

Available online at http://scik.org
Advances in Fixed Point Theory, 3 (2013), No. 2, 296-305
ISSN: 1927-6303

A COMMON FIXED POINT THEOREM FOR SINGLE AND MULTI-VALUED MAPPINGS IN MENGER SPACES

R.C. DIMRI , M. SHARMA*
Post box -100 , Department of Mathematics, H.N.B. Garhwal University Srinagar (Garhwal), Uttarakhand-246174, India

Abstract

The aim of the present paper is to establish a common fixed point theorem for two singlevalued and two multi-valued mappings using weak compatibility in Menger spaces..

Keywords: Menger spaces, Multi-valued maps, weakly compatible maps.
2000 AMS Subject Classification: 54H25,47H10

1. Introduction

Many fixed point theorems have been developed after establishment of Banach's fixed point theorem given by Polish mathematician Stefan Banach in 1922.In [1,2,3,4,5,11]authors have developed fixed point theorems in metric spaces for two set-valued mappings and two single-valued mappings in many ways using implicit relations, contractive conditions, strict contractive conditions.In 1942 Menger [8]introduced probabilistic metric spaces (briefly PM-spaces)as a generalization of metric spaces. Sehgal[12]initiated study of contraction mappings in PM-spaces.As in metric spaces fixed point theorems developed for set-valued and single -valued mappings, in a similar vein fixed point theorems have

[^0]been developed by authors $[6,7,9]$ in PM-spaces. In the present paper our aim is to develop fixed point theorem for two single-valued and two set-valued maps in PM-spaces using weak compatibility.In the paper let R denotes set of real numbers and R^{+}denotes set of non-negative reals.

2. Preliminaries

Definition 1. A mapping $F: R \rightarrow R^{+}$is called a distribution function if it is nondecreasing and left continuous with in $f_{t \in R} F(t)=0$ and $\sup _{t \in R} F(t)=1$. Let D denotes the set of all distribution functions whereas H stands for specific distribution function(also known as Heaviside function) defined as

$$
H(t)= \begin{cases}0, & t \leq 0 \\ 1, & t>0\end{cases}
$$

Definition 2. A PM-space is an ordered pair (X, F) consisting of non-empty set X and a mapping F from $X \times X$ into D. The value of F at $(x, y) \in X$ is represented by $F_{x, y}$. The functions $F_{x, y}$ are assumed to satisfy the following conditions:
(i) $F_{x, y}(t)=1$ for all $t>0$ if and only if $x=y$;
(ii) $F_{x, y}(0)=0$;
(iii) $F_{x, y}(t)=F_{y, x}(t)$;
(iv) if $F_{x, y}(t)=1$ and $F_{y, z}(s)=1$, then $F_{x, z}(t+s)=1$ for all $x, y \in X$ and $t, s \geq 0$.

Every metric (X, d) space can always be realized as a PM-space by considering F from $X \times X$ into D as $F_{u, v}(s)=H(s-d(u, v))$ for all $u, v \in X$.

Definition 3. A mapping $\Delta:[0,1] \times[0,1] \rightarrow[0,1]$ is called a triangular norm (briefly t-norm) if the following conditions are satisfied:
$(i) \Delta(a, 1)=a$ for all $a \in[0,1] ;$
(ii) $\Delta(a, b)=\Delta(b, a)$;
(iii) $\Delta(c, d) \geq \Delta(a, b)$ for $c \geq a, d \geq b$;
(iv) $\Delta(\Delta(a, b), c)=\Delta(a, \Delta(b, c))$ for all $a, b, c, d \in[0,1]$.

Examples of t-norm are $\Delta(a, b)=\min (a, b), \Delta(a, b)=a b$ and $\Delta(a, b)=\min (a+b-1,0)$ etc.

Definition 4. A Menger space is a triplet (X, F, Δ), where (X, F) is a PM-space, Δ is t-norm and the following condition hold:

$$
F_{x, z}(t+s) \geq \Delta\left(F_{x, y}(t), F_{y, z}(s)\right) \text { holds for all } x, y, z \in X \text { and } t, s \geq 0
$$

Definition 5. A sequence $\left\{p_{n}\right\}$ in a Menger space (X, F, Δ) is said to converge to a point p in X if for every $\epsilon>0$ and $\lambda>0$,there is an integer $N(\epsilon, \lambda)$ such that $F_{p_{n}, p}(\epsilon)>$ $1-\lambda$,for all $n \geq N(\epsilon, \lambda)$. The sequence is said to be Cauchy sequence if for every $\epsilon>0$ and $\lambda>0$, there is an integer $N(\epsilon, \lambda)$ such that $F_{p_{n}, p_{m}}(\epsilon)>1-\lambda$, for all $n, m \geq N(\epsilon, \lambda)$.

