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It is well known that Brouwer’s fixed point theorem can not be constructively proved1.

Thus, Kakutani’s fixed point theorem for multi-functions (multi-valued functions or

correspondences) and the existence of Nash equilibrium in a strategic game also can not

be constructively proved. On the other hand, Sperner’s lemma which is used to prove

Brouwer’s theorem, however, can be constructively proved. Some authors have presented a

constructive (or an approximate) version of Brouwer’s fixed point theorem using Sperner’s

lemma (See [6] and [11]). Also Dalen in [6] states a conjecture that a function f from a

simplex to itself, with property that each open set contains a point x which is not equal

to f(x) (x ̸= f(x)) and on the boundaries of the simplex x ̸= f(x), has an exact fixed

point. Recently Berger and Ishihara[2] showed that the following theorem is equivalent

to Brouwer’s fan theorem, and so it is non-constructive.

Each uniformly continuous function from a compact metric space into itself

with at most one fixed point has a fixed point.

By reference to the notion of sequentially at most one maximum in Berger, Bridges and

Schuster[1] we require a more general and somewhat stronger condition of sequential local

non-constancy for functions, and in [8] we have shown the following result.

If each uniformly continuous function from a compact metric space into

itself is sequentially locally non-constant, then it has a fixed point,

without the fan theorem. It is a partial answer to Dalen’s conjecture.

In [9] we have proved the existence of Nash equilibrium in a finite strategic game with

sequentially locally non-constant payoff functions by a constructive version of Brouwer’s

fixed point theorem. A proof by Kakutani’s fixed point theorem is more smart than a

proof by Brouwer’s fixed point theorem. In [10] we have proved the mini-max theorem

of zero-sum games by a constructive version of Kakutani’s fixed point theorem for multi-

functions with sequentially at most one fixed point. The condition of sequentially at most

1[7] provided a constructive proof of Brouwer’s fixed point theorem. But it is not constructive from

the view point of constructive mathematics à la Bishop. It is sufficient to say that one dimensional case

of Brouwer’s fixed point theorem, that is, the intermediate value theorem is non-constructive (See [4] or

[6]).



400 YASUHITO TANAKA∗

one fixed point is stronger than the condition of sequential local non-constancy in this

paper. Thus, a theorem in this paper is more general than a theorem in [10].

In this paper we extend the sequential local non-constancy for functions to multi-

functions, and prove the existence of Nash equilibrium in a finite strategic game with

sequentially locally non-constant payoff functions by a constructive version of Kakutani’s

fixed point theorem for sequentially locally non-constant multi-functions. We also examine

the existence of Nash equilibrium in a game with continuous strategies and quasi-concave

payoff functions which has sequentially locally at most one maximum. We follow the

Bishop style constructive mathematics according to [3], [4] and [5].

In the next section we will prove our Kakutani’s fixed theorem. In Section 3 we will

prove the existence of Nash equilibrium in a finite strategic game. In Section 4 we study

a game with continuous strategies and quasi-concave payoff functions.

2. Kakutani’s fixed point theorem for sequentially locally non-

constant multi-functions

In constructive mathematics a nonempty set is called an inhabited set. A set S is

inhabited if there exists an element of S.

Note that in order to show that S is inhabited, we cannot just prove that

it is impossible for S to be empty: we must actually construct an element

of S (see page 12 of [5]).

Also in constructive mathematics compactness of a set means total boundedness with

completeness. A set S is finitely enumerable if there exist a natural number N and a

mapping of the set {1, 2, . . . , N} onto S. An ε-approximation to S is a subset of S such

that for each p ∈ S there exists q in that ε-approximation with |p−q| < ε(|p−q| is the

distance between p and q). S is totally bounded if for each ε > 0 there exists a finitely

enumerable ε-approximation to S. Completeness of a set, of course, means that every

Cauchy sequence in the set converges.

Let p be a point in a compact metric space X, and f be a uniformly continuous

function from X into itself. According to [6] and [11] f has an approximate fixed point
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(or an ε-approximate fixed point). It means

For each ε > 0 there exists p ∈ X such that |p− f(p)| < ε.

Now consider an n-dimensional simplex ∆ as a compact metric space. According to

Corollary 2.2.12 of [5], we have the following result.

Lemma 2.1. For each ε > 0 there exist totally bounded sets H1, H2, . . . , Hn, each of

diameter less than or equal to ε, such that ∆ = ∪n
i=1Hi.

The notion that a function f has at most one fixed point by [2] is defined as follows;

Definition 2.1. (At most one fixed point) For all p,q ∈ ∆, if p ̸= q, then f(p) ̸= p or

f(q) ̸= q.

