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1. Introduction

The fixed point stability has been an interesting and continuing area of research in

fixed point theory since its inception in 1962, when a result about the relationship between

the convergence of a sequence of contraction mappings {Tn} of a metric space X and

their fixed points was obtained by Bonsall [6] (see also Sonnenshein [31]). Subsequent

results by Nadler, Jr. [22] and others (see [1, 3-5, 14-21, 24-30]) in various settings

address mainly the problem of replacing the completeness of the space X (metric or
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otherwise) by the existence of fixed points and various relaxations on the contraction

constant. In most of these results, pointwise and uniform convergence play invariably a

vital role in arriving at the desired conclusion. However, if the domain of definition of

Tn is different for each n ∈ N (naturals), then these notions do not work. An alternative

to this problem has recently been presented by Barbet and Nachi [4, 5] where some new

notions of convergence have been introduced and utilized to obtain stability results in a

metric space which generalize the earlier results of Bonsall [6] and Nadler [22]. These

results have been further generalized by Mishra et al. [17-21]. On the other hand, the so

called nonlinear contractions (or ϕ−contraction mappings) studied by Boyd and Wong

[7] form a natural generalization of the contraction mappings. In this paper, motivated

by Barbet and Nachi [4] and Boyd and Wong [7], we obtain a number of stability results

in 2-metric spaces due to Gähler [8]. The results obtained here in thus compliment the

results of Barbet and Nachi [4] and Mishra el al. [17-21]. We note that the results so

obtained are significant in the sense that 2-metric spaces differ topologically with metric

spaces(see Remark 1.4 below).

2. Preliminaries

We first recall some basics of 2-metric spaces. For details we refer to Gähler [8] and Iséki

[9-11].

Definition 2.1. Let X be a nonempty set, consisting of at least three points. A 2-metric

on X is a real-valued function ρ on X ×X ×X which satisfies the following conditions:

(a) To each pair of distinct points x, y ∈ X there exists a point a ∈ X such that

ρ(x, y, a) 6= 0.

(b) If at least two of x, y, a are equal then ρ(x, y, a) = 0.

(c) ρ(x, y, a) = ρ(y, a, x) = ρ(x, a, y) for all x, y, a ∈ X.

(d) ρ(x, y, a) ≤ ρ(x, y, z) + ρ(x, z, a) + ρ(z, y, a) for all x, y, z, a ∈ X.

It is easily seen that ρ is non-negative. The pair (X, ρ) is called a 2-metric space.
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Definition 2.2. A sequence {xn} in a 2-metric space (X, ρ) is said to be convergent with

limit z ∈ X if lim
n→∞

ρ(xn, z, a) = 0 for all a ∈ X. Notice that if the sequence {xn} converges

to z, then lim
n→∞

ρ(xn, a, b) = ρ(z, a, b) for all a, b ∈ X. Further, the sequence {xn} is said

to be a Cauchy sequence if lim
m,n→∞

ρ(xm, xn, a) = 0 for all a ∈ X. A 2-metric space (X, ρ)

is said to be complete if every Cauchy sequence in X is convergent.

Definition 2.3. A 2-metric space (X, ρ) is said to be bounded if there is a constant K

such that ρ(a, b, c) ≤ K for all a, b, c ∈ X.

Remark 2.4. The following remarks briefly capture some distinct features of topological

properties of 2-metric spaces which differ from those of metric spaces. (i) Given any metric

space which consist of more than two points, there always exists a 2-metric compatible

with the topology of the space. But the converse is not always true as one can find a

2-metric space which does not have a countable basis associated with one of its arguments

(see Gäher [8, Theorem 20 and Example on page 145]). (ii) It is known that a 2-metric ρ is

continuous in any one of its arguments. Generally, we cannot however assert the continuity

of ρ in all the three arguments. But if it is continuous in any two arguments, then it is

continuous in all the three arguments (see Gäher [8, page 123]). (iii) In a complete 2-metric

space a convergent sequence need not be Cauchy (see Naidu and Prasad [23, Example 0.1

]). (iv) In a 2-mertic space (X, ρ) every convergent sequence is Cauchy whenever ρ is

continuous. However, the converse need not be true (see Naidu and Prasad [23, Example

0.2]).

Definition 2.5. Let (X, ρ) be a 2-metric space. A mapping T : X → X is called Lipschitz

(or k−Lipschitz) if there exists a constant k > 0 such that

(1.1) ρ(Tx, Ty, a) ≤ kρ (x, y, a)

for all x, y, a ∈ X. If 0 < k < 1, then T is called contraction (or k-contraction).

