), w(λ ) ∈C(x(λ ),λ ),

z(λ )∈G(x(λ ),λ ), n(λ )∈ P(x(λ ),λ ), t(λ )∈Q(x(λ ),λ ) and s(λ )∈ R(x(λ ),λ ) such that (4.1)

holds.

Remark 4.1. Theorem 4.1 is a generalized variant of Lemma 3.1 of Adly [1], Lemma 2.1 of

Agarwal et al. [2], Theorem 3.1 of Ding [5], Lemma 3.1 of Ding et al. [7], Lemma 4.1 of

Kazmi et al. [11], Lemma 2.1 of Peng et al. [20], and Theorem 3.1 of Ram [21].

Theorem 4.2. Let A,B,C,G,P,Q,R : H ×Ω → C(H) be multi-valued mappings such that

A,B,C,G,P,Q and R are H -Lipschitz continuous in the first arguments with constant

LA,LB,LC,LG,LP,LQ and LR, respectively, and let R : H×Ω→C(H) be δ -strongly monotone.

Let m : H ×Ω→ H be (Lm, lm)-mixed Lipschitz continuous and f : H ×Ω→ H be (L f , l f )-

mixed Lipschitz continuous. Let N : H ×H ×H ×Ω→ H be α-strongly mixed monotone

with respect to A, B and C and (L(N,1),L(N,2),L(N,3), lN)-mixed Lipschitz continuous. Sup-

pose that the multi-valued mapping W : H×H×Ω→ 2H is such that for each fixed (z,λ ) ∈
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H×Ω, W (·,z,λ ) : H → 2H is a maximal monotone mapping satisfying R(H,λ )−m(H,λ )∩

dom W (·,z,λ ) 6= /0. Suppose that there exist constants k1,k2 > 0 such that

‖JW (·,x1,λ1)
ρ (t)− JW (·,x2,λ2)

ρ (t)‖ ≤ k1‖x1− x2‖+ k2‖λ1−λ2‖, ∀x1,x2, t ∈ H; λ1,λ2 ∈Ω, (4.3)

and suppose for ρ > 0, the following condition holds:

θ = k+ t(ρ) < 1 , (4.4)

where k := 2
√

1−2δ +λ 2
R +2LmLP +L f LQ + k1LG ; t(ρ) :=

√
1−2ρα +ρ2L2

N ;

LN := (LAL(N,1)+LBL(N,2)+LCL(N,3)).

Then, for each fixed λ ∈ Ω, the solution set S(λ ) of the PGMMIQVIP (3.1) is nonempty and

closed set in H.

Proof. Define a multi-valued mapping F : H×Ω→ 2H by

F(x,λ ) =
⋃

u∈A(x,λ ),v∈B(x,λ ),w∈C(x,λ ),z∈G(x,λ ),n∈P(x,λ ),t∈Q(x,λ ),s∈R(x,λ )

[
x− s+m(n,λ )

+JW (·,z,λ )
ρ (s−m(n,λ )−ρN(u,v,w,λ )+ f (t,λ ))

]
, ∀(x,λ ) ∈ H×Ω. (4.5)

For any (x,λ ) ∈ H ×Ω, since A(x,λ ), B(x,λ ), C(x,λ ), G(x,λ ), P(x,λ ), Q(x,λ ), R(x,λ ) ∈

C(H), and m, f ,JW (·,z,λ )
ρ are continuous, we have F(x,λ ) ∈C(H). Now for each fixed λ ∈ Ω,

we prove that F(x,λ ) is a multi-valued contractive mapping. For any (x,λ ),(y,λ ) ∈H×Ω and

any a ∈ F(x,λ ), there exist u1 ∈ A(x,λ ), v1 ∈ B(x,λ ), w1 ∈C(x,λ ), z1 ∈G(x,λ ), n1 ∈ P(x,λ ),

t1 ∈ Q(x,λ ) and s1 ∈ R(x,λ ) such that

a = x− s1 +m(n1,λ )+ JW (·,z1,λ )
ρ (s1−m(n1,λ )−ρN(u1,v1,w1,λ )+ f (t1,λ )). (4.6)

Since A(y,λ ), B(y,λ ), C(y,λ ), G(y,λ ), P(y,λ ), Q(y,λ ), R(y,λ ) ∈ C(H), so there exist u2 ∈

