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Abstract. A new Krasnoselskii fixed point result is presented for weakly sequentially upper semicontin-

uous maps. The proof is immediate from results in the literature [6, 7]. We also extend the results for a

general class of maps, namely the Bκ maps of Park.
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1. Introduction

In [2, 5] some Schauder and Krasnoselskii fixed point results were presented for weakly

sequentially continuous or weakly-strongly sequentially continuous maps. In this note we

show how these results can be deduced immediately from results in the literature [6]. In

this paper we establish a general Krasnoselskii fixed point result for weakly sequentially

continuous maps (Theorem 2.2) and for weakly sequentially upper semicontinuous maps

(Theorem 2.4). Later we show the results in this paper extend to upper semicontinuous

Kakutani or acyclic or approximable or admissible with respect to Gorniewicz maps. In
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fact we will establish a result for a very general class of maps, namely the Bκ maps of

Park.

We now gather together some notation and preliminary facts. Let ΩE be the bounded

subsets of a Banach space E and let Kw be the family of all weakly compact subsets of E.

Also let B be the closed unit ball of E. The DeBlasi [4] measure of weak noncompactness

is the map w : ΩE → [0,∞) defined by

w(X) = inf {t > 0 : there exists Y ∈ Kw with X ⊆ Y + t B} ;

here X ∈ ΩE. For convenience we recall some properties of w:

Let X1, X2 ∈ ΩE. Then

(i). X1 ⊆ X2 implies w(X1) ≤ w(X2).

(ii). w(X1) = 0 iff Xw
1 ∈ Kw; here Xw

1 is the weak closure of X1 in E.

(iii). w(Xw
1 ) = w(X1).

(iv). w(X1 ∪X2) = max{w(X1), w(X2)}.

(v). w(r X1) = r w(X1) for all r > 0.

(vi). w(co(X1)) = w(X1).

(vii). w(X1 +X2) ≤ w(X1) + w(X2).

(viii). If {Xn}∞1 is a sequence of nonempty, weakly closed subsets of E with X1 bounded

and X1 ⊇ X2 ⊇ ..... ⊇ Xn ⊇ ... with limn→∞w(Xn) = 0, then ∩∞n=1Xn 6= ∅.

Suppose F : Z ⊆ E → E. Then F is said to be (1). weakly sequentially continuous if

xn (n ∈ N = {1, 2, ...}), x ∈ Z with xn ⇀ x implies F xn ⇀ F x, (2). weakly-strongly

sequentially continuous if xn (n ∈ N), x ∈ Z with xn ⇀ x implies F xn → F x, (3).

strongly-weakly sequentially continuous if xn (n ∈ N), x ∈ Z with xn → x implies

F xn ⇀ F x. On the other hand if F : Z → 2E (here 2E denotes the family of nonempty

subsets of E) then F is said to be weakly sequentially upper semicontinuous if for any

weakly closed set A of E, F−1(A) is sequentially closed for the weak topology on Z.

Let X be a nonempty, convex subset of a Hausdorff topological vector space E and

Y a topological space. Recall a polytope P in X is any convex hull of a nonempty finite

subset of X.
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Definition 1.1. We say G ∈ B(X, Y ) if G : X → 2Y (the nonempty subsets of Y )

is such that for any polytope P in X and any continuous function g : G(P ) → P , the

composition g (G|P ) : P → 2P has a fixed point.

Definition 1.2. F ∈ Bκ(X, Y ) (i.e. F is Bκ–admissible) if F : X → 2Y is such that

for any compact, convex subset K of X, there exists a closed map G ∈ B(K,Y ) with

G(x) ⊆ F (x) for each x ∈ K.

A nonempty subset X of a Hausdorff topological vector space E is said to be admissible

if for every compact subset K of X and every neighborhood V of 0, there exists a

continuous map h : K → X with x− h(x) ∈ V for all x ∈ K and h(K) is contained in

a finite dimensional subspace of E.

In [10] Park proved the following result.

