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Abstract. We present construction of exponentially convex functions via functionals that follow from some in-

equalities for convex functions. These inequalities are derived from expansions of Euler and Radau. Using fruitful

properties of exponential convexity we construct various means that have nice monotone properties over defining

parameters. We further show how known results about Cauchy means can be treated in a succinct way.
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1. Introduction

The well known Stolarsky means are defined in [12] as follows :
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(0.1) Er,s(a,b) =



(
s(br−ar)
r(bs−as)

)1/r−s
, r 6= s,r 6= 0,(

br−ar

r(lnb−lna)

)1/r
, s = 0, r 6= 0,

e−
1
r

(
aar

bbr

)1/ar−br

, s = r 6= 0,
√

ab, r = s = 0,

where a and b are positive real numbers a 6= b, r and s are real numbers.

Stolarsky proved that the function Er,s(a,b) is increasing in both parameters r and s, that is for

r ≥ p and s≥ q:

(0.2) Er,s(a,b)≥ Ep,q(a,b).

These means, since their invention, are generalized in various directions. However, in [2]

Stolarsky means are recognized as application of the linear functional

(0.3) f 7→ f (x)− f (y)
x− y

, x 6= y

on the family of functions {ϕr : t ∈ R} (defined on (0,∞))

(0.4) ϕr(x) =

 xr/r, r 6= 0;

logx, r = 0.

Since functional defined above is nonnegative on monotonically increasing functions, and dϕr
dx (x)=

xr−1 ≥ 0, r ∈R, then using Cauchy mean-value theorem and log-convexity we get construction

and monotonicity property of Stolarsky means, as is showed in [2]. In that paper, this idea is

further extended via application of Hermite-Hadamard functionals

(0.5) f 7→ 1
y− x

∫ y

x
f (u)du− f

(
x+ y

2

)
and

(0.6) f 7→ f (x)+ f (y)
2

− 1
y− x

∫ y

x
f (u)du
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on a family of convex functions (see Example 3.), another two means of Stolarsky type are

constructed and monotonicity property is proved again using log-convexity.

In this paper we generalize means from [2] in several directions. First, Hermite-Hadamard

functionals are generalized using Euler and Radau expansions. Second, these functionals are

applied on new families (aside of (0.4)) of convex functions which give us quite different means.

Third, it is showed that log-convexity can be shifted on finer classes such as n−exponentially

convex and exponentially convex functions. Also, our approach give us non-trivial examples of

exponentially convex functions.

1. THEORY OVERVIEW AND AUXILIARY RESULTS

Exponentially convex functions are invented by Bernstein in [3] as a subclass of convex

functions on a given open interval. These functions have many nice properties, for example,

they are analytical on their domain. Although we will need only few of these properties we

point here that very good reference on general results about exponential convexity is [1] and

[7].

If not specified, in the sequel, I stands for an open interval in R.

Definition 1.1. For fixed n ∈ N, a function f : I→ R is n−exponentially convex in the Jensen

sense on I if
n

∑
i, j=1

ξiξ j f
(

si+s j
2

)
≥ 0

for all choices of ξi ∈ R, si ∈ I, i = 1, . . . ,n.

A function f : I→R is n-exponentially convex on I if it is n-exponentially convex in the Jensen

sense and continuous on I.

The notion of n−exponential convexity is introduced in [8].

Remark 1.2. From Definition 1.1 it follows that 1-exponentially convex functions in the Jensen

sense are in fact nonnegative functions. It is further obvious that n-exponentially convex func-

tions in the Jensen sense are k-exponentially convex in the Jensen sense for every k ∈ N, n≥ k.

By well known Sylvester criteria, we have following proposition.
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Proposition 1.3. If f is n-exponentially convex in the Jensen sense on I then the matrix[
f
(

si + s j

2

)]n

i, j=1

is positive semi-definite. Particularly

det
[

f
(

si + s j

2

)]n

i, j=1
≥ 0,

where si ∈ I, i = 1, . . . ,n.