A(y,λ ), v2 ∈ B(y,λ ), w2 ∈C(y,λ ), z2 ∈G(y,λ ), n2 ∈ P(y,λ ), t2 ∈Q(y,λ ) and s2 ∈ R(y,λ ) such

that

‖u1−u2‖ ≤ H (A(x,λ ), A(y,λ )) ≤ LA‖x− y‖,

‖v1− v2‖ ≤ H (B(x,λ ), B(y,λ )) ≤ LB‖x− y‖,

‖w1−w2‖ ≤ H (C(x,λ ),C(y,λ )) ≤ LC‖x− y‖,
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‖z1− z2‖ ≤ H (G(x,λ ), G(y,λ )) ≤ LG‖x− y‖, (4.7)

‖n1−n2‖ ≤ H (P(x,λ ), P(y,λ )) ≤ LP‖x− y‖,

‖t1− t2‖ ≤ H (Q(x,λ ), Q(y,λ )) ≤ LQ‖x− y‖,

‖s1− s2‖ ≤ H (R(x,λ ), R(y,λ )) ≤ LR‖x− y‖.

Let b = y− s2 +m(n2,λ )+ JW (·,z2,λ )
ρ (s2−m(n2,λ )−ρN(u2,v2,w2,λ )+ f (t2,λ )), (4.8)

then we have b ∈ F(y,λ ). It follows that

‖a−b‖ ≤ ‖x−y−(s1−s2)‖+‖m(n1,λ )−m(n2,λ )‖

+‖JW (·,z1,λ )
ρ (s1−m(n1,λ )−ρN(u1,v1,w1,λ )+ f (t1,λ ))

−JW (·,z2,λ )
ρ (s2−m(n2,λ )−ρN(u2,v2,w2,λ )+ f (t2,λ ))‖.

≤ ‖x− y− (s1− s2)‖+‖m(n1,λ )−m(n2,λ )‖

+‖JW (·,z1,λ )
ρ (s1−m(n1,λ )−ρN(u1,v1,w1,λ )+ f (t1,λ ))

−JW (·,z1,λ )
ρ (s2−m(n2,λ )−ρN(u2,v2,w2,λ )+ f (t2,λ ))‖

+‖JW (·,z1,λ )
ρ (s2−m(n2,λ )−ρN(u2,v2,w2,λ )+ f (t2,λ ))

−JW (·,z2,λ )
ρ (s2−m(n2,λ )−ρN(u2,v2,w2,λ )+ f (t2,λ ))‖

≤ ‖x− y− (s1− s2)‖+‖m(n1,λ )−m(n2,λ )‖

+‖s1−m(n1,λ )−ρN(u1,v1,w1,λ )+ f (t1,λ )

−[s2−m(n2,λ )−ρN(u2,v2,w2,λ )+ f (t2,λ )]‖+ k1‖z1− z2‖

≤ 2‖x− y− (s1− s2)‖+2‖m(n1,λ )−m(n2,λ )‖+ k1‖z1− z2‖

+‖ f (t1,λ )− f (t2,λ )‖+‖x− y−ρ(N(u1,v1,w1,λ )−N(u2,v2,w2,λ ))‖. (4.9)

Since N is α-strongly mixed monotone and (L(N,1), L(N,2), L(N,3), lN)-mixed Lipschitz continu-

ous; A,B,C are H -Lipschitz continuous, we have

‖x− y−ρ(N(u1,v1,w1,λ )−N(u2,v2,w2,λ ))‖2

≤ ‖x− y‖2−2ρ〈N(u1,v1,w1,λ )−N(u2,v2,w2,λ ),x− y〉

+ρ
2‖N(u1,v1,w1,λ )−N(u2,v2,w2,λ )‖2

≤‖x−y‖2−2ρα‖x−y‖2+ρ
2(LAL(N,1)+LBL(N,2),LCL(N,3))

2‖x−y‖2
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≤
(

1−2ρα +ρ
2(LAL(N,1)+LBL(N,2)+LCL(N,3))

2
)
‖x− y‖2. (4.10)

Since R is δ -strongly monotone and LR-Lipschitz continuous, we have

‖x− y− (s1− s2)‖2 = ‖x− y‖2−2〈x− y,s1− s2〉+‖s1− s2‖2

≤ ‖x− y‖2−2δ‖x− y‖2 +[H (R(x,λ ),R(y,λ ))]2

≤ ‖x− y‖2−2δ‖x− y‖2 +L2
R‖x− y‖2,

and hence,

‖x− y− (s1− s2)‖ ≤
√

1−2δ +L2
R ‖x− y‖. (4.11)