By reference to the notion of sequentially at most one maximum in [1], we define the

property of sequential local non-constancy as follows;

Definition 2.2. (Sequential local non-constancy of functions) There exists ε̄ > 0 with

the following property. For each ε > 0 less than or equal to ε̄ there exist totally bounded

sets H1, H2, . . . , Hm, each of diameter less than or equal to ε, such that ∆ = ∪m
i=1Hi, and

if for all sequences (pn)n≥1, (qn)n≥1 in each Hi, |f(pn)−pn| −→ 0 and |f(qn)−qn| −→ 0,

then |pn − qn| −→ 0.

Let F be a compact and convex valued multi-function from ∆ to the collection of

its inhabited subsets. Since ∆ and F (p) for p ∈ ∆ are compact, F (p) is located (see

Proposition 2.2.9 in [5]), that is, |F (p)− q| = infr∈F (p) |r− q| for q ∈ ∆ exists.

The definition of sequential local non-constancy for multi-functions is as follows;

Definition 2.3. (Sequential local non-constancy of multi-functions) There exists ε̄ > 0

with the following property. For each ε > 0 less than or equal to ε̄ there exist totally

bounded sets H1, H2, . . . , Hn, each of diameter less than or equal to ε, such that ∆ =

∪m
i=1Hi, and if for all sequences (pn)n≥1, (qn)n≥1 in each Hi, |F (pn) − pn| −→ 0 and

|F (qn)− qn| −→ 0, then |pn − qn| −→ 0.

A graph of a multi-function F from ∆ to the collection of its inhabited subsets is

G(F ) = ∪p∈∆{p} × F (p).

If G(F ) is a closed set, we say that F has a closed graph. It implies the following fact.
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For sequences (pn)n≥1 and (qn)n≥1 such that qn ∈ F (pn), if pn −→ p,

then for some q ∈ F (p) we have qn −→ q.

On the other hand, if the following condition is satisfied, we say that F has a uniformly

closed graph.

For sequences (pn)n≥1, (qn)n≥1, (p
′
n)n≥1, (q

′
n)n≥1 such that qn ∈ F (pn),

q′
n ∈ F (p′

n), if |pn − p′
n| −→ 0, then for any qn and some q′

n, we have

|qn − q′
n| −→ 0, and for any q′

n and some qn, we have |qn − q′
n| −→ 0.

Let q ∈ F (p), (p′
n)n≥1 = {p,p, . . . } and (q′

n)n≥1 = {q,q, . . . } be se-

quences with a constant points p and q. If |pn − p′
n| = |pn − p| −→ 0,

then |qn − q′
n| = |qn − q| −→ 0, that is, if pn −→ p, then qn −→ q, and

so uniformly closed graph property implies closed graph property.

In this definition

|pn − p′
n| −→ 0 means that for any δ > 0 there exists n0 such that when

n ≥ n0 we have |pn − p′
n| < δ, and |qn − q′

n| −→ 0 means that for any

ε > 0 there exists n′
0 such that when n ≥ n′

0, we have |qn − q′
n| < ε.

Now we show the following lemma.

Lemma 2.2. Let F be a convex and compact valued multi-function with uniformly closed

graph from ∆ to the collection of its inhabited subsets. Assume infp∈Hi
|F (p) − p| = 0

in some Hi such that ∆ = ∪m
i=1Hi. If the following property holds:

For each ε > 0 there exists δ > 0 such that if p,q ∈ Hi, |F (p) − p| < δ

and |F (q)− q| < δ, then |p− q| ≤ ε.

Then, there exists a point r ∈ Hi such that r ∈ F (r).

Proof. Choose a sequence (pn)n≥1 in Hi such that |F (pn)−pn| −→ 0. Compute N such

that |F (pn)− pn| < δ for all n ≥ N . Then, for m,n ≥ N we have |pm − pn| ≤ ε. Since

ε > 0 is arbitrary, (pn)n≥1 is a Cauchy sequence in Hi, and converges to a limit r ∈ Hi.

The uniformly closed graph property of F yields r ∈ F (r).

This completes the proof.

A fixed point of a multi-function is defined as follows;
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Figure 1. Subdivision of 2-dimensional simplex

Definition 2.4. p is a fixed point of a multi-function F if p ∈ F (p).

We define an approximate fixed point of a multi-function F as follows;

Definition 2.5. For each ε > 0 p is an approximate fixed point (or an ε-approximate

fixed point) of a multi-function F if |p− F (p)| < ε.