Theorem 1.1. Let E be a Hausdorff topological vector space and X an admissible,

convex subset of E. Then any closed, compact map F ∈ B(X,X) has a fixed point.

Examples of Bκ maps can be found in [10]. An important subclass of B is the class

Uκc . Let X and Y be Hausdorff topological spaces. Given a class X of maps, X (X, Y )

denotes the set of maps F : X → 2Y belonging to X , and Xc the set of finite compositions

of maps in X . A class U of maps is defined by the following properties:

(i). U contains the class C of single valued continuous functions;

(ii). each F ∈ Uc is upper semicontinuous and compact valued; and

(iii). for any polytope P , F ∈ Uc(P, P ) has a fixed point, where the intermediate spaces

of composites are suitably chosen for each U .

Definition 1.3. F ∈ Uκc (X, Y ) (i.e. F is Uκc –admissible) if for any compact subset K

of X, there is a G ∈ Uc(K,Y ) with G(x) ⊆ F (x) for each x ∈ K.

Note Uκc is closed under compositions.

2. Main results



KRASNOSELSII’S FIXED POINT THEOREM 251

In [6, pp2] the following result was established.

Theorem 2.1. Let C be a nonempty bounded convex closed subset of a Banach space

E and assume A : C → C is weakly sequentially continuous. In addition suppose there

exists a α ∈ [0, 1) with

(2.1) w(Sn+1) ≤ αw(Sn) for n ∈ {1, 2, ....};

here S1 = C and Sn+1 = co (A(Sn)) for n ∈ {1, 2, ...}. Then A has a fixed point.

Remark 2.1. Note Theorem 2.2 in [5] follows immediately from Theorem 2.1 (in fact

the condition that A is continuous in [5] is not needed).

Remark 2.2. One could replace (2.1) with other weakly compactness type conditions;

see Theorem’s 2.7-2.9 in [1].

Of course Theorem 2.1 immediately guarantees a Krasnoselskii fixed point theorem.

We prove a general result which includes the results in [2, 5].

Theorem 2.2. Let C be a nonempty bounded convex closed subset of a Banach space

E and assume F : C → E and G : C → E is such that (I − G)−1 is well defined on

(I −G) (C). Also assume the following conditions hold:

(2.2) F (C) ⊆ (I −G) (C)

(2.3) (I −G)−1 F : C → E is weakly sequentially continuous

and

(2.4) ∃ α ∈ [0, 1) with w(Sn+1) ≤ αw(Sn) for n ∈ {1, 2, ....};

here S1 = C and Sn+1 = co ((I − G)−1 F (Sn)) for n ∈ {1, 2, ...}. Then there exists

x ∈ C with x = F (x) +G(x).

Proof. Notice F (C) ⊆ (I − G) (C) from (2.2) so (I − G)−1 F : C → C. The result

follows from Theorem 2.1. �
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Remark 2.3. Suppose

(2.5) F : C → F (C) is weakly-strongly sequentially continuous

and

(2.6)

 (I −G)−1 : (I −G) (C)→ E is strongly-weakly

sequentially continuous

hold. Then clearly (2.3) is satisfied.

Remark 2.4. Suppose

(2.7) F : C → F (C) is weakly sequentially continuous

and

(2.8) (I −G)−1 : (I −G) (C)→ E is weakly sequentially continuous

hold. Then clearly (2.3) is satisfied.

Remark 2.5. Note if G : C → E is a contraction (with contractive constant β ∈ [0, 1))

then it is well known that (I − G)−1 exists and is continuous (note ‖(I − G)(x)− (I −

G)(y)‖ ≥ (1− β) ‖x− y‖ for x, y ∈ C) so in particular (2.6) holds. If in addition

(2.9) F (x) +G(y) ∈ C for all x, y ∈ C

holds, then (2.2) is satisfied. To see this first notice (2.9) implies F (C) + G(C) ⊆ C.

Now let w ∈ F (C). Then z = G(z) + w has a unique solution since z → G(z) + w is a

contraction which maps C to C. Thus w ∈ (I −G)(C), so (2.2) is satisfied.