By the mixed Lipschitz continuity of m and the H -Lipschitz continuity of P, we have

‖m(n1,λ )−m(n2,λ )‖ ≤ Lm‖n1−n2‖ ≤ LmH (P(x,λ ),P(y,λ ))

≤ LmLP‖x− y‖. (4.12)

By the H -Lipschitz continuity of G, we have

‖z1− z2‖ ≤ H (G(x,λ ),G(y,λ ))≤ LG‖x− y‖. (4.13)

By the mixed Lipschitz continuity of f and the H -Lipschitz continuity of Q, we have

‖ f (t1,λ )− f (t2,λ )‖ ≤ L f ‖t1− t2‖ ≤ L f H (Q(x,λ ),Q(y,λ ))

≤ L f LQ‖x− y‖. (4.14)

Combining (4.9)-(4.14), we obtain

‖a−b‖ ≤ θ ‖x− y‖, (4.15)

where θ := k+ t(ρ) ; k := 2
√

1−2δ +L2
R +2LmLP +L f LQ + k1LG ;

t(ρ) :=
√

1−2ρα +ρ2L2
N ; LN := (LAL(N,1)+LBL(N,2)+LCL(N,3)).

It follows from condition (4.4) that θ < 1. Hence, we have

d(a,F(y,λ )) = inf
b∈F(y,λ )

‖a−b‖ ≤ θ‖x− y‖.
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Since a ∈ F(x,λ ) is arbitrary, we obtain

sup
a∈F(x,λ )

d(a,F(y,λ )) ≤ θ‖x− y‖.

By using same argument, we can prove

sup
b∈F(y,λ )

d(F(x,λ ),b) ≤ θ‖x− y‖.

By the definition of the Hausdorff metric H on C(H), and for all (x,y,λ ) ∈ H ×H ×Ω, we

obtain that

H
(

F(x,λ ),F(y,λ )
)
≤ θ‖x− y‖, (4.16)

that is, F(x,λ ) is a uniform θ -H -contraction mapping with respect to λ ∈Ω. Also, it follows

from condition (4.4) that θ < 1 and hence F(x,λ ) is a multi-valued contraction mapping which

is uniform with respect to λ ∈ Ω. By Lemma 2.2, for each λ ∈ Ω, F(x,λ ) has a fixed point

x(λ ) ∈ H, that is, x(λ ) ∈ F(x(λ ),λ ) and hence Theorem 4.1 ensure that x(λ ) ∈ S(λ ) is a

solution of the PGMMIQVIP (3.1) and so S(λ ) 6= /0. Further, for each λ ∈ Ω, let {xn} ⊂ S(λ )

with lim
n→∞

xn = x0, we have xn ∈ F(xn,λ ) for all n≥ 1. By virtue of (4.16), we have

d(x0,F(x0,λ )) ≤ ‖x0− xn‖+H (F(xn,λ ),F(x0,λ ))

≤ (1+θ)‖xn− x0‖→ 0, as n→ ∞,

that is, x0 ∈ F(x0,λ ) and hence x0 ∈ S(λ ). Thus S(λ ) is closed set in H.

Now, we prove that the solution set S(λ ) of the PGMMIQVIP (3.1) is H -Lipschitz continu-

ous (or continuous) for each λ ∈Ω.

Theorem 4.3. Let the multi-valued mappings A,B,C,G,P,Q and R be H -mixed Lipschitz con-

tinuous with pairs of constants (LA, lA), (LB, lB), (LC, lC), (LG, lG), (LP, lP), (LQ, lQ) and (LR, lR),

respectively. Let the mappings m, f be same as in Theorem 4.2. Let N be α-strongly mixed

monotone with respect to A, B and C and (L(N,1),L(N,2),L(N,3), lN)-mixed Lipschitz continu-

ous. Suppose that the multi-valued mapping W is same as in Theorem 4.2 and condition (4.4)

holds, then for each λ ∈ Ω, the solution set S(λ ) of the PGMMIQVIP (3.1) is a H -Lipschitz

continuous (or continuous) mapping from Ω to H.
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Proof. For each λ , λ̄ ∈Ω, it follows from Theorem 4.2 that S(λ ) and S(λ̄ ) are both nonempty

and closed subsets of H. It also follows from Theorem 4.2 that F(x,λ ) and F(x, λ̄ ) are both

multi-valued θ -H -contraction mappings with same contractive constant θ ∈ (0,1). By Lemma