Corollary 1.4.

(i) If f : I→ (0,∞) is 2-exponentially convex in the Jensen sense then f is a log-convex function

in the Jensen sense on I.

(ii) If f : I→ (0,∞) is 2-exponentially convex then f is a log-convex function on I.

Proof. (i) From

ξ
2
1 f (x)+2ξ1ξ2 f

(
x+ y

2

)
+ξ

2
2 f (y)≥ 0,

for any ξ1,ξ2 ∈ R and all x,y ∈ I, we conclude

(1.1) f 2
(

x+ y
2

)
≤ f (x) f (y),

for all x,y ∈ I.

(ii) Since f is continuous function we have

(1.2) f (λx+(1−λ )y)≤ f (x)λ f (y)1−λ ,

for all x,y ∈ I and any λ ∈ [0,1]. �

Definition 1.5. A function f : I → R is exponentially convex in the Jensen sense on I if it is

n-exponentially convex in the Jensen sense on I for each n ∈ N.

A function f : I→ R is exponentially convex if it is exponentially convex in the Jensen sense

and continuous.

Proposition 1.6. Let EI denote a set of all exponentially convex functions on open interval I.

(i) EI is a convex cone i.e. if f ,g ∈ EI and α, β ≥ 0 then α f +βg ∈ EI.
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(ii) EI is closed under multiplication i.e. if f ,g ∈ EI then f g ∈ EI.

Proof. (i)-part follows from definition. (ii)-part follows from the next theorem (see [7]). �

One of main features of exponentially convex functions is its integral representation.

Theorem 1.7. The function f : I→ R exponentially convex on I if and only if

(1.3) f (x) =
∞∫
−∞

etxdσ(t), x ∈ I

for some non-decreasing function σ : R→ R.

Proof. See [1], p. 211. �

Corollary 1.8. Assume that f : I→ R is an exponentially convex function on I. Then

(i) for any k ∈ N we have

f (k)(x) =
∞∫
−∞

tketxdσ(t),

where σ : R→ R is some non-decreasing function;

(ii) for any k ∈ N the function x 7→ f (2k)(x) is exponentially convex function on I.

Proof. (i) This follows straightforward.

(ii) Using integral representation from (i)-part, for any choice ξi ∈ R, si ∈ I, i = 1, . . . ,n we

have
n

∑
i, j=1

ξiξ j f (2k)
(

si+s j
2

)
=

∞∫
−∞

t2k

(
n

∑
i=1

ξietsi/2

)2

σ(dt)≥ 0.

�

Let us point here two basic examples of exponentially convex functions.

Example 1. The function x 7→ eγx is exponentially convex on R for any γ ∈ R. This can be

checked directly:
n

∑
i, j=1

ξiξ je
γ

si+s j
2 =

(
n

∑
i=1

ξie
γ

si
2

)2

≥ 0,

or we can use integral representation (1.3)

eγx =

∞∫
−∞

etxdσ(t)
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with σ(t) = 1[γ,∞)(t) as choice of non-decreasing function.

The next example is less trivial, and integral representation (1.3) is particularly useful here.

Example 2. For every α > 0 the function

x 7→ x−α

is exponentially convex on (0,∞), since

x−α =

∞∫
0

e−xt tα−1

Γ(α)
dt

(see [7] and [11] p. 210).

We observe here that the previous integral can be rearranged as
∞∫
−∞

etxdσ(t) where σ : R→ R

is non-decreasing function defined with σ(t) = −(−t)α

αΓ(α) 1(−∞,0)(t).

Remark 1.9. It is obvious that every exponentially convex function is n-exponentially convex.

Converse is not, in general, true since for example f (x) = ex3−x is 2-exponentially convex on

(0,1) and not exponentially convex function on (0,1) (see [7] for details).

The next theorem will play important role in our applications.

Theorem 1.10. Let f : I→ (0,∞) be log-convex, derivable function.

