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Abstract. In this paper, some inequalities for the ratios of generalized digamma functions are presented. The

approache makes use of the series representations of the (q,k)-digamma and (p,q)-digamma functions.
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1. Introduction and preliminaries

The classical Euler’s Gamma function Γ(t) and the digamma function ψ(t) are commonly

defined as

Γ(t) =
∫

∞

0
e−xxt−1 dx, ψ(t) =

d
dt

lnΓ(t) =
Γ′(t)
Γ(t)

, t > 0.

In 2005, Dı́az and Teruel [1] defined the (q,k)-Gamma function, Γq,k(t) as

Γq,k(t) =
(1−qk)

t
k−1
q,k

(1−q)
t
k−1

=
(1−qk)∞

q,k

(1−qt)∞
q,k(1−q)

t
k−1

, t > 0, k > 0, q ∈ (0,1)
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with the (q,k)-digamma function, ψq,k(t) is defined as

ψq,k(t) =
d
dt

lnΓq,k(t) =
Γ′q,k(t)

Γq,k(t)
, t > 0, k > 0, q ∈ (0,1).

Also in 2012, Krasniqi and Merovci [2] gave the (p,q)-Gamma function, Γp,q(t) as

Γp,q(t) =
[p]tq[p]q!

[t]q[t +1]q . . . [t + p]q
, t > 0, p ∈ N, q ∈ (0,1),

where [p]q =
1−qp

1−q .

Similarly, the (p,q)-digamma function, ψp,q(t) is defined as

ψp,q(t) =
d
dt

lnΓp,q(t) =
Γ′p,q(t)
Γp,q(t)

, t > 0, p ∈ N, q ∈ (0,1).

The functions ψq,k(t) and ψp,q(t) as defined above exhibit the following series representations.

ψq,k(t) =
− ln(1−q)

k
+(lnq)

∞

∑
n=1

qnkt

1−qnk , t > 0,(1)

ψp,q(t) = ln[p]q +(lnq)
p

∑
n=1

qnt

1−qn , t > 0.(2)

By taking derivatives of these functions, it can easily be established that

ψ
′
q,k(t) = (lnq)2

∞

∑
n=1

nk.qnkt

1−qnk , t > 0,(3)

ψ
′
p,q(t) = (lnq)2

p

∑
n=1

n.qnt

1−qn , t > 0.(4)

In [3], Nantomah presented the following results for the digamma function.

(5)
[ψ(a)]α

[ψ(c)]β
≤ [ψ(a+bt)]α

[ψ(c+dt)]β
≤ [ψ(a+b)]α

[ψ(c+d)]β
,

where a, b, c, d, α , β are positive real numbers such that βd≤αb, a+bt ≤ c+dt, ψ(a+bt)> 0

and ψ(c+dt)> 0. The k-analogue of these inequalities can be found in [4].

The purpose of this paper is to extend inequalities (5) to the (q,k) and (p,q)-digamma func-

tions.

2. Results and discussion

We now present the results of this paper.
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Lemma 2.1. Let 0 < s≤ t, then the following statement is valid.

ψq,k(s)≤ ψq,k(t).

Proof. From (1), we have

ψq,k(s)−ψq,k(t) = (lnq)
∞

∑
n=1

[
qnks−qnkt

1−qnk

]
≤ 0.

Lemma 2.2. Let 0 < s≤ t, then the following statement is valid.

ψ
′
q,k(s)≥ ψ

′
q,k(t).

Proof. From (3) we have,

ψ
′
q,k(s)−ψ

′
q,k(t) = (lnq)2

∞

∑
n=1

[
nk(qnks−qnkt)

1−qnk

]
≥ 0.

Lemma 2.3. Let a, b, c, d, α , β be positive real numbers such that a+bt ≤ c+dt, βd ≤ αb,

ψq,k(a+bt)> 0 and ψq,k(c+dt)> 0. Then

αbψq,k(c+dt)ψ ′q,k(a+bt)−βdψq,k(a+bt)ψ ′q,k(c+dt)≥ 0.

Proof. Since 0 < a+bt ≤ c+dt, then by Lemmas 2.1 and 2.2 we have

0 < ψq,k(a+bt)≤ ψq,k(c+dt)

and

ψ
′
q,k(a+bt)≥ ψ

′
q,k(c+dt)> 0.

This implies

ψq,k(c+dt)ψ ′q,k(a+bt)≥ ψq,k(c+dt)ψ ′q,k(c+dt)

≥ ψq,k(a+bt)ψ ′q,k(c+dt).

Further, αb≥ βd implies

αbψq,k(c+dt)ψ ′q,k(a+bt)≥ αbψq,k(a+bt)ψ ′q,k(c+dt)

≥ βdψq,k(a+bt)ψ ′q,k(c+dt).
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Hence, we have

αbψq,k(c+dt)ψ ′q,k(a+bt)−βdψq,k(a+bt)ψ ′q,k(c+dt)≥ 0.

