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Abstract. In this paper, common fixed point theorems for weakly compatible mappings under generalized ϕ-

contractive condition without the concept of boundedness of orbit are obtained.
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1. Introduction and Preliminaries

Let (X ,d) be a metric space. Two mappings S,T : X → X are said to satisfy quasi-contractive condition when-

ever there exists h ∈ (0,1) such that

d(T x,Ty)≤ hmax{d(Sx,Sy),d(Sx,T x),d(Sy,Ty),d(Sx,Ty),d(Sy,T x)} (1.1)

for all x,y ∈ X . Das and Naik [5] proved common fixed point theorem for commuting mappings using the contrac-

tive condition (1.1). Two mappings S,T : X → X are said to satisfy generalized ϕ-contractive condition if

d(T x,Ty)≤ ϕ(max{d(Sx,Sy),d(Sx,T x),d(Sy,Ty),d(Sx,Ty),d(Sy,T x)}) (1.2)
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for all x,y∈ X and ϕ : R+→ R+ is continuous. Using this ϕ-contractive condition (1.2), Verinde [1,2] proved com-

mon fixed point theorems for weakly commuting mappings and compatible mappings. The contractive condition

(1.1) is a special case of (1.2) when ϕ(t) = ht, where 0≤ h < 1.

Definition 1.1. Let ϕ : R+→ R+ be such that

(a) ϕ is nondecreasing upper semi continuous

(b) ϕ(t)< t for t > 0.

If ϕ in (1.2) is defined in definition 1.1, then ϕ contractive condition due to Browder [3]

d(T x,Ty)≤ ϕ(max{d(Sx,Sy),d(Sx,T x),d(Sy,Ty),
1
2
[d(Sx,Ty)+d(Sy,T x)]}), (1.3)

which implies (1.2) as max{a,b,c, 1
2 (e+ f )} ≤max{a,b,c,e, f} for any real numbers a,b,c,e, and f . If S = I, the

identity map, then (1.1) is reduced to

d(T x,Ty)≤ hmax{d(x,y),d(x,T x),d(y,Ty),d(x,Ty),d(y,T x)} (1.4)

for x,y ∈ X , which is due to Ciric [4]. In proving theorems, Ciric [4], Das and Naik [5], Phaneendra [6], Verinde

[2] etc. used the concept of orbit. The orbit of T is the set OT (x) = {x,T x,T 2x, ...} and orbit of S and T is the set

{y1,y2, ...}, where Sxn = T xn+1 = yn. It was shown in [7] that the condition (1.4) does assure that the orbit of T

is bounded. Also it is known from lemma 2.2 [5] that the condition (1.1) does assure that the orbit of S and T is

bounded. Using (1.2), Verinde [2] proved the following theorem.

Theorem 1.2. Let (X ,d) be a complete metric space and S,T : X → X be two compatible mappings with bounded

orbits. Suppose that T is continuous and satisfy the conditions

d(Sx,Sy)≤ ϕ(M(x,y)), ∀x,y ∈ X , (1.5)

where

M(x,y) = max{d(T x,Ty),d(T x,Sx),d(Ty,Sy),d(T x,Sy),d(Ty,Sx)}

with ϕ : R+→ R+ a continuous function. If S(X)⊂ T (X), then T and S have a unique common fixed point.

It is an open question whether or not two mappings S and T satisfying (1.2) with ϕ : R+→ R+ an arbitrary func-

tion have bounded orbits. Therefore, it is of interest to prove existence of common fixed point for two mappings

with an arbitrary function ϕ : R+→ R+. For this end, we need the following.

Definition 1.3. Let ϕ : R+→ R+ be such that

(a) ϕ is nondecreasing upper semi continuous

(b) ϕ(2t)< t for t > 0.
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For t > 0, we conclude that ϕ(2t)< t, which implies that ϕ(t)< t but not conversely. Let ϕ : R+→ R+ be defined

by ϕ(t) = 2
3 t. Then ϕ(t)< t is true. In view of ϕ(2t) = 2

3 2t = 4
3 t > t, we find, ϕ(t)< t ; ϕ(2t)< t.

In this work, we prove common fixed point theorems for two weakly compatible mappings using generalized

ϕ-contractive condition (1.2) with ϕ as defined in Definition 1.3 and dropping the condition of boundedness of

orbit. Also we extend our result to four weakly compatible mappings.

2. Main results

Theorem 2.1. Let X be a complete metric space. Let S,T : X → X be two weakly compatible mappings such that

T (X)⊂ S(X) and satisfying

d(T x,Ty)≤ ϕ(max{d(Sx,Sy),d(Sx,T x),d(Sy,Ty),d(Sx,Ty),d(Sy,T x)}), ∀x,y ∈ X , (2.1)

where ϕ as defined in definition (1.3). Then the mappings S and T have a unique common fixed point.

Proof. Let x0 ∈X and define a sequence {xn} in X such that T xn = Sxn+1,n= 0,1,2, .... Let dn = d(T xn,T xn+1),n=

0,1,2, .... Then, we find that

dn ≤ ϕ(max{d(Sxn,Sxn+1),d(T xn,Sxn),d(T xn−1,Sxn−1),d(T xn,Sxn−1),d(T xn−1,Sxn)})

≤ ϕ(max{d(T xn,T xn−2),d(T xn,T xn−1),d(T xn−1,T xn−2),d(T xn,T xn−2),d(T xn−1,T xn−1)})

≤ ϕ(dn +dn+1).