Let M : I× I→ (0,∞) be defined with

(1.4) M(x,y) =


(

f (x)
f (y)

) 1
x−y

, x 6= y;

exp
(

f ′(x)
f (x)

)
, x = y.

If x1 ≤ x2, y1 ≤ y2 then

(1.5) M(x1,y1)≤M(x2,y2).

Proof. See [7]. �

We recall the definition of divided difference, for more on this subject see [10].

Definition 1.11. The second order divided difference of f : [a,b]→ R, at mutually different

knots y0, y1, y2 ∈ [a,b] is defined recursively by

[yi; f ] = f (yi), i = 0,1,2
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[yi,yi+1; f ] =
f (yi+1)− f (yi)

yi+1− yi
, i = 0,1

[y0,y1,y2; f ] =
[y1,y2; f ]− [y0,y1; f ]

y2− y0
.

Remark 1.12. The value [y0,y1,y2; f ] is independent of the order among knots y0, y1, y2. This

definition may be extended to include the case in which some or all knots coincide. Namely,

[y0,y0,y2; f ] = lim
y1→y0

[y0,y1,y2; f ] =
f (y2)− f (y0)− f ′(y0)(y2− y0)

(y2− y0)
2 , y2 6= y0

provided f ′ exists, and furthermore,

[y0,y0,y0; f ] = lim
y2→y0

lim
y1→y0

[y0,y1,y2; f ] =
f ′′(y0)

2

provided f ′′ exists.

In the sequel we will study linear functionals A : C[a,b]→ R that have property

(1.6) f ∈C[a,b] is convex ⇒ A f ≥ 0.

Hermite-Hadamard functionals (0.5) and (0.6) from introduction are examples of functionals

A with property (1.6).

Theorem 1.13. Let A : C[a,b]→ R be linear functional that satisfies (1.6), let I be any open

interval in R and let n be any positive integer. Assume that F = { ft : t ∈ I} is the family of

functions from C[a,b] such that t 7→ [y0,y1,y2; ft ] is n-exponentially convex in the Jensen sense

on I for every choice of three distinct knots y0,y1,y2 ∈ [a,b]. Then

(i) the function t 7→ A( ft) is n-exponentially convex in the Jensen sense on I;

(ii) if t 7→ A( ft) is continuous on I, then it is n-exponentially convex on I.

Proof. (i) For any ξ j ∈ R, s j ∈ I where j = 1, . . . ,n we define

h(x) =
n

∑
j,k=1

ξ jξk f s j+sk
2

(x).
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Since [y0,y1,y2; f s j+sk
2

] is n-exponentially convex in the Jensen sense on [α,β ], we con-

clude

[y0,y1,y2;h] =
n

∑
j,k=1

ξ jξk

[
y0,y1,y2; f s j+sk

2

]
≥ 0.

This means that h is a convex function from C[a,b] and (1.6) implies

n

∑
j,k=1

ξ jξkA
(

f s j+sk
2

)
= A(h)≥ 0,

hence t 7→ A( ft) is n-exponentially convex in the Jensen sense on [a,b].

(ii) Follows from (i)-part and Definition 1.1.

�

Corollary 1.14. Let A : C[a,b]→ R be linear functional that satisfies (1.6) and let I be any

open interval. Assume that F = { ft : t ∈ I} is the family of functions from C[a,b] such that

t 7→ [y0,y1,y2; ft ] is exponentially convex in the Jensen sense on I for every choice of three

distinct knots y0,y1,y2 ∈ [a,b]. Then

(i) the function t 7→ A( ft) is also exponentially convex in the Jensen sense on I;

(ii) if t 7→ A( ft) is continuous function on I, then the function t 7→ A( ft) is exponentially

convex on the I.

