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Abstract. In this paper, we extend and improve the condition of contraction of results of Azam et al. for two 

single-valued mappings on a closed ball in complex valued metric spaces. 
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1. Introduction  

Azam et al. [1] introduced the concept of complex-valued metric spaces and obtained 

sufficient conditions for the existence of common fixed points of a pair of contractive type 

mappings involving rational expressions. Subsequently, several authors have studied the 

existence and uniqueness of the fixed points and common fixed points of self-mappings 

in view of contrasting contractive conditions.  

In [2], Bhaskar and Lakshmikantham introduced the concept of coupled fixed points for a 

given partially ordered set 𝑋. Recently Samet et al. [3, 4] proved that most of the coupled 

fixed point theorems (on ordered metric spaces) are in fact immediate consequences of well-

known fixed point theorems in the literature. In this paper, we deal with the corresponding 

definition of coupled fixed point for mappings on a complex-valued metric space along with 
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generalized contraction involving rational expressions. Our results extend and improve 

several fixed point theorems in closed ball. 

 

2. Preliminaries 

Let   the set of complex numbers and z1, z2   . We define a partial order   on   as follows:  

z1  z2 if and only if Re (z1) ≤ Re (z2) and Im (z1) ≤ Im (z2) 

that is z1  z2 if one of the following holds  

 C1: Re (z1) = Re (z2) and Im (z1) = Im (z2)     C2: Re (z1) < Re (z2) and Im (z1) = Im (z2) 

C3: Re (z1) = Re (z2) and Im (z1) < Im (z2)       C4: Re (z1) < Re (z2) and Im (z1) < Im (z2) 

In particular, we will write z1  z2 if z1  z2 and one of (C2), (C3), and (C4) is satisfied and we 

will write z1  z2 if only (C4) is satisfied. 

Definition 2: Let X be a non empty set. A mapping   𝑋  𝑋    is called a complex 

valued matrix on X if the following conditions are satisfied: 

(CM1) 0   d(x, y) for all x, y   X and d(x, y) = 0 if and only if x = y;  

(CM2) d(x, y) = d(y, x) for all x, y  X; 

(CM3)  d(x, y)   d(x, z) + d (z, y), for all x, y, z   X. 

Then d is called a complex valued metric space. 

Definition 3:  Let (X, d) be a complex valued metric space. 

1. A point x   X is called interior point of set A   X whenever there exist 0   r     such that 

B(x, r)  {γ 𝑋│d(x, y)   r}   , Where B(x, r) is an open Ball.  

Then  (   )̅̅ ̅̅ ̅̅ ̅̅ ={y  𝑋│d(x, y)   r} is a closed ball. 

2.  A point x   X is called a limit of A whenever for every 0   r    ,  

We have B(x, r)   (A    )    .  

3. A subset A   X is called open whenever each element A is an interior point of A. 

4. A sub set B   X is called closed whenever each limit point of B belongs to B. 

(v) A sub-basis for a Hausdorff topology τ on X is a family F = {B(x, r) │x   Х and 0   r}. 

Definition 4:  Let (x, d) be a complex valued metric space, {xn} be a sequence in X and x  X. 

(i) If for every c  C, with 0   c there is N    such that for all n  , d (xn, x)   , then {xn} 

is said to be convergent, {xn} converges to x and x is the limit point of {xn}, we denote this by 

           (or) {xn}  x as n   .  

(ii) If for every c  C, with 0   c there is N    such that for all n  , d(xn, xn+m)   , where 

m    , then {xn} is said to be Cauchy sequence. 
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(iii) If for every Cauchy sequence in X is convergent, then (x, d) is said to be a complete 

complex valued metric space. 

Lemma 5: [1] Let (x, d) be a complex valued metric space and let {xn} be a sequence in X. 

Then {xn} converges to x if and only if │d (xn, x)│      as n  . 

Lemma 6: [1] Let (x, d) be a complex valued metric space and, let {xn} be a sequence in X. 

Then {xn} is a Cauchy sequence if and only if d (xn, xn+m) │    , as n  , where    . 

Remark 7: We obtain the following statements hold. 

(i) If z1  z2 and z2  z3 then z1  z3. (ii) If    , a, b  , and a ≤ b, then az   z. 

(iii) If 0   z1  z2, then │z1│ │z2│. 

Definition 8: [2]Let (X, d) be a complex valued metric space. Then an element (   )  𝑋  

𝑋 is said to be a common coupled fixed point of     𝑋  𝑋  𝑋 if   (   )   (   )  

   (   )   (   ). 

Example 9: Let 𝑋    and     𝑋  𝑋  𝑋 defined as  (   )   (
   

 
)       (   )  

 (
 

 
)              𝑋. Then (0, 0) and (1, 3) are common coupled fixed point of S and T 

 

3. Main Results  

In this section, we discuss the existence of common coupled fixed-point theorems for the 

generalized contractive mappings on the closed ball in complex valued metric spaces. 

Theorem 10: Let (X, d) be a complete complex vale metric space, and let the mappings 

    𝑋  𝑋  𝑋 satisfying the following condition 

 ( (   )  (   ))

   (   )  
  (   (   )) (   (   ))

   (   )
 

  (   (   )) (   (   )

   (   )
                    ( )

  

for all          (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ where A, B, C are nonnegative with A+B+C  1. 

| (    (     )   (    (     )|  (   )| | where   
 

[   ]
. Then S and T have a 

unique common coupled fixed point.     

 Proof: Let x0 and y0 be arbitrary in  (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

 Define x2k+1 = S(x2k , y2k ),      y2k+1 = S(y2k , x2k) 

 x2k+2 = T(x2k+1, y2k+1),  y2k+2 = T(y2k+1, x2k+1), for all k  0. 