Theorem 2.4. Define a function G by

(6) G(t) =

[
ψq,k(a+bt)

]α[
ψq,k(c+dt)

]β , t ∈ [0,∞),

where a, b, c, d, α , β are positive real numbers such that a+ bt ≤ c+ dt, βd ≤ αb, ψq,k(a+

bt)> 0 and ψq,k(c+dt)> 0. Then G is nondecreasing on t ∈ [0,∞) and the inequalities

(7)

[
ψq,k(a)

]α[
ψq,k(c)

]β ≤
[
ψq,k(a+bt)

]α[
ψq,k(c+dt)

]β ≤
[
ψq,k(a+b)

]α[
ψq,k(c+d)

]β
are valid for every t ∈ [0,1].

Proof. Let g(t) = lnG(t) for every t ∈ [0,∞). Then,

g = ln

[
ψq,k(a+bt)

]α[
ψq,k(c+dt)

]β = α lnψq,k(a+bt)−β lnψq,k(c+dt)

and

g′(t) = αb
ψ ′q,k(a+bt)

ψq,k(a+bt)
−βd

ψ ′q,k(c+dt)

ψq,k(c+dt)

=
αbψ ′q,k(a+bt)ψq,k(c+dt)−βdψ ′q,k(c+dt)ψq,k(a+bt)

ψq,k(a+bt)ψq,k(c+dt)
≥ 0

as a result of Lemma 2.3. That implies g as well as G are nondecreasing on t ∈ [0,∞) and for

every t ∈ [0,1] we have

G(0)≤ G(t)≤ G(1)

concluding the proof.

Corollary 2.5. If t ∈ (1,∞), then the following inequality is valid.

(8)

[
ψq,k(a+bt)

]α[
ψq,k(c+dt)

]β ≥
[
ψq,k(a+b)

]α[
ψq,k(c+d)

]β
Proof. For each t ∈ (1,∞), we have G(t)≥ G(1) yielding the result.

Lemma 2.6. Let 0 < s≤ t, then the following statement is valid.

ψp,q(s)≤ ψp,q(t).
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Proof. From (2) we have

ψp,q(s)−ψp,q(t) = (lnq)
p

∑
n=1

[
qns−qnt

1−qn

]
≤ 0.

Lemma 2.7. Let 0 < s≤ t, then the following statement is valid.

ψ
′
p,q(s)≥ ψ

′
p,q(t).

Proof. From (4) we have

ψ
′
p,q(s)−ψ

′
p,q(t) = (lnq)2

p

∑
n=1

[
n(qns−qnt)

1−qn

]
≥ 0.

Lemma 2.8. Let a, b, c, d, α , β be positive real numbers such that a+bt ≤ c+dt, βd ≤ αb,

ψp,q(a+bt)> 0 and ψp,q(c+dt)> 0. Then

αbψp,q(c+dt)ψ ′p,q(a+bt)−βdψp,q(a+bt)ψ ′p,q(c+dt)≥ 0.

Proof. Follows the same argument as in the proof of Lemma 2.3.

Theorem 2.9. Define a function H by

(9) H(t) =

[
ψp,q(a+bt)

]α[
ψp,q(c+dt)

]β , t ∈ [0,∞),

where a, b, c, d, α , β are positive real numbers such that a+ bt ≤ c+ dt, βd ≤ αb, ψp,q(a+

bt)> 0 and ψp,q(c+dt)> 0. Then H is nondecreasing on t ∈ [0,∞) and the inequalities

(10)

[
ψp,q(a)

]α[
ψp,q(c)

]β ≤
[
ψp,q(a+bt)

]α[
ψp,q(c+dt)

]β ≤
[
ψp,q(a+b)

]α[
ψp,q(c+d)

]β
are valid for every t ∈ [0,1].

Proof. Follows the same procedure as in Theorem 2.4. Using Lemma 2.3, we conclude that H

is nondecreasing on t ∈ [0,∞) and for every t ∈ [0,1] we have, H(0)≤ H(t)≤ H(1) ending the

proof.

Corollary 2.10. If t ∈ (1,∞), then the following inequality is valid.

(11)

[
ψp,q(a+bt)

]α[
ψp,q(c+dt)

]β ≥
[
ψp,q(a+b)

]α[
ψp,q(c+d)

]β
Proof. For each t ∈ (1,∞), we have H(t)≥ H(1) yielding the result.
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3. Concluding remarks

This section is dedicated to some remarks concerning our results.

Remark 3.1. If in (7) we allow k→ 1, then we obtain the q-analogue of (5).

Remark 3.2. If in (7) we allow q→ 1−, then we obtain the k-analogue of (5) as presented in

Theorem 3.7 of the paper [4].

Remark 3.3. If in (7) we allow q→ 1− as k→ 1, then we obtain (5).

Remark 3.4. If in (10) we allow q→ 1−, then we obtain the p-analogue of (5).

Remark 3.5. If in (10) we allow p→ ∞, then we obtain the q-analogue of (5).

Remark 3.6. If in (10) we allow p→ ∞ as q→ 1−, then we obtain (5).
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