Throughout this paper,Let $B(X)$ denotes the set of all non-empty bounded subsets of Menger space X.

Definition 6. The mappings J from X into X and G from X into $B(X)$ are weakly compatible if they commute at there coincidence points, that is for each $x \in X$ such that $G x=\{J x\}$, we have $G J x=J G x$.(Note here $G x=\{J x\}$ implies that $G x$ is a singleton.)

For all $A, B \in B(X)$ and for all $t>0$, we define

$$
\delta F_{A, B}(t)=\inf \left\{F_{a, b}(t): a \in A, b \in B\right\} .
$$

If $A=\{a\}$ then $\delta F_{A, B}(t)=\delta F_{a, B}(t)$.

If we have also $B=\{b\}$ then $\delta F_{A, B}(t)=F_{a, b}(t)$.

It follows from the definition that $\delta F_{A, B}(t)=1 \Leftrightarrow A=B=\{a\}$.
Let $\left\{A_{n}\right\}$ be a sequence in $B(X)$. we say that $\left\{A_{n}\right\} \delta$-converges to a set A in X if for every $\epsilon>0$ we have

$$
\lim _{n \rightarrow \infty} \delta F_{A_{n}, A}(\epsilon)=1
$$

Lemma 1. [7]Let (X, F, \min) be a Menger space.Let $A, G, H \in B(X)$. Then for $t_{1}, t_{2}>0$ we have

$$
\delta F_{A, H}\left(t_{1}+t_{2}\right) \geq \min \left\{\delta F_{A, G}\left(t_{1}\right), \delta F_{G, H}\left(t_{2}\right)\right\}
$$

Lemma 2. [10]Let (X, F, \min) be a Menger space.If sequence $\left\{a_{n}\right\}$ converges to a and sequence $\left\{b_{n}\right\}$ converges to b, then for $t>0$ we have

$$
\liminf _{n \rightarrow \infty} F_{a_{n}, b_{n}}(t)=F_{a, b}(t)
$$

Lemma 3. [7]Let (X, F, \min) be a Menger space.If sequence $\left\{A_{n}\right\} \delta$-converges to a and sequence $\left\{B_{n}\right\} \delta$-converges to b, then for $t>0$ we have

$$
\liminf _{n \rightarrow \infty} \delta F_{A_{n}, B_{n}}(t)=F_{a, b}(t)
$$

3. Main results

Theorem 1 Let (X, F, \min) be a complete Menger space. Let H, G be two set-valued mappings from X into $B(X)$ and I, J be two single-valued mappings from X into X satisfying following conditions:
(1) $G(X) \subseteq I(X), H(X) \subseteq J(X)$.
(2) $\delta F_{H x, G y}(k t) \geq \min \left\{F_{I x, J y}(t), \delta F_{I x, H x}(t), \delta F_{J y, G y}(t)\right\}$ for all $x, y \in X$,
$t>0, k \in(0,1)$.
(3) pairs (H, I) and (G, J) are weakly compatible.
(4) one of $I(X)$ or $J(X)$ is closed.

Then H, G, I and J have a unique common fixed point.
Proof: Let x_{0} be an arbitary point of X.Define a sequence $\left\{x_{n}\right\}$ as follows:
$J x_{2 n+1} \in H x_{2 n}=Y_{2 n}, I x_{2 n+2} \in G x_{2 n+1}=Y_{2 n+1}$, for $n=0,1,2 \ldots$
Using (2), we have
$\delta F_{H x_{2 n}, G x_{2 n+1}}(k t) \geq \min \left\{F_{I x_{2 n}, J x_{2 n+1}}(t), \delta F_{I x_{2 n}, H x_{2 n}}(t), \delta F_{J x_{2 n+1}, G x_{2 n+1}}(t)\right\}$.