It is well known that a contraction mapping on a 2-metric space X has a unique fixed

point. Initially, an additional requirement of boundedness was placed on X by Iséki et

al. [12] and which was dispensed with subsequently by Rhoades [24] and Lal and Singh
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[13] independently. For some recent developments on fixed points in 2−metric spaces, we

refer to Aliouche and Simpson [2].

Definition 2.6. Let (X, ρ) be a 2-metric space and T : X → X a self-mapping. The

mapping T is said to be nonlinear contraction or ϕ-contraction on X if

(1.2) ρ(Tx, Ty, a) ≤ ϕ(ρ(x, y, a))

for all x, y, a ∈ X, where ϕ : [0,∞)→ [0,∞) is upper semicontinuous from the right and

ϕ(t) < t for t > 0. We note that ϕ(0) = 0. For details we refer to Boyd and Wong [7].

We note that the condition (1.1) is a special case of the condition (1.2) when ϕ(t) = kt

with k ∈ (0, 1).

Now onwards, X will denote a 2-metric space (X, ρ) with ρ continuous, N, the set of

naturals and N = N ∪ {∞}.

3. Stability under (G)-convergence

Definition 3.1. [19 ] Let X be a 2-metrc space, {Xn}n∈N a family of nonempty subsets

of X and {Tn : Xn → X}n∈N a family of mappings. Then T∞ is called a (G)-limit of

the sequence {Tn}n∈N, or, equivalently {Tn}n∈N satisfies the property (G) if the following

condition holds:

(G): Gr(T∞) ⊂ lim inf Gr(Tn): for every z ∈ X∞, there exists a sequence {xn} in

Π
n∈N

Xn such that

lim
n→∞

ρ(xn, z, a) = 0 and lim
n→∞

ρ(Tnxn, T∞z, a), for all a ∈ X,

where Gr(T ) denotes the graph of T.

Remark 3.2. In view of Barbet and Nachi [4], we note that:

(i): A (G)-limit need not be unique.
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(ii): The property (G) is more general than pointwise convergence. However, the

two notions are equivalent provided the sequence {Tn}n∈N is equicontinuous when

the domains of definitions are identical.

The following proposition extends a result of Barbet and Nachi [4, Proposition 1],

Mishra and Pant [18, Proposition 3.1] and Mishra et al. [19, Proposition 2.2] to ϕ-

contractions and ensures the uniqueness of a (G) limit in a 2−metric space.

Proposition 3.3. Let X be a 2-metric space, {Xn} n∈N a family of nonempty subsets of

X and { Tn : Xn → X} n∈N a sequence of ϕ-contraction mappings. If T∞ : X∞ → X is a

(G)-limit of {Tn} , then T∞ is unique.

Proof. Assume that T∞ : X∞ → X and T ∗∞ : X∞ → X are (G)-limit mappings of the

sequence {Tn}. Hence for any point x ∈ X∞, there exist two sequences {xn} and {yn} in

Π
n∈N

Xn converging to x such that {Tnxn} and {Tnyn} converge to T∞ and T ∗∞. respectively.

Therefore

lim
n→∞

ρ (Tnxn, T∞x, a) = 0, lim
n→∞

ρ ( Tnyn, T
∗
∞x, a) = 0 for all a ∈ X.

By the triangular area inequality and condition (1.2), for all n ∈ N and for any a ∈ X,

we have

ρ(T∞x, T
∗
∞x, a) ≤ ρ(T∞x, T

∗
∞x, Tnxn) + ρ(T∞x, Tnxn, a) + ρ(Tnxn, T

∗
∞x, a)

≤ ρ(T∞x, T
∗
∞x, Tnxn) + ρ(T∞x, Tnxn, a) + ρ(Tnxn, T

∗
∞x, Tnyn)

+ρ(Tnxn, Tnyn, a) + ρ(Tnyn, T
∗
∞x, a)

≤ ρ(T∞x, T
∗
∞x, Tnxn) + ρ(T∞x, Tnxn, a) + ρ(Tnxn, T

∗
∞x, Tnyn)

+ϕ(ρ(xn, yn, a)) + ρ(Tnyn, T
∗
∞x, a)→ 0 as n→∞.

Hence we deduce that lim
n→∞

ρ(T∞x, T
∗
∞x, a) = 0 and the unicity of the limit is established.