Corollary 1.15. Let A : C[a,b]→ R be linear functional that satisfies (1.6) and let I be any

open interval. Assume that F = { ft : t ∈ I} is the family of functions from C[a,b] such that

t 7→ [y0,y1,y2; ft ] is log-convex in the Jensen sense on I for every choice of three distinct knots

y0,y1,y2 ∈ [a,b]. Then

(i) the function t 7→ A( ft) is also log-convex in the Jensen sense on I;

(ii) if t 7→A( ft) is continuous positive function on I, then the function t 7→A( ft) is log-convex

on the I;

(iii) if t 7→ A( ft) is positive, derivable function on I, then for any p≤ u, q≤ v; p,q,u,v ∈ I,

we have

(1.7) Mp,q(A,F)≤Mu,v(A,F)

where



EXTENSION OF STOLARSKY MEANS BY EULER-RADAU EXPANSIONS 9

(1.8) Mp,q(A,F) =


(

A( fp)
A( fq)

) 1
p−q

, p 6= q,

exp
(

d
d p(A( fp))

A( fp)

)
, p = q.

Proof. (i) and (ii) parts follow from Theorem 1.13, (iii) follows from Theorem 1.10. �

Remark 1.16. Note that the results from Theorem 1.13 and Corollary 1.14 still hold when two

of the knots y0, y1, y2 are coincide, say y0, y1, for family of differentiable functions such that the

function t 7→ [y0,y1,y2; ft ] is n-exponentially convex in the Jensen sense (exponentially convex

in the Jensen sense, log-convex in the Jensen sense ), and furthermore, they still hold when all

three knots are coincide for family of twice differentiable functions with the same property.

Definition 1.17. For Mp,q(A,F) defined with (1.8) we will refer as mean if

a≤Mp,q(A,F)≤ b,

for p,q ∈ I. Otherwise we will refer it as quasi-mean with monotonicity property (1.7).

1.1. Further examples, generating families.

Here we list some families of functions F = { ft : t ∈ I} from [7] for which we will use

Corollaries 1.14 and 1.15 in order to construct exponentially convex functions and then means.

Of course, we also need linear functional with property (1.6), and these functionals we construct

in the next section via application of Euler-Radau expansions.

Example 3. Let a,b be positive real numbers, I = R and family F1 = { ft : t ∈ I1} of functions

defined with

(1.9) ft(x) =


xt

t(t−1) , t 6= 0,1,

− logx, t = 0,

x logx, t = 1.
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Since d2

dx2 ft(x) = xt−2 = e(t−2) lnx; t 7→ d2

dx2 ft(x) is exponentially convex function by Example

1. Using Remark 1.16 we then conclude that we can apply conclusions of Corollaries 1.14 and

1.15.

Example 4. Let a,b real numbers, I =R and family F2 = { ft : t ∈ I2} of functions defined with

(1.10) ft(x) =


etx

t2 , t 6= 0,

x2

2 , t = 0

Since d2

dx2 ft(x) = etx, t 7→ d2

dx2 ft(x) is exponentially convex function by Example 1.

Example 5. Let a,b positive real numbers, I = (0,∞) and family F3 = { ft : t ∈ I3} of functions

defined on C[a,b] with

(1.11) ft(x) =


t−x

log2 t
, t 6= 1,

x2

2 , t = 1.

Since t 7→ d2

dx2 ft(x) = t−x, by Example 2. we know that t 7→ dn

dxn ft(x) is exponentially convex

function on I = (0,∞).

Example 6. Let a,b be positive real numbers, I =(0,∞) and family F4 = { ft : t ∈ I} of functions

defined on C[a,b] with

(1.12) ft(x) =
e−x
√

t

t
.

In [7] it is showed that t 7→ d2

dx2 ft(x) = e−x
√

t is exponentially convex function on I = (0,∞).

Remark 1.18. Families F1,F2,F3,F4 are not independent: if we substitute t→− log t, for t > 0,

in (1.10) we get family F3 and if we substitute t →−
√

t, for t > 0, in (1.10) we get family F4.

Observe that F1 and F2 are constructed as antiderivatives of basic examples of exponentially

convex functions: t 7→ xt−2 = e(t−2) logx and t 7→ etx (see Example 1.).
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1.2. Three mean value results.

In this subsection we give a few results headed to means that we will need in later part of

paper.