We will constructively show that if the value of a sequentially locally non-constant

multi-function F from ∆ to the collection of inhabited subsets of ∆ with uniformly closed

graph is compact and convex, it has a fixed point. If a set X is homeomorphic to ∆

(so X is also compact), we can show the same result for a multi-function from X to the

collection of inhabited subsets of X.

Our Kakutani’s fixed point theorem is as follows;

Theorem 2.1. If F is compact and convex valued sequentially locally non-constant multi-

function with uniformly closed graph from an n-dimensional simplex ∆ to the collection

of its inhabited subsets, then it has a fixed point.

Proof.

(1) Let ∆ be an n-dimensional simplex, and consider m-th subdivision of ∆. Subdivi-

sion in a case of 2-dimensional simplex is illustrated in Figure 1. In a 2-dimensional

case we divide each side of ∆ in m equal segments, and draw the lines parallel to

the sides of ∆. Then, the 2-dimensional simplex is partitioned into m2 triangles.

We consider subdivision of ∆ inductively for cases of higher dimension.
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Let us partition ∆ sufficiently fine, and define a uniformly continuous function

fm : ∆ −→ ∆ as follows. If p is a vertex of a simplex constructed by m-th

subdivision of ∆, let fm(p) = q for some q ∈ F (p). For other p ∈ ∆ we define

fm(p) by a convex combination of the values of F at vertices of a simplex pm
0 , p

m
1 ,

. . . , pm
n . Let

∑n
i=0 λi = 1, λi ≥ 0,

fm(p) =
n∑

i=0

λif
m(pm

i ) with p =
n∑

i=0

λip
m
i .

Since fm is clearly uniformly continuous, it has an approximate fixed point ac-

cording to [6] and [11]. Let p∗ be an approximate fixed point of fm, then for each

ε
2
> 0 there exists p∗ ∈ ∆ which satisfies

|p∗ − fm(p∗)| < ε

2
.

Consider a sequence, (∆m)m≥1, of partition of ∆ and a sequence of the distance

between vertices of simplices constructed by partition (|pm
i − pm

j |)m≥1, i ̸= j.

Suppose |pm
i − pm

j | −→ 0. Since F has a uniformly closed graph, for any qm
i ∈

F (pm
i ) and some qm

j ∈ F (pm
j ), |qm

i − qm
j | −→ 0, and for any qm

j ∈ F (pm
j ) and

some qm
i ∈ F (pm

i ), |qm
i − qm

j | −→ 0. p∗ is represented by p∗ =
∑n

i=0 λip
m
i . If

|pm
i − pm

j | −→ 0 for each pair of i and j (j ̸= i), |pm
i − p∗| −→ 0. Thus, for any

qm
i ∈ F (pm

i ) and some q∗
i ∈ F (p∗), we have |qm

i − q∗
i | < ε

2
. For different i, that

is, different pm
i , q

∗
i may be different. But, the convexity of F (p∗) implies

q∗ =
n∑

i=0

λiq
∗
i ∈ F (p∗).

Since, for sufficiently large m we have |qm
i − q∗

i | < ε
2
for each i, and

fm(p∗) =
n∑

i=0

λif
m(pm

i ) =
n∑

i=0

λiq
m
i ,

we obtain |fm(p∗)− q∗| < ε
2
. From |p∗ − fm(p∗)| < ε

2

(1) |p∗ − q∗| < ε.

Since q∗ ∈ F (p∗), p∗ is an approximate fixed point of F . ε is arbitrary, and so

inf
p∗∈∆

|p∗ − F (p∗)| = 0.
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This means

inf
p∗∈Hi

|p∗ − F (p∗)| = 0

in some Hi such that ∆ = ∪m
i=1Hi.

(2) Choose a sequence (rn)n≥1 in ∆ such that |rn − F (rn)| −→ 0. In view of Lemma

2.2 it is enough to prove that the following condition holds.

For each δ > 0 there exists ε > 0 such that if p,q ∈ ∆, |F (p) − p| < ε

and |F (q)− q| < ε, then |p− q| ≤ δ.

Assume that the set

K = {(p,q) ∈ ∆×∆ : |p− q| ≥ δ}

is nonempty and compact (see Theorem 2.2.13 of [5].). Since the mapping (p,q) −→

max(|F (p)−p|, |F (q)−q|) is uniformly continuous, we can construct an increasing

binary sequence (λn)n≥1 such that

λn = 0 ⇒ inf
(p,q)∈K

max(|F (p)− p|, |F (q)− q|) < 2−n,

λn = 1 ⇒ inf
(p,q)∈K

max(|F (p)− p|, |F (q)− q|) > 2−n−1.