�

When ϕ(t) = kt and k ∈ (0, 1) in the above proposition, we get the following result.
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Corollary 3.4. [19, Proposition 2.2] Let X be a 2-metric space, {Xn} n∈N a family of

nonempty subsets of X and { Tn : Xn → X} n∈N a sequence of k-contraction mappings.

If T∞ : X∞ → X is a (G)-limit of {Tn} then T∞ is the unique.

The following theorem is our first stability result.

Theorem 3.5. Let X be a 2-metric space, {Xn} n∈N a family of nonempty subsets of X

and {Tn : Xn → X} n∈N a family of mappings satisfying the property (G) and such that,

for all n ∈ N, Tn : Xn → X is a ϕ-contraction, where ϕ is nondecreasing. If, for all

n ∈ N, xn is a fixed point of Tn, then the sequence {xn} n∈N converges to x∞.

Proof. Let xn be a fixed point of Tn for each n ∈ N. Since property (G) holds and

x∞ ∈ X∞, there exists a sequence {yn} in Π
n∈N

Xnsuch that

lim
n→∞

ρ(yn, x∞, a) = 0 and lim
n→∞

ρ(Tnyn, T∞x∞, a) = 0 for all a ∈ X.

If lim
n→∞

ρ(xn, x∞, a) = 0, then there is nothing to prove. Assume that lim
n→∞

ρ(xn, x∞, a) = r

for some r > 0. By the triangular area inequality, condition (1.2) and the fact that ϕ is

nondecreasing, we get

ρ(xn, x∞, a) = ρ(Tnxn, T∞x∞, a)

≤ ρ(Tnxn, Tnyn, a) + ρ(Tnxn, T∞x∞, Tnyn) + ρ(Tnyn, T∞x∞, a)

≤ ϕ(ρ(xn, yn, a)) + ρ(Tnxn, T∞x∞, Tnyn) + ρ(Tnyn, T∞x∞, a)

≤ ϕ(ρ(xn, x∞, a) + ρ(xn, yn, x∞) + ρ(x∞, yn, a)) + ρ(Tnxn, T∞x∞, Tnyn)

+ρ(Tnyn, T∞x∞, a).

Making n→∞ in the above inequality, we get

r ≤ ϕ(r) < r,

a contradiction. Therefore lim
n→∞

ρ(xn, x∞, a) = 0 and the conclusion follows. �
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Corollary 3.6. [19, Theorem 2.3] Let X be a 2-metric space, {Xn} n∈N a family of

nonempty subsets of X and {Tn : Xn → X} n∈N a family of mappings satisfying the prop-

erty (G) and such that, for all n ∈ N, Tn : Xn → X is a k-contraction. If, for all n ∈ N,

xn is a fixed point of Tn, then the sequence {xn} n∈N converges to x∞.

Proof. It comes from Theorem 3.5 when ϕ(t) = kt and k ∈ (0, 1). �

The following result gives a comparison with Rhoades [24, Theorem 2] and presents a

2-metric space version of Bonsall [6, Theorem 1.2, page 6].

Corollary 3.7. Let X be a complete 2-metric space and { Tn : X → X} n∈N a family of

contraction mappings with the same Lipschitz constant k < 1 and such that the sequence

{Tn} n∈N converges pointwise to T∞. Then, for all n ∈ N, Tn has a unique fixed point xn

and the sequence {xn} n∈N converges to x∞.

Proof. This comes from Corollary 3.6 when Xn = X for all n ∈ N and the fact that X is

complete. �

The existence of a fixed point for a (G)-limit mapping is characterized by the following

result when it is a contraction mapping. This result also presents an analogue of [18,

Theorem 3.6] to 2-metric spaces.

Theorem 3.8. Let X be a 2-metric space, {Xn}n∈N a family of nonempty subsets of X

and {Tn : Xn → X}n∈N a family of mappings satisfying the property (G) and such that,

for any n ∈ N, Tn : Xn → X is a ϕ-contraction, where ϕ is nondecreasing. Assume that,

for any n ∈ N, xn is a fixed point of Tn. Then:

T∞ admits a fixed point ⇔ {xn} converges and limxn ∈ X∞

⇔ {xn} admits a subsequence converging to a point of X∞.