Suppose dn > dn−1, then dn ≤ ϕ(2dn)< dn, which leads to a contradiction. Hence dn ≤ dn−1,n = 0,1,2, ... There-

fore {dn} is a decreasing sequence of positive number which is bounded below by zero. Therefore, we find that

limn→∞ dn exists. Let limn→∞ dn = L. Suppose L > 0. From dn ≤ ϕ(2dn−1), we have L ≤ ϕ(2L) < L, which is a

contradiction. Hence L = 0. Thus, limn→∞ dn = 0 i.e. limn→∞ d(T xn,T xn−1) = 0.

Now, we are in a position to show that {T xn} and {Sxn} are Cauchy sequences in X . If {T xn} is not a Cauchy

sequence, then there exists an ε > 0 and subsequences {ni} and {mi} of positive integers with mi > ni > i and

d(T xmi ,T xni)≥ ε (2.2)

for i = 1,2,3, .... Suppose mi is the smallest integer exceeding ni which satisfies (2.2), that is,

d(T xmi−1,T xni)< ε. (2.3)

Notice that

ε ≤ d(T xmi ,T xni)≤ d(T xmi ,T xmi−1)+d(T xmi−1,T xni)< ε +d(T xmi ,T xmi−1).
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Since limn→∞ d(T xni ,T xni−1) = 0, we, therefore, find that limn→∞ d(T xni ,T xmi) = ε . Notice that

lim
n→∞

d
(
T xni ,T xmi)≤ϕ(max{d(T xmi−1,T xni−1),

d(T xmi−1,T xmi),d(T xni−1,T xni)

d(T xmi−1 ,T xni),d(T xni−1,T xmi)}
)
.

Since dn ≤ dn−1 and mi > ni, we have d(T xmi−1,T xmi)≤ d(T xni−1,T xni).

Therefore, d(T xni ,T xmi) ≤ ϕ(ε +d(T xni ,T xni−1). Notice that ϕ is upper semi continuous and ϕ(2t) < t. Taking

limit as ni → ∞, we have ε ≤ ϕ(ε) < ε , a contradiction. Therefore {T xn} is a Cauchy sequence in X . Similarly

{Sxn} is also a Cauchy sequence in X . Then there exists a point u ∈ X such that

lim
n→∞

T xn = u = lim
n→∞

Sxn.

In view of T (X)⊂ S(X), we find that z ∈ X , where u = Sz. It follows that

d(T z,u) = lim
n→∞

d(T z,T xn)

≤ lim
n→∞

[ϕ(max{d(Sz,Sxn),d(T z,Sz),d(T xn,Sxn),d(T z,Sxn),d(T xn,Sz)})]

≤ ϕ(d(T z,u)).

Suppose d(T z,u) > 0. We find d(T z,u) ≤ ϕ(d(T z,u)) < d(T z,u), which is a contradiction. Hence T z = u = Sz.

Since S and T are weakly compatible, therefore ST z = T Sz i.e. Su = Tu = p (say). Again the weak compatibility

of S and T implies

T p = T Su = STu = Sp.

Suppose T p 6= p. It follows that

d(T p, p) = d(T p,Tu)

≤ ϕ(max{d(Sp,Su),d(T p,Sp),d(Tu,Su),d(T p,Su),d(Tu,Sp)}).

That is,

d(T p, p)≤ ϕ(d(T p, p))< d(T p, p).

This is a contradiction. Hence T p = p = Sp. Let q be another fixed point of S and T . Suppose p 6= q. Then

d(p,q) = d(T p,T q)≤ ϕ(d(p,q))< d(p,q),

which is a contradiction. Hence p = q. This completes the proof.

Next, we give an example to support our result.

Example 2.2. Let X = [0,1] and d a usual metric on X . Consider S,T : X → X defined by T x = x
9 ,x ∈ [0,1] and

Sx = x
3 for 0 ≤ x ≤ 1

2 , Sx = 1
3 for 1

2 < x ≤ 1, where S and T are weakly compatible. Let ϕ(t) = t
3 . Then all the

conditions in theorem 2.1 holds. It is obvious that 0 is the unique common fixed point of S and T .
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Now we extend theorem 2.1 for two mappings to four mappings as follows.

Theorem 2.3. Let X be a complete metric space. Let A,B,S,T : X → X be four mappings such that (A,S) and

(B,T ) are weakly compatible such that A(X)⊂ T (X) , B(X)⊂ S(X) and

d(Ax,By)≤ ϕ(max{d(Sx,Ty),d(Ax,Sx),d(By,Ty),d(By,Sx),d(Ax,Ty)}) (2.4)

for all x,y ∈ X, where ϕ is as defined in definition (1.3). Then A,B,S,T have a unique common fixed point.

Proof. Let x0 ∈ X . Let us consider the case that the sequences {xn} and {yn} in X defined by y2n = Sx2n = Bx2n−1,

y2n+1 = T x2n+1 = Ax2n which is possible by (i). Let d2n = d(y2n,y2n+1) and d2n−1 = d(y2n−1,y2n). Following the

proof in Theorem 2.1, one can immediately obtain the result. This completes the proof.
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