We get $\delta F_{Y_{2 n}, Y_{2 n+1}}(k t) \geq \min \left\{\delta F_{Y_{2 n-1}, Y_{2 n}}(t), \delta F_{Y_{2 n-1}, Y_{2 n}}(t), \delta F_{Y_{2 n}, Y_{2 n+1}}(t)\right\}$.

This implies $\delta F_{Y_{2 n}, Y_{2 n+1}}(k t) \geq \delta F_{Y_{2 n-1}, Y_{2 n}}(t)$.
Again using (2), we have

$$
\delta F_{H x_{2 n+2}, G x_{2 n+1}}(k t) \geq \min \left\{F_{I x_{2 n+2}, J x_{2 n+1}}(t), \delta F_{I x_{2 n+2}, H x_{2 n+2}}(t), \delta F_{J x_{2 n+1}, G x_{2 n+1}}(t)\right\} .
$$

We get $\delta F_{Y_{2 n+2}, Y_{2 n+1}}(k t) \geq \min \left\{\delta F_{Y_{2 n+1}, Y_{2 n}}(t), \delta F_{Y_{2 n+1}, Y_{2 n+2}}(t), \delta F_{Y_{2 n}, Y_{2 n+1}}(t)\right\}$.

This gives $\delta F_{Y_{2 n+2}, Y_{2 n+1}}(k t) \geq \delta F_{Y_{2 n}, Y_{2 n+1}}(t)$.

From (5) and (6), we have
$\delta F_{Y_{n}, Y_{n+1}}(t) \geq \delta F_{Y_{n-1}, Y_{n}}\left(\frac{t}{k}\right)$, for $n=1,2,3 .$.

Using Lemma(1)for $m>n$ and $\epsilon>0$, we have
$\delta F_{Y_{n}, Y_{m}}(\epsilon) \geq \min \left\{\delta F_{Y_{n}, Y_{n+1}}(\epsilon-k \epsilon), \delta F_{Y_{n+1}, Y_{m}}(k \epsilon)\right.$.

Using (7), we have
$\delta F_{Y_{n}, Y_{m}}(\epsilon) \geq \min \left\{\delta F_{Y_{0}, Y_{1}}\left(\frac{\epsilon-k \epsilon}{k^{n}}\right), \delta F_{Y_{n+1}, Y_{m}}(k \epsilon)\right.$.

$$
\begin{aligned}
& \geq \min \left\{\delta F_{Y_{0}, Y_{1}}\left(\frac{\epsilon-k \epsilon}{k^{n}}\right), \min \left\{\delta F_{Y_{n+1}, Y_{n+2}}\left(k \epsilon-k^{2} \epsilon\right), \delta F_{Y_{n+2}, Y_{m}}\left(k^{2} \epsilon\right)\right\}\right\} \\
& \geq \min \left\{\delta F_{Y_{0}, Y_{1}}\left(\frac{\epsilon-k \epsilon}{k^{n}}\right), \min \left\{\delta F_{Y_{0}, Y_{1}}\left(\frac{k \epsilon-k^{2} \epsilon}{k^{n+1}}\right), \delta F_{Y_{n+2}, Y_{m}}\left(k^{2} \epsilon\right)\right\}\right\} . \\
& =\min \left\{\min \left\{\delta F_{Y_{0}, Y_{1}}\left(\frac{\epsilon-k \epsilon}{k^{n}}\right), \delta F_{Y_{0}, Y_{1}}\left(\frac{\epsilon-k \epsilon}{k^{n}}\right)\right\}, \delta F_{Y_{n+2}, Y_{m}}\left(k^{2} \epsilon\right)\right\} . \\
& =\min \left\{\delta F_{Y_{0}, Y_{1}}\left(\frac{\epsilon-k \epsilon}{k^{n}}\right), \delta F_{Y_{n+2}, Y_{m}}\left(k^{2} \epsilon\right)\right\} .
\end{aligned}
$$

Continuing this process, we get

$$
\begin{aligned}
& \geq \min \left\{\delta F_{Y_{0}, Y_{1}}\left(\frac{\epsilon-k \epsilon}{k^{n}}\right), \delta F_{Y_{m-1}, Y_{m}}\left(k^{m-1-n} \epsilon\right)\right\} \\
& \geq \min \left\{\delta F_{Y_{0}, Y_{1}}\left(\frac{\epsilon-k \epsilon}{k^{n}}\right), \delta F_{Y_{0}, Y_{1}}\left(\frac{k^{m-1-n} \epsilon}{k^{m-1}}\right)\right\} \\
& \geq \min \left\{\delta F_{Y_{0}, Y_{1}}\left(\frac{\epsilon-k \epsilon}{k^{n}}\right), \delta F_{Y_{0}, Y_{1}}\left(\frac{\epsilon-k \epsilon}{k^{n}}\right)\right\} \\
& =\delta F_{Y_{0}, Y_{1}}\left(\frac{\epsilon-k \epsilon}{k^{n}}\right)
\end{aligned}
$$