Proof. The necessary part is already proved in Theorem 3.5. To prove the sufficiency, let

{xnj
} be a subsequence of {xn} such that lim

j→∞
xnj

= x∞ ∈ X∞. By the property (G),

there exists a sequence {yn} in Π
n∈N

Xn such that

lim
n→∞

ρ(yn, x∞, a) = 0 and lim
n→∞

ρ(Tnyn, T∞x∞, a) = 0 for all a ∈ X.
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Hence for any a ∈ X and n ∈ N, we have

ρ (x∞, T∞x∞, a) ≤ ρ(x∞, xnj
, a) + ρ

(
Tnj

xnj
, T∞x∞, a

)
+ ρ

(
x∞, T∞x∞, Tnj

xnj

)
≤ ρ(x∞, xnj

, a) + ρ
(
Tnj

xnj
, T∞x∞, Tnj

ynj

)
+

ρ
(
Tnj

xnj
, Tnj

ynj
, a
)

+ ρ
(
Tnj

ynj
, T∞x∞, a

)
+ρ
(
x∞, T∞x∞, Tnj

xnj

)
≤ ρ

(
x∞, xnj

, a
)

+ ρ
(
Tnj

xnj
, T∞x∞, Tnj

ynj

)
+ ϕ

(
ρ
(
xnj

, ynj
, a
))

+

ρ
(
Tnj

ynj
, T∞x∞, a

)
+ ρ

(
x∞, T∞x∞, Tnj

xnj

)
.

The right hand side of the above expression tends to zero as j →∞ and hence T∞x∞ =

x∞, proving that x∞ is a fixed point of T∞. �

Remark 3.9. Under the assumptions of Theorem 3.8, and if

(i): lim inf Xn ⊂ X∞ (i.e., the limit of any convergent sequence {zn} in Π
n∈N

Xn is in

X∞), then:

T∞ admits a fixed point ⇔{xn} converges.

(ii): lim supXn ⊂ X∞ (i.e., the cluster point of any sequence {zn} in Π
n∈N

Xn is in X∞

) then:

T∞ admits a fixed point ⇔{xn} admits a convergent subsequence.

The following proposition extends a result of [18, Proposition 3.8] to 2-metric spaces

and provides a sufficient condition under which a (G)-limit of a sequence of ϕ-contraction

mappings is again a ϕ-contraction.

Proposition 3.10. Let X be a 2-metric space, {Xn} n∈N a family of nonempty subsets

of X and { Tn : Xn → X} n∈N a family of mappings satisfying the property (G) and such

that, for any n ∈ N, Tn is a ϕ-contraction from Xn to X. Then T∞ is a ϕ-contraction.

Proof. Given two points x and y in X∞, by the property (G) there exist two sequences

{xn} and {yn} in Π
n
Xn converging respectively to x and y and such that the sequences
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{Tnxn} and {Tnyn} converge respectively to T∞x and T∞y. For any n ∈ N and a ∈ X,

we deduce from condition (1.2) that

ρ(T∞x, T∞y, a) ≤ ρ(T∞x, T∞y, Tnxn) + ρ(T∞x, Tnxn, a) + ρ(Tnxn, T∞y, a)

≤ ρ(T∞x, T∞y, Tnxn) + ρ(T∞x, Tnxn, a) + ρ(Tnxn, T∞y, Tnyn)

+ρ(Tnxn, Tnyn, a) + ρ(Tnyn, T∞y, a)

≤ ρ(T∞x, T∞y, Tnxn) + ρ(T∞x, Tnxn, a) + ρ(Tnxn, T∞y, Tnyn)

+ϕ(ρ(xn, yn, a)) + ρ(Tnyn, T∞y, a).

Since lim supϕ(ρ(xn, yn, a)) ≤ ϕ(ρ(x, y, a)), we conclude that ρ(T∞x, T∞y, a) ≤ ϕ(ρ(x, y, a)).

�

Corollary 3.11. Let X be a 2-metric space, {Xn} n∈N a family of nonempty subsets of

X and { Tn : Xn → X} n∈N a family of mappings satisfying the property (G) and such

that, for any n ∈ N, Tn is a k-contraction from Xn to X . Then T∞ is a k-contraction.

Proof. This comes from Proposition 3.10 when ϕ(t) = kt and k ∈ (0, 1). �

Under a compactness assumption, the existence of a fixed point of the (G)-limit mapping

can be obtained from the existence of fixed points of the ϕ-contraction mappings Tn. The

following theorem is an extension of [18, Theorem 3.10] to 2-metric spaces.