Theorem 1.19. Let f ∈C2[a,b] and let A : C[a,b]→R be a linear functional that have property

(1.6). Then there exists ξ ∈ [a,b] such that

(1.13) A( f ) = f ′′(ξ )A(g0),

where g0(x) = x2/2.

Proof. Let m = min
x∈[a,b]

f ′′(x), M = max
x∈[a,b]

f ′′(x). Let us observe that function ϕ(x) = M x2

2 −

f (x) = Mg0(x)− f (x) is convex function since ϕ ′′(x) = M− f ′′(x) ≥ 0. Hence, A(ϕ) ≥ 0 and

we conclude

A( f )≤MA(g0).

Similarly,

mA(g0)≤ A( f )≤MA(g0).

Now we have (1.13). �

Remark 1.20. If we denote powers with ei(x) = xi, i = 0,1,2, . . . , from (1.13) it follows that

A(e0) = A(e1) = 0.

Corollary 1.21. Let f ,g∈C2[a,b], let A : C[a,b]→R be a linear and functional which satisfies

(1.6). Then there exists ξ ∈ [a,b] such that

(1.14)
f ′′(ξ )
g′′(ξ )

=
A( f )
A(g)

,

assuming both denominators not equal zero.

Proof. This is standard proof as in Cauchy mean value theorem. �
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Remark 1.22. If f ′′
g′′ is an invertible function then unique number ξ ,

(1.15) ξ =

(
f
′′

g′′

)−1(
A( f )
A(g)

)
,

represents well-known Cauchy mean. It is obvious a≤ ξ ≤ b.

Corollary 1.23. Let I be an open interval in R, a,b ∈ R and A : C[a,b]→ R linear functional

which satisfies (1.6). Let F = { ft : t ∈ I} be a family of functions in C2[a,b] such that t 7→ d2 ft
dx2

is a log-convex function on I. If

(1.16) a≤

 d2 fp
dx2

d2 fq
dx2

 1
p−q

(x)≤ b,

for x ∈ [a,b], p,q ∈ I, then Mp,q(A,F) is a mean.

Remark 1.24. We observe that family F1 do satisfy condition (1.16) and families F2,F3,F3

don’t satisfy it.

2. EULER-RADAU MEANS AND EXPONENTIAL CONVEXITY

2.1. Euler two-point formulae. We start with Euler two-point formula (see [9] p. 558.)

Theorem 2.1. Let f : [0,1]→ R be such that f ′ is a continuous function of bounded variation

on [0,1]. Then for each s ∈ [0,1/2]

(2.1)
∫ 1

0
f (t)dt =

1
2
[ f (s)+ f (1− s)]+

1
4

∫ 1

0
Fs

2 (t)d f ′(t),

where

(2.2) Fs
2 (t) =


2t2, 0≤ t ≤ s,

2t2−2t +2s, s < t ≤ 1− s,

2t2−4t +2, 1− s < t ≤ 1.

In the [6] the previous theorem is used to prove the following result.
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Theorem 2.2. Let f ∈C2[a,b]. Then for each t ∈ {a}∪ [3a+b
4 , a+b

2 ] there exist some ξ ∈ [a,b],

such that

(2.3)
f (t)+ f (a+b− t)

2
− 1

b−a

∫ b

a
f (u)du = f ′′(ξ )R(a,b; t)

where

(2.4) R(a,b; t) =
6t2−6t(a+b)+a2 +b2 +4ab

12
.

It is then observed that if a < b then R(a,b; t) > 0 for t = a and R(a,b; t) < 0 for t ∈

[a+b
2 , a+3b

4 ]. In the end the following corollary is stated.

Corollary 2.3. Let f ∈C2[a,b] be a convex function. Then

(2.5)
1

b−a

∫ b

a
f (u)du≥ f (t)+ f (a+b− t)

2

for each t ∈ [3a+b
4 , a+b

2 ]. For t = a the above inequality is reversed.