If N be taken such that $\delta F_{Y_{0}, Y_{1}}\left(\frac{\epsilon-k \epsilon}{k^{N}}\right)>1-\lambda$, then we have $\delta F_{Y_{n}, Y_{m}}(\epsilon) \geq 1-\lambda$ for all $n \geq N$.

This implies $\left\{Y_{n}\right\}$ is a Cauchy sequence.Since X is complete,therefore for any sequence $\left\{y_{n}\right\}$ in Y_{n} there must exist a point,say, p in X such that sequence $\left\{y_{n}\right\}$ converges to point p.The point p is independent of choice of sequence $\left\{y_{n}\right\}$ in Y_{n} so we must have

$$
\lim _{n \rightarrow \infty} J x_{2 n+1}=p, \lim _{n \rightarrow \infty} H x_{2 n}=p, \lim _{n \rightarrow \infty} I x_{2 n+2}=p, \lim _{n \rightarrow \infty} G x_{2 n+1}=p
$$

Suppose $J(X)$ is closed.Then there exists some $v \in X$ such that $p=J v \in J(X)$.
Using (2), we have
$\delta F_{H x_{2 n}, G v}(k t) \geq \min \left\{F_{I x_{2 n}, J v}(t), \delta F_{I x_{2 n}, H x_{2 n}}(t), \delta F_{J v, G v}(t)\right\}$.

Taking liminf as $n \rightarrow \infty$ and using Lemma (2)and Lemma (3), we have
$\delta F_{p, G v}(k t) \geq \min \left\{F_{p, p}(t), \delta F_{p, p}(t), \delta F_{p, G v}(t)\right\}$.
$\delta F_{p, G v}(k t) \geq \delta F_{p, G v}(t)$.

This implies $G v=\{p\}$ and so $G v=\{p\}=\{J v\}$.

Since $G(X) \subseteq I(X)$ so there exist $u \in X$ such that $\{I u\}=G v=\{p\}=\{J v\}$.

Using (2), we have
$\delta F_{H u, G v}(k t) \geq \min \left\{F_{I u, J v}(t), \delta F_{I u, H u}(t), \delta F_{J v, G v}(t)\right\}$.

Or $\delta F_{H u, I u}(k t) \geq \min \left\{F_{I u, I u}(t), \delta F_{I u, H u}(t), \delta F_{I u, I u}(t)\right\}$.

Implying $\delta F_{H u, I u}(k t) \geq \delta F_{H u, I u}(t)$.

This gives $H u=\{I u\}$, we have $H u=\{I u\}=G v=\{p\}=\{J v\}$.But $\{\mathrm{H}, \mathrm{I}\}$ is weakly compatible, it gives $H p=H I u=I H u=\{I p\}$.Using (2), we have
$\delta F_{H p, G v}(k t) \geq \min \left\{F_{I p, J v}(t), \delta F_{I p, H p}(t), \delta F_{J v, G v}(t)\right\}$.

Or $F_{I p, p}(k t) \geq \min \left\{F_{I p, p}(t), \delta F_{I p, I p}(t), \delta F_{p, p}(t)\right\}$.

Which implies $F_{I p, p}(k t) \geq F_{I p, p}(t$.$) .$

This gives $p=I p$ and therefore we get $H p=\{p\}=\{I p\}$.when (G,J)is weakly compatible we have $G p=G J v=J G v=\{J p\}$.Using (2), we have

$$
\begin{aligned}
& \delta F_{H p, G p}(k t) \geq \min \left\{F_{I p, J p}(t), \delta F_{I p, H p}(t), \delta F_{J p, G p}(t)\right\} \\
& \delta F_{p, J p}(k t) \geq \min \left\{F_{p, J p}(t), \delta F_{p, p}(t), \delta F_{J p, J p}(t)\right\} \\
& \delta F_{p, J p}(k t) \geq F_{p, J p}(t)
\end{aligned}
$$

This gives $p=J p$.Therefore we obtain $H p=\{p\}=\{I p\}=G p=\{J p\}$.Hence p is a common fixed point of H, G, I and J.Similarly, if $I(X)$ is taken closed result follows.