It suffices to find n such that λn = 1. In that case, if |F (p) − p| < 2−n−1,

|F (q) − q| < 2−n−1, we have (p,q) /∈ K and |p − q| ≤ δ. Assume λ1 = 0. If

λn = 0, choose (pn,qn) ∈ K such that max(|F (pn)−pn|, |F (qn)−qn|) < 2−n, and

if λn = 1, set pn = qn = rn. Then, |F (pn)−pn| −→ 0 and |F (qn)− qn| −→ 0, so

|pn − qn| −→ 0. Computing N such that |pN − qN | < δ, we must have λN = 1.

This completes the proof.

3. Nash equilibrium of a finite strategic game

Consider a strategic game such that there are n players with m alternative pure strate-

gies for each player. n and m are finite positive integers which are not smaller than 2.

Denote the set of strategies of player i by Si, and denote his each pure strategy by sij.

His mixed strategy is defined to be a probability distribution over the set of his pure

strategies, and is denoted by pi. Denote the set of all pi by Pi, which is totally bounded.
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Call a combination of mixed strategies of players a profile, and denote it by p. p is a

vector with n × m components, but only n(m − 1) components are independent. The

set of all p is n-times product of m − 1-dimensional simplices, and so it is compact and

convex. It is homeomorphic to an n(m − 1)-dimensional simplex. Denote the expected

payoff of player i at a profile p by πi(p), and his expected payoff when he chooses a pure

strategy sij at that profile by πi(sij,p−i). Then, πi(p) is written as follows;

πi(p) =
∑

{j:pij>0}

pijπi(sij,p−i).

p−i denotes a combination of strategies of players other than i at p. We assume that

payoff of each player is finite. Then, since the expected payoff of each player is linear

with respect to probability distributions over the sets of pure strategies of players, it is a

uniformly continuous function. We define the best response pure strategies of player i to

p−i, s
∗
ij(p−i), as follows;

πi(s
∗
ij,p−i) ≥ πi(s

′
ij,p−i) for all s

′
ij ∈ Si.

Since Si is finite, we can find sij which realizes maxsij∈Si
πi(sij,p−i). Linearity of the

expected payoff functions implies that if there are multiple best response pure strategies

for player i to p−i, convex combinations of these pure strategies are also best responses

to p−i. Call them the best response mixed strategies for player i to p−i. Let denote the

set of the best response pure and mixed strategies to p−i by BRi(p−i).

Each player chooses one of his best response pure or mixed strategies given a combina-

tion of strategies of other players. A Nash equilibrium is a state where all players choose

their best responses each other. The set of best responses of all players is represented as

follows;

BR(p)

= (BR1(p−1), BR2(p−2), . . . , BRi(p−i), . . . , BRn(p−n)).

This is a multi-function from the set of players’ mixed strategies, which is denoted by P,

to the collection of its inhabited subsets.

We assume the following condition.
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Figure 2. Homeomorphism between simplex and combination of strategies

Definition 3.1. (Sequential local non-constancy of payoff functions) There exists ε̄ > 0

with the following property. For each ε > 0 less than or equal to ε̄ there exist totally

bounded sets H1, H2, . . . , Hn, each of diameter less than or equal to ε, such that P =

∪m
i=1Hi, and if for all sequences (pn,qn)n≥1 we have max(πi(sij, (pn)−i)−πi(pn), 0) −→ 0,

max(πi(sij, (qn)−i)− πi(qn), 0) −→ 0 for all sij ∈ Si and all i, then |pn − qn| −→ 0.

Let us consider a homeomorphism between an n(m − 1)-dimensional simplex and the

set of players’ mixed strategies P which is illustrated by a rectangle DEFG in Figure 2.

This figure depicts an example of a case of two players with two pure strategies for each

player. Vertices D, E, F and G represent states where two players choose pure strategies,

and points on edges DE, EF , FG and GD represent states where one player chooses a

pure strategy. In such a homeomorphism vertices of the simplex do not correspond to

any vertex of P. But points on faces (simplices whose dimension is lower than n(m− 1))

of the simplex as well as the vertices of the simplex correspond to the points on edges or

faces, not inside, of P. For example, in Figure 2, A, B and C correspond, respectively,

to I, J and H. On the other hand, each of vertices of P, D, E, F and G correspond,

respectively, to itself on the faces of the simplex.

Let us check some properties of BR.

(1) The set of all p is clearly compact and convex.

(2) BR is a multi-function from the set of all p to the set of all inhabited subsets.
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(3) We show convexity of BR(p). It is sufficient to show the convexity of BRi(p−i)

for each i. Suppose pi ∈ BRi(p−i) and p′′i ∈ BRi(p−i). Then,

πi(pi,p−i) ≥ πi(sij,p−i) for all sij ∈ Si,

and

πi(p
′′
i ,p−i) ≥ πi(sij,p−i) for all sij ∈ Si.