We now define linear functional A1 : C[a,b]→ R with

(2.6) A1( f ) =
1

a−b

∫ b

a
f (u)du− f (t)+ f (a+b− t)

2
,

t ∈ {a}∪ [3a+b
4 , a+b

2 ]. According Corollary 2.7 linear functional A1 satisfies (1.6) property for

t ∈ [3a+b
4 , a+b

2 ].

2.2. Radau-type quadratures. We proceed with similar idea of constructing linear functional

that will have property (1.6), this time using Radau-type quadratures given in [4, 5].

Theorem 2.4. Let f : [−1,1]→R be such that f ′′ is continuous on [−1,1] and let s ∈ (−1,0]∪

{1}. Then there exists ξ ∈ [−1,1] such that

(2.7)
∫ 1

−1
f (t)dt− 2s

1+ s
f (−1)− 2

1+ s
f (s) =

1
3
(1− s) f ′′(ξ )
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and

(2.8)
∫ 1

−1
f (t)dt− 2

1+ s
f (−s)− 2s

1+ s
f (1) =

1
3
(1− s) f ′′(−ξ )

In [6] the previous theorem is used to prove the following result.

Theorem 2.5. Let φ ∈C2[a,b]. Then for each t ∈ (a, a+b
2 ]∪{b} there exist some ξ ∈ [a,b], such

that

(2.9) 2
b−a

∫ b

a
φ(u)du− 2t−a−b

t−a φ(a)− b−a
t−a φ(t) = φ

′′(ξ )R1(a,b; t)

and for each v ∈ [a+b
2 ,b)∪{a} there exist some η ∈ [a,b], such that

(2.10) 2
b−a

∫ b

a
φ(t)dt− b−a

b−v φ(v)− b+a−2v
b−v φ(y) = φ

′′(η)R2(a,b;v)

where

R1(a,b; t) =
(4b+2a−6t)(b−a)

12
and R2(a,b;v) =

(6v−4a−2b)(b−a)
12

.

Remark 2.6. Assume a < b. Observe then R1(a,b; t)> 0 for t ∈ (a, a+b
2 ]; and R1(a,b; t)< 0 for

t = b. Also R2(a,b;v)> 0 for v ∈ [a+b
2 ,b); and R2(a,b;v)< 0 for v = a.

Corollary 2.7. Let f ∈C2[a,b] be a convex function.

(i) For every t ∈ (a, a+b
2 ]

2
b−a

∫ b

a
f (u)du≥ 2t−a−b

t−a f (a)+ b−a
t−a f (t).

For t = b the above inequality is reversed.

(ii) For every v ∈ [a+b
2 ,b)

2
b−a

∫ b

a
f (t)dt ≥ b−a

b−v f (v)+ b+a−2v
b−v f (b).

For v = a the above inequality is reversed.

Similar to linear functional A1 defined with (2.6) in Euler case, we define two linear func-

tionals A2 and A3 acting on C[a,b] using Corollary 2.7:

(2.11) A2( f ) = 2
b−a

∫ b

a
f (u)du− 2t−a−b

t−a f (a)− b−a
t−a f (t),
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where t ∈ {b}∪ (a, a+b
2 ];

(2.12) A3( f ) = 2
b−a

∫ b

a
f (t)dt− b−a

b−v f (v)− b+a−2v
b−v f (b),

where v ∈ {a}∪ [a+b
2 ,b).

Corollary 2.7 confirms that linear functionals A2 and A3 do satisfy property (1.6) for t ∈ (a, a+b
2 ]

and v ∈ [a+b
2 ,b) respectively.

2.3. Euler-Radau means and quasi-means. For each family F1,F2,F3,F4, defined in Exam-

ples 3, 4, 5, 6 using Corollaries 1.14 and 1.14 we will construct first exponentially convex

functions.

All constructed functions have domain I = R or I = (0,∞) depending on family F1,F2,F3 or

F4. Define functions ψi, j : I→ R with

(2.13) ψi, j(u) = Ai( fu), for fu ∈ F j,

i = 1,2,3; j = 1,2,3,4. As above defined, linear functionals A1,A2,A3 are considered for t ∈

[3a+b
4 , a+b

2 ], t ∈ (a, a+b
2 ], v ∈ [a+b

2 ,b) respectively.