Theorem 3.12. Let {Xn}n∈N be a family of nonempty subsets of a 2-metric space X and

{Tn : Xn → X}n∈N a family of mappings satisfying the property (G) and such that, for any

n ∈ N, Tn is a ϕ-contraction, where φ is nondecreasing. Assume that lim supXn ⊂ X∞

and
⋃

n∈NXn is relatively compact. If, for any n ∈ N, Tn admits a fixed point xn, then

the (G)-limit mapping T∞ admits a fixed point x∞ and the sequence {xn}n∈N converges to

x∞.

Proof. Let xn be the fixed point of Tn for each n ∈ N. From the compactness condition,

there exists a convergent subsequence {xnj
} of {xn}. Now by Remark 3.9, T∞ admits a

fixed point x∞ and by Theorem 3.5 the sequence {xn} converges to x∞. �
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Corollary 3.13. [19, Theorem 2.10] Let {Xn}n∈N be a family of nonempty subsets of

a 2-metric space X and {Tn : Xn → X}n∈N a family of mappings satisfying the property

(G) and such that, for any n ∈ N, Tn is a k-contraction. Assume that lim supXn ⊂ X∞

and
⋃

n∈NXn is relatively compact. If, for any n ∈ N, Tn admits a fixed point xn, then

the (G)-limit mapping T∞ admits a fixed point x∞ and the sequence {xn}n∈N converges to

x∞.

Proof. This comes from Theorem 3.12, when ϕ(t) = kt and k ∈ (0, 1). �

The following notion of convergence is weaker than (G)-convergence and has been s-

tudied in [19].

Definition 3.14. [19] Let X be a 2-metrc space, {Xn}n∈N a family of nonempty subsets

of X and {Tn : Xn → X}n∈N a family of mappings. Then T∞ is called a (G−) limit of the

sequence {Tn}n∈N or, equivalently {Tn}n∈N satisfies the property (G−), if the following

condition holds:

(G−): Gr(T∞) ⊂ lim supGr(Tn) : for all z ∈ X∞, there exists a sequence {xn}n∈N
in Π

n∈N
Xn, and which has a subsequence

{
xnj

}
such that

lim
j→∞

ρ(xnj
, z, a) = 0 and lim

j→∞
ρ(Tnj

xnj
, T∞z, a) = 0 for all a ∈ X.

The following result which is an extension of [18, Theorem 3.12] to 2-metric spaces,

establishes that a fixed point of a (G−)-limit mapping is a cluster point of the sequence

of fixed points associated with {Tn} .

Theorem 3.15. Let {Xn}n∈N be a family of nonempty subsets of a 2-metric space X

and {Tn : Xn → X}n∈N a family of ϕ-contraction mappings satisfying the property (G−),

where ϕ is nondecreasing. If, for any n ∈ N, xn is a fixed point of Tn, then x∞ is a cluster

point of the sequence {xn}n∈N.

Proof. By the property (G−), there exists a sequence {yn} in Π
n∈N

Xn which has a subse-

quence {ynj
} such that ynj

→ x∞ and Tnj
ynj
→ T∞x∞. Therefore

lim
j→∞

ρ(ynj
, x∞, a) = 0 and lim

j→∞
ρ
(
Tnj

xnj
, T∞x∞, a

)
= 0 for all a ∈ X.
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Since each Tnj
is a ϕ-contraction and ϕ is nondecreasing, for any a ∈ X we have

ρ(xnj
, x∞, a) = ρ(Tnj

xnj
, T∞x∞, a)

≤ ρ(Tnj
xnj

, Tnj
ynj

, a) + ρ(Tnj
ynj

, T∞x∞, a) +

+ρ
(
Tnj

xnj
, T∞x∞, Tnj

ynj

)
≤ kρ(Tnj

xnj
, ynj

, a) + ρ(Tnj
ynj

, T∞x∞, a) +

ρ
(
xnj

, T∞x∞, Tnj
ynj

)
≤ ϕ(ρ(xnj

, ynj
, x∞) + ρ(xnj

, x∞, a) + ρ(x∞, ynj
, a))

+ρ(Tnj
ynj

, T∞x∞, a) + ρ(Tnj
xnj

, T∞x∞, Tnj
ynj

).

The right hand side of the above expression tends to 0 as j →∞. Thus {xnj
} converges

to x∞, the fixed point of T∞. �

Corollary 3.16. [19, Theorem 2.12] Let {Xn}n∈N be a family of nonempty subsets of a

2-metric space X and {Tn : Xn → X}n∈N a family of k-contraction mappings satisfying

the property (G−). If, for any n ∈ N, xn is a fixed point of Tn, then x∞ is a cluster point

of the sequence {xn}n∈N.