Let 0 ≤ λ ≤ 1. We have

λπi(pi,p−i)+(1− λ)πi(p
′′
i ,p−i) = πi(λpi + (1− λ)p′′i ,p−i) ≥ πi(sij,p−i) for all sij ∈ Si.

Therefore, λpi + (1− λ)p′′i ∈ BRi(p−i), and BRi(p−i) is convex.

(4) Next we show that BR has a uniformly closed graph. Consider BRi(p−i). Let

(pn)n≥1 = ((pi,p−i)n)n≥1, (p
′
n)n≥1 = ((p′i,p

′
−i)n)n≥1 be sequences such that (pi)n ∈

BRi((p−i)n) and (p′i)n ∈ BRi((p
′
−i)n) for all n. By the uniform continuity of

πi(pi,p−i), when |(p−i)n−(p′
−i)n| −→ 0, we have |πi((pi)n, (p−i)n)−πi((pi)n, (p

′
−i)n)| −→

0 and |πi((p
′
i)n, (p−i)n)− πi((p

′
i)n, (p

′
−i)n)| −→ 0. Let (εn)n≥1 be a sequence such

that ε1 > ε2 > . . . and εn −→ 0. Then, there exists N such that if n ≥ N , we

have

πi((pi)n, (p
′
−i)n) > πi((pi)n, (p−i)n)− εn,

and

πi((p
′
i)n, (p−i)n) > πi((p

′
i)n, (p

′
−i)n)− εn.

On the other hand, by the definition of BRi(p−i)

πi((p
′
i)n, (p

′
−i)n) ≥ πi((pi)n, (p

′
−i)n).

Thus, we obtain

πi((p
′
i)n, (p−i)n) > πi((pi)n, (p−i)n)− 2εn, for n ≥ N.

Since if εn −→ 0, |πi((p
′
i)n, (p−i)n) − πi((pi)n, (p−i)n)| −→ 0, for some (p̃i)n ∈

BRi((p−i)n) we have |(p′i)n − (p̃i)n| −→ 0, and so BRi has a uniformly closed

graph. This relation holds for all i. Therefore, BR has a uniformly closed graph.
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(5) For all sequences (pn)n≥1 and (qn)n≥1, if |BR(pn) − pn| −→ 0 and |BR(qn) −

qn| −→ 0, then max(πi(sij, (pn)−i) − πi(pn), 0) −→ 0, max(πi(sij, (qn)−i) −

πi(qn), 0) −→ 0 for all sij ∈ Si for all i. The sequential local non-constancy

of payoff functions implies |pn−qn| −→ 0. Thus, BR satisfies the sequential local

non-constancy for multi-functions.

Then, a multi-function BR satisfies all of the conditions for Kakutani’s fixed point the-

orem for sequentially locally non-constant multi-functions proved in the previous section,

and so it has a fixed point. Let p∗ be a fixed point of BR, that is, BR(p∗) = p∗. At

p∗ the strategy of each player is a best response each other. Therefore, p∗ is a Nash

equilibrium.

We have proved the following theorem.

Theorem 3.1. Any finite strategic game with sequentially locally non-constant payoff

functions has a Nash equilibrium.

Consider an example.

Player 2

X Y

Player X 2, 2 0, 3

1 Y 3, 0 1, 1

Table 1. Example of game 1

Example 1. See a game in Table 1. It is an example of the so-called Prisoners’ dilemma

game. Pure strategies of Player 1 and 2 are X and Y . The left side number in each cell

represents the payoff of Player 1 and the right side number represents the payoff of Player

2. Let pX and 1− pX denote the probabilities that Player 1 chooses, respectively, X and

Y , and qX and 1− qX denote the probabilities for Player 2. Denote the expected payoffs

of Player 1 and 2 by π1(pX , qX) and π2(pX , qX). Then,

π1(pX , qX) = 2pXqX + 3(1− pX)qX + (1− pX)(1− qX)

= 1− pX + 2qX ,
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and

π2(pX , qX) = 2pXqX + 3pX(1− qX) + (1− pX)(1− qX)

= 1− qX + 2pX .

We have

π1(Y, qX) > π1(X, qX), and π2(pX , Y ) > π2(pX , X).

Let (pX(n))n≥1, (p
′
X(n))n≥1, (qX(n))n≥1 and (q′X(n))n≥1 be sequences.