Remark 2.6. If (I − G)−1 is linear and continuous on E then (I − G)−1 is weakly

continuous on E (see [3. pp39]), so (2.8) holds. Note trivially (2.6) is satisfied (of course

we dont need to assume (I −G)−1 is linear if we are interested in (2.6)).

If (I −G)−1 exists on E (an example of this is if G : E → E is a contraction) and if

in addition

(2.10) if y ∈ C and x = F (y) +G(x), then x ∈ C
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holds, then (2.2) is satisfied. To see this let w ∈ F (C). Then there exists y ∈ C with

w = F (y). Let z = (I −G)−1 (w). Thus z −G(z) = w which implies z = G(z) + F (y)

and so (2.10) implies z ∈ C. Thus (I −G)−1 (w) ∈ C so w ∈ (I −G)(C) and as a result

(2.2) is satisfied.

Remark 2.7. Suppose there exists α ∈ [0, 1) with

(2.11) w(F (X) +G(X)) ≤ αw(X), ∀X ⊆ C.

Then (2.4) holds. To see this notice for n ∈ {1, 2, ...} that

(I −G)−1 F (Sn) ⊆ F (Sn) +G (I −G)−1 F (Sn) ⊆ F (Sn) +G(Sn+1)

⊆ F (Sn) +G(Sn)

since Sn+1 = co ((I −G)−1 F (Sn)) ⊆ Sn. Thus

w(Sn+1) = w(co ((I −G)−1 F (Sn))) = w((I −G)−1 F (Sn))

≤ w(F (Sn) +G(Sn)) ≤ αw(Sn).

Remark 2.8. One could replace (2.4) with other weakly compactness type conditions;

see Theorem’s 2.7-2.9 in [1].

From the above remarks one can see that Theorem 2.1 of [2] and Theorem 2.3 of [5]

follow immediately from Theorem 2.2.

For completeness we now discuss the multivalued situation. In [7] the following result

was established.

Theorem 2.3. Let C be a nonempty bounded convex closed subset of a Banach space

E and assume A : C → K(C) is weakly sequentially upper semicontinuous; here K(C)

denotes the family of nonempty closed convex subsets of C. In addition suppose there

exists a α ∈ [0, 1) with

(2.12) w(Sn+1) ≤ αw(Sn) for n ∈ {1, 2, ....};

here S1 = C and Sn+1 = co (A(Sn)) for n ∈ {1, 2, ...}. Then A has a fixed point.
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Remark 2.9. One could replace (2.12) with other weakly compactness type conditions;

see Theorem’s 2.7-2.9 in [1].

Theorem 2.3 immediately guarantees our next result.

Theorem 2.4. Let C be a nonempty bounded convex closed subset of a Banach space

E and assume F : C → 2E and G : C → E is such that (I − G)−1 is well defined

on (I −G) (C); here 2E denotes the family of nonempty subsets of E. Also assume the

following conditions hold:

(2.13) F (C) ⊆ (I −G) (C)

(2.14)

 (I −G)−1 F : C → K(E) is weakly sequentially

upper semicontinuous

and

(2.15) ∃ α ∈ [0, 1) with w(Sn+1) ≤ αw(Sn) for n ∈ {1, 2, ....};

here S1 = C and Sn+1 = co ((I − G)−1 F (Sn)) for n ∈ {1, 2, ...}. Then there exists

x ∈ C with x ∈ F (x) +G(x).

Proof. Notice F (C) ⊆ (I −G) (C) from (2.13) so (I −G)−1 F : C → K(C). The result

follows from Theorem 2.3. �

We now show there is an obvious analogue of Theorem 2.4 (respectively Theorem 2.2)

for upper semicontinuous Kakutani or acyclic or approximable or admissible with respect

to Gorniewicz (respectively continuous) maps (I−G)−1 F . In this situation w is replaced

by the Kuratowski measure of noncompactness α or the ball measure of noncompactness

χ. We will write our results with the Kuratowski measure of noncompactness α.

For simplicity we will present fixed point results in Banach spaces (it is trivial to extend

the ideas to topological vector spaces).