Uniqueness:Let w be another fixed point of H, G, I and J such that $w \neq p$.Then $H w=G w=\{J w\}=\{I w\}=\{w\}$. Using (2), we have

$$
\delta F_{H p, G w}(k t) \geq \min \left\{F_{I p, J w}(t), \delta F_{I p, H p}(t), \delta F_{J w, G w}(t)\right\}
$$

Or $F_{p, w}(k t) \geq \min \left\{F_{p, w}(t), \delta F_{p, p}(t), \delta F_{w, w}(t)\right\}$.

Or $F_{p, w}(k t) \geq F_{p, w}(t)$.
This implies $p=w$. Hence point p is unique.

Corollory 1. Let (X, F, \min) be a complete Menger space.Let H, G be two set-valued mappings from X into $B(X)$ satisfying following condition:
$\delta F_{H x, G y}(k t) \geq \min \left\{F_{x, y}(t), \delta F_{x, H x}(t), \delta F_{y, G y}(t)\right\}$ for all $x, y \in X, t>0$, $k \in(0,1)$. Then F and G have a unique common fixed point.

Corollory 2. Let (X,F, min) be a complete Menger space.Let G be a set-valued mapping from X into $B(X)$ and I be single-valued mapping from X into X satisfying following conditions :
(8) $G(X) \subseteq I(X)$
(9) $\delta F_{G x, G y}(k t) \geq \min \left\{F_{I x, I y}(t), \delta F_{I x, G x}(t), \delta F_{I y, G y}(t)\right\}$ for all $x, y \in X$, $t>0, k \in(0,1)$.
(10) pair (G, I) is weakly compatible.
(11) $I(X)$ is closed.

Then G and I have a unique common fixed point.

Example 1. Let $X=[0,2]$ with the metric $d(u, v)=|u-v|$ and define $F_{u, v}(s)=$ $H(s-d(u, v))$ for all $u, v \in X$.Then (X, F, \min) is a complete Menger space.Define G, H, I and J as follows:

$$
\begin{gathered}
G(x)=\left\{\begin{array}{cl}
\frac{1}{2}, & x \in\left[0, \frac{1}{2}\right] ; \\
\left(\frac{3}{8}, \frac{1}{2}\right], & x \in\left(\frac{1}{2}, 1\right] .
\end{array}\right. \\
I(x)=\left\{\begin{array}{cl}
\frac{1}{2}, & x \in\left[0, \frac{1}{2}\right] ; \\
\frac{(x+1)}{4}, & x \in\left(\frac{1}{2}, 1\right] .
\end{array}\right. \\
J(x)=\left\{\begin{array}{cc}
(1-x), & x \in\left[0, \frac{1}{2}\right] ; \\
0, & x \in\left(\frac{1}{2}, 1\right] .
\end{array}\right. \\
H(x)=\left\{\frac{1}{2}\right\}, x \in X .
\end{gathered}
$$

$G(X)=\left(\frac{3}{8}, \frac{1}{2}\right]=I(X)$ and $H(X)=\left\{\frac{1}{2}\right\} \subseteq J(X)=\{0\} \cup\left[\frac{1}{2}, 1\right]$ and therefore condition (1) of Theorem(1) is satisfied.

Taking $t=1>0, k=.7 \in(0,1)$, we have

$$
\begin{aligned}
& \delta F_{H x, G y}(.7)=\inf \left\{F_{u_{1}, v_{1}}(.7): u_{1} \in H x, v_{1} \in G y\right\} . \\
& =\inf \left\{H\left(.7-d\left(u_{1}, v_{1}\right): u_{1} \in H x, v_{1} \in G y\right\}\right.
\end{aligned}
$$

Since $.7-d\left(u_{1}, v_{1}\right)>0$ for all $u_{1} \in H x, v_{1} \in G y$, we have

$$
\delta F_{H x, G y}(.7)=1
$$

$$
F_{I x, J y}(1)=H\left(1-d\left(u_{2}, v_{2}\right)\right) \text { for all } u_{2} \in I x, v_{2} \in J y
$$

Since $1-d\left(u_{2}, v_{2}\right)>0$ for all $u_{2} \in I x, v_{2} \in J y$, we have
$F_{I x, J y}(1)=1$.
$\delta F_{I x, H x}(1)=\inf \left\{F_{u_{2}, u_{1}}(1): u_{2} \in I x, u_{1} \in H x\right\}$.
$=\inf \left\{H\left(1-d\left(u_{2}, u_{1}\right)\right): u_{2} \in I x, u_{1} \in H x\right\}$.