(1) If max(π1(Y, qX)−π1(pX(n), qX), 0) −→ 0 and max(π1(Y, qX)−π1(p
′
X(n), qX), 0) −→

0, then pX(n) −→ 0, p′X(n) −→ 0 and |pX(n)− p′X(n)| −→ 0.

(2) If max(π2(pX , Y )−π2(pX , qX(n)), 0) −→ 0 and max(π2(pX , Y )−π2(pX , q
′
X(n)), 0) −→

0, then qX(n) −→ 0, q′X(n) −→ 0 and |qX(n)− q′X(n)| −→ 0.

Therefore, the payoff functions are sequentially locally non-constant.

Let us consider another example.

Player 2

X Y

Player X 2, 1 0, 0

1 Y 0, 0 1, 2

Table 2. Example of game 2

Example 2. See a game in Table 2. It is an example of the so-called Battle of the Sexes

Game. Notations are the same as those in the previous example. The expected payoffs of

players are as follows;

π1(pX , qX) = 2pXqX + (1− pX)(1− qX) = 1 + pX(3qX − 1)− qX ,

and

π2(pX , qX) = pXqX + 2(1− pX)(1− qX) = 2 + qX(3pX − 2)− 2pX ,

Then
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(1) When qX > 1
3
, π1(pX , qX) is strictly increasing in pX . Every strategy of Player 1

with pX < 1 is not a best response to any strategy of Player 2 with qX > 1
3
.

(2) When qX < 1
3
, π1(pX , qX) is strictly decreasing in pX . Every strategy of Player 1

with pX > 0 is not a best response to any strategy of Player 2 with qX < 1
3
.

(3) When pX > 2
3
, π2(pX , qX) is strictly increasing in qX . Every strategy of Player 2

with qX < 1 is not a best response to any strategy of Player 1 with pX > 2
3
.

(4) When pX < 2
3
, π2(pX , qX) is strictly decreasing in qX . Every strategy of Player 2

with qX > 0 is not a best response to any strategy of Player 1 with pX < 2
3
.

Let (pX(n))n≥1, (p
′
X(n))n≥1, (qX(n))n≥1 and (q′X(n))n≥1 be sequences.

(1) When pX > 2
3
, qX > 1

3
, if max(π1(X, qX)−π1(pX(n), qX), 0) −→ 0 and max(π1(X, qX)−

π1(p
′
X(n), qX), 0) −→ 0, then pX(n) −→ 1, p′X(n) −→ 1 and |pX(n)−p′X(n)| −→ 0.

If max(π2(pX , X)−π2(pX , qX(n)), 0) −→ 0 and max(π2(pX , X)−π2(pX , q
′
X(n)), 0) −→

0, then qX(n) −→ 1, q′X(n) −→ 1 and |qX(n)− q′X(n)| −→ 0.

(2) When pX < 2
3
, qX < 1

3
, if max(π1(Y, qX)−π1(pX(n), qX), 0) −→ 0 and max(π1(Y, qX)−

π1(p
′
X(n), qX), 0) −→ 0, then pX(n) −→ 0, p′X(n) −→ 0 and |pX(n)−p′X(n)| −→ 0.

If max(π2(pX , Y )−π2(pX , qX(n)), 0) −→ 0 and max(π2(pX , Y )−π2(pX , q
′
X(n)), 0) −→

0, then qX(n) −→ 0, q′X(n) −→ 0 and |qX(n)− q′X(n)| −→ 0.

(3) When pX < 2
3
, qX > 1

3
, there exists no pair of sequences (pX(n))n≥1 and (qX(n))n≥1

such that max(π1(X, qX)−π1(pX(n), qX), 0) −→ 0 and max(π2(pX , Y )−π2(pX , qX(n)), 0) −→

0.

(4) When pX > 2
3
, qX < 1

3
, there exists no pair of sequences (pX(n))n≥1 and (qX(n))n≥1

such that max(π1(Y, qX)−π1(pX(n), qX), 0) −→ 0 and max(π2(pX , X)−π2(pX , qX(n)), 0) −→

0.

(5) When 2
3
− ε < pX < 2

3
+ ε, 1

3
− ε < qX < 1

3
+ ε with 0 < ε < 1

3
, if max(π1(X, qX)−

π1(pX(n), qX), 0) −→ 0, max(π1(Y, qX)−π1(pX(n), qX), 0) −→ 0, max(π2(pX , X)−

π2(pX , qX(n)), 0) −→ 0 and max(π2(pX , Y )− π2(pX , qX(n)), 0) −→ 0,

then (pX(n), qX(n)) −→ (2
3
, 1
3
) for all sequences (pX(n))n≥1 and (qX(n))n≥1.