Theorem 2.5. Let C be a nonempty bounded convex closed subset of a Banach space E

and assume A ∈ Bκ(C,C). In addition suppose there exists a r ∈ [0, 1) with

(2.16) α(Sn+1) ≤ r α(Sn) for n ∈ {1, 2, ....};
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here S1 = C and Sn+1 = co (A(Sn)) for n ∈ {1, 2, ...}. Then A has a fixed point.

Proof. Notice

α(S2) = α(co (A(S1))) = α(A(S1)) ≤ r α(S1) and S2 ⊆ co (C) = C = S1.

It is now easy to see that

Sn+1 ⊆ Sn and α(Sn+1) ≤ rn α(S1) for n ∈ {1, 2, ....}.

Thus α(Sn) → 0 as n → ∞ so S∞ = ∩∞1 Sn is nonempty, convex and closed. Notice

S∞ is compact since α(S∞) = 0. Also since

A(Sn) ⊆ A(Sn−1) ⊆ co (A(Sn−1)) = Sn, ∀n,

we have A(S∞) ⊆ S∞. Now A ∈ Bκ(C,C) so there exists a closed map G ∈ B(S∞, S∞)

with G(x) ⊆ F (x) for x ∈ S∞. Now Theorem 1.1 guarantees that there exists a x0 ∈ S∞

with x0 ∈ G(x0) ⊆ F (x0). �

Remark 2.10. One could replace (2.16) with other compactness type conditions; see

Theorem’s 2.1-2.5 in [8] and Theorem’s 2.1-2.2 of [9] (all these compactness conditions

are in topological vector spaces). Also the boundedness assumption on C can be removed

in certain situations; see Theorem’s 2.1-2.5 in [8] and Theorem 2.2 of [9].

Theorem 2.6. Let C be a nonempty bounded convex closed subset of a Banach space

E and assume F : C → 2E and G : C → E is such that (I − G)−1 is well defined on

(I −G) (C). Also assume the following conditions hold:

(2.17) F (C) ⊆ (I −G) (C)

(2.18) (I −G)−1 F ∈ Bκ(C,E)

and

(2.19) ∃ r ∈ [0, 1) with α(Sn+1) ≤ r α(Sn) for n ∈ {1, 2, ....};

here S1 = C and Sn+1 = co ((I − G)−1 F (Sn)) for n ∈ {1, 2, ...}. Then there exists

x ∈ C with x ∈ F (x) +G(x).
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Proof. Notice F (C) ⊆ (I −G) (C) from (2.17) so (I −G)−1 F ∈ Bκ(C,C). The result

follows from Theorem 2.5. �

Remark 2.11. Suppose

(2.20) F ∈ Uκc (C,E)

and

(2.21) (I −G)−1 : (I −G) (C)→ E is continuous

hold. Then (I −G)−1 F ∈ Uκc (C,E) since Uκc is closed under compositions. As a result

(I −G)−1 F ∈ Bκ(C,E), so (2.18) holds.

Remark 2.12. Note if G : C → E is a contraction then it is well known that (I−G)−1

exists and is continuous. If in addition suppose

(2.22) F (x) +G(y) ⊆ C for all x, y ∈ C

holds. Fix z ∈ C and let w ∈ F (z). Then as in Remark 2.5, x = G(x) +w has a unique

solution so w ∈ (I − G)(C). As a result F (z) ⊆ (I − G)(C). We can do this for each

z ∈ C so (2.17) is satisfied.

Remark 2.13. If (I −G)−1 exists on E and if in addition

(2.23) if y ∈ C and x ∈ F (y) +G(x), then x ∈ C

holds, then as in Remark 2.6 it is easy to see that (2.17) is satisfied.

Remark 2.14. One could replace (2.19) with other compactness type conditions; see

Theorem’s 2.1-2.5 in [8] and Theorem’s 2.1-2.2 of [9]. Also the boundedness assumption

on C can be removed in certain situations; see Theorem’s 2.1-2.5 in [8] and Theorem 2.2

of [9].
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