We will prove that        (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for all      by the mathematical induction. 
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Using inequality (2) and the fact that,         
 

[   ]
  , we have | (    (     )  

 (    (     )|  | |. 

It implies that        (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅                  (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅                      (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , 

for some    . If j = 2k + 1, where            
   

 
                

          
   

 
, we obtain by using inequality (1) 

 (           )   ( (       )  (           )) 

   (         )  
  (     (       )) (       (           ))

   (         )

  
  (       (       )) (     (           ))

   (         )

 

 (           )     (         ) 

                              
  (         ) (           )

   (         )
  

  (           ) (         )

   (         )
 

 (           )    (         )  
  (         ) (           )

   (         )
       ( ) 

| (           )|   | (         )|  
 | (         )|| (           )|

|   (         )|
      ( ) 

                              | (         )|   | (           )| [
| (         )|

|   (         )|
] 

| (           )|   | (         )|   | (           )|                               

 | (           )[   ]    (         )| 

it follows that     | (           )|  
 

[   ]
| (         )|     ( ) 

Similarly,            | (           )|  
 

[   ]
| (         )|     ( )  

 (           )   ( (           )  (           )) 

                             ( (           )  (           ))  

   (           )  
  (          (           ))  (          (           ))

   (              )

  
  (          (           ))  (          (           ))

   (            )

 

    (           )  
  (              )  (            )

   (              )

 
  (            )  (              )

   (              )    ( )
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| (           )|   | (           )|  
 | (              )|| (           )|

|   (              )|
 ( ) 

                              | (           )|   | (           )| [
| (              )|

|   (              )|
] 

| (           )|   | (           )|   | (           )| 

    | (           )[   ]    (           )| 

it follows that     | (           )|  
 

[   ]
| (           )|     ( ) 

Similarly            | (           )|  
 

[   ]
| (           )|     ( ) 

Adding (4)-(9), we get  

| (           )|  | (           )|  
 

[   ]
| (         )|  

 

[   ]
| (         )| 

| (           )|  | (           )|

 
 

[   ]
| (           )|  

 

[   ]
| (           )|     (  ) 

If   
 

[   ]
  , then from (10), we get  

| (          )|  | (          )|   (| (          )|  | (          )|)  

                                                         (| (      )|  | (      )|), for all      

Now if | (          )|  | (          )|           

                         (  ) 

Now | (          )|  | (          )| 

               (| (       )|  | (       )|)    (| (         )|  | (         )|)                                                                                                                                                          

                (| (       )|  | (       )|)      (| (       )|  | (       )|), for all     

 (| (       )|  | (       )|)[           ]  (    )| |
(      )

   
 | |  

gives       (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Hence     (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for all     and  

| (          )|  | (          )|    (| (      )|  | (      )|)  

for all    . Without loss of generality, we take m > n, then  

| (      )|  | (      )|  (| (       )|  | (        )|)    

                                              (| (        )|  | (       )|) 

 [                     ]   [              ]   

∑                    
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This implies that the sequence      and      are Cauchy in   (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Since   (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is 

complete, there exists x, y   (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅  such that                      .  

We now show that     (   )       (   ) . We suppose on the contrary that   

 (   ) and    (   ), so that    (   (   ))           (   (   ))     

    (   (   ))    (       )   (       (   )) 

   (       )   ( (           )  (   )) 

  (       )    (       )  
  (       (           )) (   (   ))

   (       )

 
  (   (           )) (       (   ))

   (       )

 

  (       )    (       )  
  (            ) (   (   ))

   (       )

 
  (        ) (       (   ))

   (       )

 

        |  |  | (       )|   | (       )|  
 | (            )|| (   (   ))|

|   (       )|

 
 | (        )|| (       (   ))|

|   (       )|

 

By taking     , we get | (   (   ))|    which is contradiction so that    (   ). 

Similarly one can prove that    (   ). It follows that similarly that    (   ) and 

   (   ). So we have prove that (x, y) is a common fixed point of S and T. We now show 

that S and T have a unique common coupled fixed point.  

For this, assume that (     )   (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is a second common coupled fixed point of S and T.  

Then 

 (    )   ( (   )  (     ))    (    )  
  (   (   )) (    (     ))

   (    )

  
  (   (     )) (    (   ))

   (    )

 

 (    )    (    )  
  (      )  (        )

   (       )

  
  (       )  (        ))

   (       )

 

| (    )|   | (    )|   | (     )| |
 (        ))

   (       )
|   | (    )|   | (     )| 

| (    )|  [   ]| (    )|, which is a contradiction because A+B+C<1. Thus we get 

               which is prove the uniqueness of common coupled fixed point of S and 

T. 
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Corollary 11: Let (X, d) be a complete complex vale metric space, and let the mapping 

  𝑋  𝑋  𝑋 satisfying the following condition 

 ( (   )  (   ))    (   ) 

 
  (   (   )) (   (   ))

   (   )
 

  (   (   )) (   (   )

   (   )
 

for all          (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ where A, B, C are nonnegative with A+B+C  1. 

| (    (     )   (    (     )|  (   )| |, where   
 

[   ]
. Then T has a unique 

coupled fixed point. 

Corollary 12: Let (X, d) be a complete complex vale metric space, and let the mapping 

  𝑋  𝑋  𝑋 satisfying the following condition 

 (  (   )   (   ))    (   ) 

                                           
  (    (   )) (    (   ))

   (   )
 

  (    (   )) (    (   )

   (   )
 

for all          (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ where A, B, C are nonnegative with A+B+C  1. 

| (    (     )   (    (     )|  (   )| |, Where   
 

[   ]
 

Then T has a unique coupled fixed point. 
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