Theorem 2.8. Let ψi, j, i = 1,2,3; j = 1,2,3,4 be functions on I defined with (2.13).

(i) Functions ψi, j are exponentially convex on I.

(ii) For all tm ∈ I, m = 1,2, ...,n, matrix
[
ψi, j

( tk+tl
2

)]n
k,l=1 is positive semi-definite matrix.

Particularly

(2.14) det
[

ψi, j

(
tk + tl

2

)]n

k,l=1
≥ 0.

Proof. (i) According (i)-part of Corollary 1.14 we first conclude that ψi,1, i= 1,2,3 are exponen-

tially convex on I in Jensen sense. Direct calculation shows that ψi,1, i = 1,2,3 are continuous

on I, concluding its exponential convexity according (i)-part of Corollary 1.14.

(ii) This part follows from Proposition 1.3. �

Let us now define

(2.15) Mp,q(Ai,F j) =

(
ψi, j(p)
ψi, j(q)

) 1
p−q

,
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for p,q ∈ I; i = 1,2,3; j = 1,2,3,4.

Now we consider limit cases for each family separately, since there are some difference between

expressions.

FAMILY F1 :

(2.16) Mp,q(Ai,F1) =



(
Ai( fp)
Ai( fq)

)1/(p−q)
, p 6=q,

exp
(

1−2q
q(q−1)−

Ai( f0 fq)
Ai( fq)

)
, p=q6=0,1,

exp
(

1− Ai( f 2
0 )

2Ai( f0)

)
, p=q=0,

exp
(
−1− Ai( f0 f1)

2Ai( f1)

)
, p=q=1,

fp ∈ F1, i = 1,2,3.

FAMILY F2 :

(2.17) Mp,q(Ai,F2) =



(
Ai( fp)
Ai( fq)

)1/(p−q)
, p6=q,

exp
(

Ai(e1 fq)
Ai( fq)

− 2
q

)
, p=q6=0,

exp
(

Ai(e1 f0)
3Ai( f0)

)
, p=q=0,

e1(x) = x, fp ∈ F2, i = 1,2,3.

FAMILY F3 :

(2.18) Mp,q(Ai,F3) =



(
Ai( fp)
Ai( fq)

)1/(p−q)
, p 6=q,

exp
(
−Ai(e1 f1)

Ai( f1)
− 2

q lnq

)
, p=q6=1,

exp
(
−Ai(e1 f1)

3Ai( f1)

)
, p=q=1,

fp ∈ F3, i = 1,2,3.
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FAMILY F4 :

(2.19) Mp,q(Ai,F4) =


(

Ai( fp)
Ai( fq)

)1/(p−q)
, p 6=q,

exp
(
−Ai(e1 fq)
2
√

qAi( fq)
− 1

q

)
, p=q,

fp ∈ F4, i = 1,2,3.

Theorem 2.9. Let p≤ u, q≤ v; p,q,u,v ∈ I. Then

(2.20) Mp,q(Ai,F j)≤Mu,v(Ai,F j),

for all fp ∈ F j, i = 1,2,3; j = 1,2,3,4.

Proof. Follows from (iii)-part of Corollary 1.15. �

According Remark 1.24, with Mp,q(Ai,F1) we defined means, i = 1,2,3.

Mp,q(Ai,F j) are quasi-means for i = 1,2,3; j = 2,3,4 that can be easily con-

verted to means using Remark 1.22:

Mp,q(Ai,F2) := logMp,q(Ai,F2), i = 1,2,3;

Mp,q(Ai,F3) :=−L(p,q) logMp,q(Ai,F3), i = 1,2,3,

where L(p,q) =


p−q

log p−logq, p 6= q,

q, p = q;

Mp,q(Ai,F4) :=−(√p+
√

q) logMp,q(Ai,F4), i = 1,2,3,

are all means.
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2.4. Generalized Euler-Radau means and quasi-means. As we have already

seen exponentially convex functions are very base of our means and quasi-

means. Now we generalize this construction adding one more parameter in our

(quasi-)means and newly constructed (quasi-)means will retain monotonicity

property. For that purpose we need one additional, simple, property of expo-

nentially convex functions given in the next proposition.