The payoff functions are sequentially locally non-constant.
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4. Nash equilibrium in a game with continuous strategies and

quasi-concave payoff functions

In this section we will prove the existence of Nash equilibrium in a game with continuous

strategies and quasi-concave payoff functions which has sequentially locally at most one

maximum

Let us consider a strategic game such that there arem players with an infinite number of

strategies for each player. The set of strategies of player i is denoted by Si, i = 1, 2, . . . ,m.

Si is a compact (totally bounded and complete) and convex subset of Euclidean space RN

where N is finite. Let S = Πm
i=1Si be the set of profiles of strategies of all players. Denote

a strategy of player i by si, a profile of strategies of all players by s = (s1, s2, . . . , sm),

and a profile of strategies of players other than i by s−i. The payoff function of player

i is denoted by πi(si, s−i). It is uniformly continuous. Since Si is compact, it has the

supremum in Si.

Quasi-concavity of payoff functions with respect to si is defined as follows;

Definition 4.1. πi(si, s−i) is quasi-concave if for any si, s
′
i ∈ si and δ > 0 we have

πi(λsi + (1− λ)s′i, s−i) > min(πi(si, s−i), πi(s
′
i, s−i))− δ.

We assume that the payoff function for each i satisfies the following condition.

Definition 4.2. (Sequentially locally at most one maximum) Let M = sup πi(si, s−i)

in Si. There exists ε̄ > 0 with the following property. For each ε > 0 less than or

equal to ε̄ there exist totally bounded sets H1, H2, . . . , Hm, each of diameter less than or

equal to ε, such that Si = ∪m
j=1Hj, and if for all sequences (sni )n≥1, (si

′n)n≥1 in each Hj,

|πi(s
n
i , s−i)−M | −→ 0 and |πi(si

′n, s−i)−M | −→ 0, then |sni − si
′n| −→ 0.

We show the following lemma.

Lemma 4.1. Assume supsi∈Hj
πi(si, s−i) = M for some Hj ⊂ Si defined above. If the

following property holds:

For each δ > 0 there exists ε > 0 such that if si, s
′
i ∈ Hj, πi(si, s−i) ≥ M−ε

and πi(s
′
i, s−i) ≥ M − ε, then |si − s′i| ≤ δ.
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Then, there exists s∗i ∈ Hj such that πi(s
∗
i , s−i) = M .

Proof.

Choose a sequence (sni )n≥1 in Hj such that πi(s
n
i , s−i) −→ M . Compute N such that

πi(s
n
i , s−i) ≥ M − ε for all n ≥ N . Then, for m,n ≥ N we have |smi − sni | ≤ δ. Since

δ > 0 is arbitrary, (sni )n≥1 is a Cauchy sequence in Hj, and converges to a limit s∗i ∈ Hj.

The continuity of πi(si, s−i) yields πi(s
∗
i , s−i) = M .

This completes the proof.

Next we show the following lemma.

Lemma 4.2. Under above assumptions πi(si, s−i) has the maximum.

Proof. Choose a sequence (s̄ni )n≥1 in Hj defined above such that πi(s̄
n
i , s−i) −→ M . In

view of Lemma 4.1 it is enough to prove that the following condition holds.

For each δ > 0 there exists ε > 0 such that if si, s
′
i ∈ Hj, πi(si, s−i) ≥ M−ε

and πi(s
′
i, s−i) ≥ M − ε, then |si − s′i| ≤ δ.

Assume that the set

K = {(si, s′i) ∈ Hj ×Hj : |si − s′i| ≥ δ}

is inhabited and compact (see Theorem 2.2.13 of [5]). Since the mapping (si, s
′
i) −→

min(πi(si, s−i), πi(s
′
i, s−i)) is uniformly continuous, we can construct an increasing binary

sequence (λn)n≥1 such that

λn = 0 ⇒ sup
(si,s′i)∈K

min(πi(si, s−i), πi(s
′
i, s−i)) > M − 2−n,

λn = 1 ⇒ sup
(si,s′i)∈K

min(πi(si, s−i), πi(s
′
i, s−i)) < M − 2−n−1.

It suffices to find n such that λn = 1. In that case, if πi(si, s−i) > M−2−n−1, πi(s
′
i, s−i) >

M − 2−n−1, we have (si, s
′
i) /∈ K and |si − s′i| ≤ δ. Assume λ1 = 0. If λn = 0, choose

(sni , s
′n
i ) ∈ K such that min(πi(si, s−i), πi(s

′
i, s−i)) > M − 2−n, and if λn = 1, set sni =

s
′n
i = s̄ni . Then, πi(s

n
i , s−i) −→ M and πi(s

′n
i , s−i) −→ M , so |sni − s

′n
i | −→ 0. Computing

N such that |sNi − s
′N
i | < δ, we must have λN = 1.