2.3, we obtain

H (S(λ ), S(λ̄ )) ≤
( 1

1−θ

)
sup
x∈H

H (F(x,λ ),F(x, λ̄ )). (4.17)

Taking any a ∈ F(x,λ ), there exist u(λ ) ∈ A(x,λ ), v(λ ) ∈ B(x,λ ), w(λ ) ∈ C(x,λ ), z(λ ) ∈

G(x,λ ), n(λ ) ∈ P(x,λ ), t(λ ) ∈ Q(x,λ ), s(λ ) ∈ R(x,λ ) such that

a = x− s(λ )+m(n(λ ),λ )+ JW (·,z(λ ),λ )
ρ (s(λ )−m(n(λ ),λ )

−ρN(u(λ ),v(λ ),w(λ ),λ )+ f (t(λ ),λ )). (4.18)

It is easy to see that there exist u(λ̄ ) ∈ A(x, λ̄ ), v(λ̄ ) ∈ B(x, λ̄ ), w(λ̄ ) ∈C(x, λ̄ ), z(λ̄ ) ∈G(x, λ̄ ),

n(λ̄ ) ∈ P(x, λ̄ ), t(λ̄ ) ∈ Q(x, λ̄ ) and s(λ̄ ) ∈ R(x, λ̄ ) such that

‖u(λ )−u(λ̄ )‖ ≤ H (A(x,λ ), A(x, λ̄ )) ≤ lA‖λ − λ̄‖,

‖v(λ )− v(λ̄ )‖ ≤ H (B(x,λ ), B(x, λ̄ )) ≤ lB‖λ − λ̄‖,

‖w(λ )−w(λ̄ )‖ ≤ H (C(x,λ ),C(x, λ̄ )) ≤ lC‖λ − λ̄‖,

‖z(λ )− z(λ̄ )‖ ≤ H (G(x,λ ), G(x, λ̄ )) ≤ lG‖λ − λ̄‖, (4.19)

‖n(λ )−n(λ̄ )‖ ≤ H (P(x,λ ), P(x, λ̄ )) ≤ lP‖λ − λ̄‖,

‖t(λ )− t(λ̄ )‖ ≤ H (Q(x,λ ), Q(x, λ̄ )) ≤ lQ‖λ − λ̄‖,

‖s(λ )− s(λ̄ )‖ ≤ H (R(x,λ ), R(x, λ̄ )) ≤ lR‖λ − λ̄‖.

Let

b = x− s(λ̄ )+m(n(λ̄ ), λ̄ )+ JW (·,z(λ̄ ),λ̄ )
ρ (s(λ̄ )−m(n(λ̄ ), λ̄ )

−ρN(u(λ̄ ),v(λ̄ ),w(λ̄ ), λ̄ )+ f (t(λ̄ ), λ̄ )), (4.20)

then b ∈ F(x, λ̄ ). In view of (4.3), (4.18)-(4.20) and with

t = s(λ̄ )−m(n(λ̄ ), λ̄ )−ρN(u(λ̄ ),v(λ̄ ),w(λ̄ ), λ̄ )+ f (t(λ̄ ), λ̄ ), we have

‖a−b‖ ≤ ‖s(λ )− s(λ̄ )‖+‖m(n(λ ),λ )−m(n(λ̄ ), λ̄ )‖
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+‖JW (·,z(λ ),λ )
ρ (s(λ )−m(n(λ ),λ )−ρN(u(λ ),v(λ ),w(λ ),λ )+ f (t(λ ),λ ))−JW (·,z(λ ),λ )

ρ (t)‖

+‖JW (·,z(λ ),λ )
ρ (t)− JW (·,z(λ̄ ),λ )

ρ (t)‖+‖JW (·,z(λ̄ ),λ )
ρ (t)− JW (·,z(λ̄ ),λ̄ )

ρ (t)‖

≤ 2‖s(λ )− s(λ̄ )‖+2‖m(n(λ ),λ )−m(n(λ̄ ), λ̄ )‖+‖ f (t(λ ),λ )− f (t(λ̄ ), λ̄ )‖+ k2‖λ − λ̄‖

+k1‖z(λ )− z(λ̄ )‖+ρ‖N(u(λ ),v(λ ),w(λ ),λ )−N(u(λ̄ ),v(λ̄ ),w(λ̄ ), λ̄ )‖. (4.21)