Proposition 2.10. Let I = (0,∞) or I = R. If ψ : I→ R is exponentially convex

function on I then for any c ∈ I the function x 7→ ψ(cx) is also exponentially

convex.

Let us now make substitutions p→ p
s , q→ q

s , a→ as, b→ bs for s > 0 and

for the case s< 0 a→ bs, b→ as in means Mp,q(Ai,F j), i= 1,2,3; j = 1,2,3,4.

The parameter s that we introduce here will be in corresponding I.

For spq(p−q) 6= 0 we define new means with

(2.21) Mt
p,q;s(Ai,F j) =

(
ψi, j(

p
s )

ψi, j(
q
s )

) 1
p−q

,

for i = 1,2,3; j = 1,2,3,4.

We extend (2.21) with limit cases for every of families F1,F2,F3,F4.
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FAMILY F1 :

(2.22) Mt
p,q;s(Ai,F1) =



(
ψi,1

( p
s

)
ψi,1

(q
s

)
) 1

p−q
, p 6=q,s 6=0, s∈I;

exp
(

s−2ps
p(p−s)−

Ai( f0 f p
s
)

sAi( f p
s
)

)
, p=q, sp(p−s)6=0;

exp
(

1
s −

Ai( f 2
0 )

2sAi( f0)

)
, p=q=0, s 6=0;

exp
(
−1

s −
Ai( f0 f1)
2sAi( f1)

)
, p=q=s, s 6=0;(

Ai(gp)

Ai(gq)

) 1
p−q

, p 6=q, s=0;

exp
(
−2

p−
Ai(e1gp)

Ai(gp)

)
, p=q6=0, s=0;

√
xy, p=q=s=0,

where i = 1,2,3;

gp(x) =


epx

p2 , p 6= 0;

x2

2 , p = 0

and Ai, i = 1,2,3 stands for linear functional now acting on C[lna, lnb].

FAMILY F2 :

(2.23) Mt
p,q;s(Ai,F2) =



(
ψi,2

( p
s

)
ψi,2

(q
s

)
) 1

p−q
, p6=q,s6=0, s∈I;

exp
(
−2

p−
Ai(es f p

s
)

sAi( f p
s
)

)
, p=q, sp6=0;

exp
(

1
3s

Ai(es f0)
Ai( f0)

)
, p=q=0 s 6=0;

where i = 1,2,3 and es(x) = xs.
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FAMILY F3 :

(2.24) Mt
p,q;s(Ai,F3) =


(

ψi,3

( p
s

)
ψi,3

(q
s

)
) 1

p−q
, p 6=q6=s, s∈I;

exp
(
−1

3
Ai(es f0)
Ai( f0)

)
, p=q=s;

where i = 1,2,3.

FAMILY F4 :

(2.25) Mt
p,q;s(Ai,F4) =


(

ψi,4

( p
s

)
ψi,4

(q
s

)
) 1

p−q
, p6=q 6=s, p,q,s∈I;

exp
(
−1
p −

1
2
√

ps
Ai(es f p

s
)

Ai( f p
s
)

)
, p=q, s∈I;

where i = 1,2,3.

Remark 2.11. Let us note that we can give the explicit version for means (2.19)

are obtained in [6].

Theorem 2.12. Let p≤ u, q≤ v; p,q,u,v,s ∈ I. Then

(2.26) Mt
p,q;s(Ai,F j)≤Mt

u,v;s(Ai,F j),

for i = 1,2,3; j = 1,2,3,4.

Proof. Follows from Proposition 2.10 and Theorem 2.9. �
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