This completes the proof.
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This lemma means that πi(si, s−i) has the maximum in Si, that is, maxsi∈Si
πi(si, s−i)

exists.

Each player chooses one of strategies si satisfying

πi(si, s−i) ≥ πi(s
′
i, s−i) for all s

′
i ∈ Si,

or

si = argmax
s′i∈Si

πi(s
′
i, s−i)

si is a best response of player i to s−i, and denote the set of best responses of player i by

BRi(s−i).

A set of best responses of all players at a profile s is a multi-function from S =

(S1, S2, . . . .Sm) to the collection of its inhabited subsets, and it is denoted by

BR(s) = (BR1(s−1), BR2(s−2), . . . , BRm(s−m)).

A Nash equilibrium is a state where all players choose their best responses each other.

Now we show that BR(s) satisfies the conditions of Kakutani’s fixed point theorem for

sequentially locally non-constant multi-functions.

(1) BR(s) is convex.

Let s, s′ ∈ BR(s). Denote s = (s1, s2, . . . , sn) and s′ = (s′1, s
′
2, . . . , s

′
n). By the

quasi-concavity of payoff functions we have, for each player i

πi(λsi + (1− λ)s′i, s−i) > πi(si, s−i)− δ,

or

πi(λsi + (1− λ)s′i, s−i) > πi(s
′
i, s−i)− δ.

Since si, s′i ∈ BRi(s−i), we have

πi(λsi + (1− λ)s′i, s−i) >πi(s
′′
i , s−i)− δ for all s′′i ∈ Si.

Since δ is arbitrary,

πi(λsi + (1− λ)s′i, s−i) ≥πi(s
′′
i , s−i) for all s

′′
i ∈ Si.
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By Lemma 4.2 πi has a maximum. It is attained at λsi + (1 − λ)s′i. Thus,

λsi + (1− λ)s′i is a best response of player i to s−i, and BR(s) is a convex set.

(2) Next we show that BR has a uniformly closed graph. Consider BRi(s−i). Let

(sn)n≥1 = ((si, s−i)n)n≥1, (s
′
n)n≥1 = ((s′i, s

′
−i)n)n≥1 be sequences such that (si)n ∈

BRi((s−i)n) and (s′i)n ∈ BRi((s
′
−i)n) for each n. By the uniform continuity of

πi(si, s−i), when |(s−i)n−(s′−i)n| −→ 0, we have |πi((si)n, (s−i)n)−πi((si)n, (s
′
−i)n)| −→

0 and |πi((s
′
i)n, (s−i)n) − πi((s

′
i)n, (s

′
−i)n)| −→ 0. Let (εn)n≥1 be a sequence such

that ε1 > ε2 > . . . and εn −→ 0. Then, there exists N such that if n ≥ N , we

have

πi((si)n, (s
′
−i)n) > πi((si)n, (s−i)n)− εn,

and

πi((s
′
i)n, (s−i)n) > πi((s

′
i)n, (s

′
−i)n)− εn.

On the other hand, by the definition of BRi(s−i)

πi((s
′
i)n, (s

′
−i)n) ≥ πi((si)n, (s

′
−i)n).

Thus, we obtain

πi((s
′
i)n, (s−i)n) > πi((si)n, (s−i)n)− 2εn, for n ≥ N.

If εn −→ 0, |πi((s
′
i)n, (s−i)n) − πi((si)n, (s−i)n)| −→ 0, and so for some s̃i ∈

BRi(s−i) we have |(s′i)n− s̃i| −→ 0. Thus, BRi(s−i) has a uniformly closed graph.

This relation holds for all i. Therefore, BR has a uniformly closed graph.

(3) For all sequences (sn)n≥1 and (s′n)n≥1, if |BR(sn)−sn| −→ 0 and |BR(s′n)−s′n| −→

0, then max(πi(sij, (sn)−i)− πi(sn), 0) −→ 0, max(πi(sij, (s
′
n)−i)− πi(s

′
n), 0) −→ 0

for all sij ∈ Si for all i. Since the payoff functions has sequential locally at most one

maximum, |sn − s′n| −→ 0. Thus, BR satisfies the sequential local non-constancy

for multi-functions.

Then, BR satisfies the conditions of Kakutani’s fixed point theorem for sequentially

locally non-constant multi-functions, and there exists a point s∗ such that s∗ ∈ BR(s∗).

Since s∗i is a best response of player i to s∗−i for all players, s
∗ is a Nash equilibrium.
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