By the H -Lipschitz continuity of R in λ ∈Ω, we have

‖s(λ )− s(λ̄ )‖ ≤ H (R(x,λ ),R(x, λ̄ )) ≤ lR‖λ − λ̄‖. (4.22)

By the mixed Lipschitz continuity of m and the H -Lispchitz continuity of P, we have

‖m(n(λ ),λ )−m(n(λ̄ ), λ̄ )‖ ≤ ‖m(n(λ ),λ )−m(n(λ̄ ),λ )‖+‖m(n(λ̄ ),λ )−m(n(λ̄ ), λ̄ )‖

≤ Lm‖n(λ )−n(λ̄ )‖+ lm‖λ − λ̄‖

≤ Lm H (P(x,λ ),P(x, λ̄ ))+ lm‖λ − λ̄‖

≤ (LmlP + lm) ‖λ − λ̄‖. (4.23)

By the mixed Lipschitz continuity of f and the H -Lipschitz continuity of Q, we have

‖ f (t(λ ),λ )− f (t(λ̄ ), λ̄ )‖ ≤ ‖ f (t(λ ),λ )− f (t(λ̄ ),λ )‖+‖ f (t(λ̄ ),λ )− f (t(λ̄ ), λ̄ )‖

≤ L f ‖t(λ )− t(λ̄ )‖+ l f ‖λ − λ̄‖

≤ L f H (Q(x,λ ),Q(x, λ̄ ))+ l f ‖λ − λ̄‖

≤ (L f lQ + l f ) ‖λ − λ̄‖. (4.24)

By the mixed Lipschitz continuity of N, we have

‖N(u(λ ),v(λ ),w(λ ),λ )−N(u(λ̄ ),v(λ̄ ),w(λ̄ ), λ̄ )‖

≤ ‖N(u(λ ),v(λ ),w(λ ),λ )−N(u(λ̄ ),v(λ ),w(λ ),λ )‖

+‖N(u(λ̄ ),v(λ ),w(λ ),λ )−N(u(λ̄ ),v(λ̄ ),w(λ ),λ )‖

+‖N(u(λ̄ ),v(λ̄ ),w(λ ),λ )−N(u(λ̄ ),v(λ̄ ),w(λ̄ ),λ )‖

+‖N(u(λ̄ ),v(λ̄ ),w(λ̄ ),λ )−N(u(λ̄ ),v(λ̄ ),w(λ̄ ), λ̄ )‖

≤ L(N,1)‖u(λ )−u(λ̄ )‖+L(N,2)‖v(λ )− v(λ̄ )‖+L(N,3)‖w(λ )−w(λ̄ )‖+ lN‖λ − λ̄‖

≤ (lAL(N,1)+ lBL(N,2)+ lCL(N,3)+ lN) ‖λ− λ̄‖. (4.25)
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By the H -Lipschitz continuity of G, we have

‖z(λ )− z(λ̄ )‖ ≤ H (G(x,λ ),G(x, λ̄ )) ≤ lG ‖λ − λ̄‖. (4.26)

Combining (4.21)-(4.26), we obtain

‖a−b‖ ≤ θ1 ‖λ − λ̄‖, (4.27)

where,

θ1 := 2(lR +LmlP + lm)+ρ(lAL(N,1)+ lBL(N,2)+ lCL(N,3)+ lN)+L f lQ + l f + k1lG + k2.

Hence, we obtain

sup
a∈F(x,λ )

d(a,F(x, λ̄ )) ≤ θ1‖λ − λ̄‖.

By using a similar argument as above, we can obtain

sup
b∈F(x,λ̄ )

d(F(x,λ ),b) ≤ θ1‖λ − λ̄‖.

Hence, it follows that

H (F(x,λ ),F(x, λ̄ ))≤ θ1‖λ − λ̄‖.

By Lemma 2.3, we obtain

H (S(λ ),S(λ̄ ) ≤
(

θ1

1−θ

)
‖λ − λ̄‖.

This proves that S(λ ) is H -Lipschitz continuous in λ ∈Ω. If, each mapping in this theorem is

assumed to be continuous in λ ∈Ω, then by similar argument as above, we can show that S(λ )

is also continuous in λ ∈Ω. This completes the proof.

Remark 4.2. Since the PGMMIQVIP (3.1) includes many known classes of parametric gener-

alized variational inclusion problems as special cases, Theorems 4.1-4.3 improve and generalize

the known results given in [3,5,6,11-13,18,20,21].
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