Proof. This comes from Theorem 3.15, when ϕ(t) = kt and k ∈ (0, 1). �

4. Stability under (H)-convergence

Definition 4.1. [19] Let X be a 2-metric space, {Xn}n∈N a family of nonempty subsets

of X and {Tn : Xn → X}n∈N a family of mappings. Then T∞ is called an (H)−limit of

the sequence {Tn}n∈N or, equivalently {Tn}n∈N satisfies the property (H) if the following

condition holds:

(H): For all sequences {xn} in Π
n∈N

Xn, there exists a sequence {yn} in X∞ such that:

lim
n→∞

ρ(xn, yn, a) = 0 and lim
n→∞

ρ(Tnxn, T∞yn, a) = 0 for all a ∈ X.
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Remark 4.2. We remark that:

(a): A (G)-limit is not necessarily an (H)-limit.

(b): If {Tn : X → X}n∈N converges uniformly to T∞ on X, then T∞ is an (H)-limit

of {Tn}.

(c): The converse of (b) holds only when T∞ is uniformly continuous on X.

The following result reveals the relationship between (G)-convergence and (H)-convergence

in a 2-metric space and is an extension of [4, Proposition 9].

Proposition 4.3. [19, Proposition 2.2] Let {Xn}n∈N be a family of nonempty subsets of

a 2-metric space X such that X∞ ⊂ lim inf Xn. Let {Tn : Xn → X}n∈N be a family of

mappings such that T∞ is continuous on X∞. If T∞ is an (H)-limit of {Tn}n∈N, then T∞

is a (G) -limit of {Tn}n∈N.

When Xn = M , a nonempty subset of X for all n ∈ N, we obtain the following

comparison with uniform convergence.

Proposition 4.4. [19, Proposition 2.3] Let {Tn : M → X}n∈N be a family of mappings

where M is a nonempty subset of a 2 -metric space X.

(a): If {Tn}n∈N converges uniformly to T∞ on M, then T∞ is an (H)-limit of {Tn}n∈N.

(b): The converse holds when T∞ is uniformly continuous on M .

The following theorem which is an extension of [18, Theorem 4.1] to 2-metric spaces,

is our second stability result.

Theorem 4.5. Let X be a 2-metric space, {Xn}n∈ N a family of nonempty subsets of X,

{Tn : Xn → X}n∈N a family of mappings satisfying the property (H) and such that T∞ is

a ϕ-contraction. If, for any n ∈ N, xn is a fixed point of Tn, then the sequence {xn}n∈N

converges to x∞.
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Proof. By the property (H), there exists a sequence {yn} inX∞ such that limn→∞ ρ(xn, yn, a) =

0 and limn→∞ ρ(Tnxn, T∞yn, a) = 0 for any a ∈ X. Hence for any a ∈ X,

ρ(xn, x∞, a) = ρ(Tnxn, T∞x∞, a)

≤ ρ(Tnxn, T∞yn, a) + ρ(T∞yn, T∞x∞, a) + ρ(Tnxn, T∞x∞, T∞yn)

≤ ρ(Tnxn, T∞yn, a) + ϕ(ρ(yn, x∞, a)) + ρ(Tnxn, T∞x∞, T∞yn)→ 0 as n→∞,

and the conclusion follows. �

Corollary 4.6. [19, Theorem 3.4] Let X be a 2-metric space, {Xn}n∈ N a sequence of

nonempty subsets of X, {Tn : Xn → X}n∈N a sequence of mappings satisfying the property

(H) and such that T∞ is a k-contraction. If, for any n ∈ N, xn is a fixed point of Tn, then

the sequence {xn}n∈N converges to x∞.

Proof. This comes from Theorem 4.5, when ϕ(t) = kt and k ∈ (0, 1). �

When Xn = X for all n ∈ N, in Corollary 4.6, we get a special case of Rhoades [24,

Theorem 3] which in turn presents a 2−metric space version of Nadler [22, Theorem 1].

Corollary 4.7. Let X be a 2-metric space, {Tn : X → X}n∈N a sequence of mappings

which converges uniformly to a contraction mapping T∞ : X → X. If, for any n ∈ N, xn

is a fixed point of Tn, then the sequence {xn}n∈N converges to x∞.
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