Since $1-d\left(u_{2}, u_{1}\right)>0$ for all $u_{2} \in I x, u_{1} \in H x$, we have

$$
\delta F_{I x, H x}(1)=1 .
$$

$$
\delta F_{J y, G y}(1)=\inf \left\{F_{v_{2}, v_{1}}(1): v_{2} \in J y, v_{1} \in G y\right\}
$$

$$
=\inf \left\{H\left(1-d\left(v_{2}, v_{1}\right)\right): v_{2} \in J y, v_{1} \in G y\right\} .
$$

Since $1-d\left(v_{2}, v_{1}\right)>0$ for all $v_{2} \in J y, v_{1} \in G y$,we have
$\delta F_{J y, G y}(1)=1$.

Now for $t>0, k=.7 \in(0,1)$ and $x, y \in X$, we have
$\delta F_{H x, G y}(.7)=1, F_{I x, J y}(1)=1, \delta F_{I x, H x}(1)=1, \delta F_{J y, G y}(1)=1$. Thus condition (2) of Theorem(1)is satisfied.
$\frac{1}{2}$ is coincidence point of H and I. Also H and I commute at $\frac{1}{2}$. Similarly $\frac{1}{2}$ is coincidence pint of G and J, and G and J commute at coincidence point $\frac{1}{2}$. Therefore pairs (H, I) and (G, J) are weakly compatible. $J(X)$ is closed subset of X. Thus all the conditions of Theorem(1)are satisfied and $\frac{1}{2}$ is unique fixed point of G, H, I and J.

References

[1] M.E.Abd Ei-Monsef, H.M. Abu-Donia and Kh. Abd-Rabou,Common fixed point theorems of single and set-valued mappings on 2-metric spaces,Appli. Math. Information Sci. 1(2) (2007), 185-194.
[2] M.A. Ahmed, Some common fixed point theorems for weakly compatible mappings in metric spaces,Fixed point theory and Application, 1979.
[3] M.A. Ahmed, Common fixed point theorems for weakly compatible mappings,Rocky Mountain J. Math. 33(4) (2003), 1189-1203.
[4] Ishak Altun and Duran Turkoglu, Some fixed point theorems for weakly compatible multivalued mappings satisfying an implicit relation,Filomat. 22(1) (2008), 13-21.
[5] H. Bouhadjera and A. Djoudi, Common fixed point theorem for single and set-valued maps without continuity,An. St. Univ. Ovidius constanta. 16(1) (2008), 49-58.
[6] S.S. Chang, Y.J. Cho, S.M. Kang and J.X.Fan, Common fixed point theorems for multi-valued mappings in Menger PM-spaces,Math. Japonic.40(2) (1994), 289-293.
[7] Chi-Ming Chen and Tong-huei chang,Common fixed point theorems in Menger spaces,Int. J. Math. and Math. Sci.2006,Artical ID 75931, 1-15.
[8] K. Menger,Statistical metrics ,Proc.Nat. Acad.Sci.U.S.A. 28(1942), 535-537.
[9] H.K. pathak, Y.J. cho, S.S. Chang abnd S.M. Kang, Coincidence point theorems for multi-valued and sinle-valued mappings in metric PM-spaces,Tamkand J. Math. 26(4) (1995), 313-319
[10] B.Schweizer and A. Sklar, Statistical metric spaces ,Pacific J. Math.10(1960), 313-334.
[11] S.Sedghi, I. Altun, N. Shobe,A fixed point theorem for multi-maps satisfying an implicit relation on metric spaces,Appl.Anal.Discrete Math.2(2008), 189-196.
[12] V.M. Sehgal, A.T.Bharuchareid, Fixed point of contraction mappings on Probabilistic metric spaces,Math.System Theory.6(1972),97-100.

[^0]: *Corresponding author
 Received February 20, 2013

