A SYSTEM OF NONLINEAR INTEGRAL EQUATIONS

ZAREEN A. KHAN
Department of Mathematics, Princess Noura Bint Abdurehman University, Riyadh-KSA

Copyright © 2014 Zareen A. Khan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract: The purpose of this paper is to establish some new variations on a system of nonlinear integral equations of one independent variable.

Keywords and phrases: Integral inequalities; Integral equations; one independent variable; partial differential equations; nondecreasing; nonincreasing.
2010Mathematics Subject Classification: 26D15, 26D07, 26D10, 34A40.

1. Introduction

The Gronwall type integral inequalities provide a necessary tool for the study of the theory of differential equations, integral equations and inequalities of the various types (please, see Gronwall [7] and Guiliano [8]).
Closely related to the foregoing first-order ordinary differential operators is the following result of Bellman [5]:

Lemma1: If the functions $g(t)$ and $u(t)$ are nonnegative for $\mathrm{t} \geq 0$, and if $\mathrm{c} \geq 0$, then the inequality

$$
u(t) \leq c+\int_{0}^{t} g(s) u(s) d s, \quad t \geq 0
$$

Implies that

$$
u(t) \leq c \exp \left(\int_{0}^{t} g(s) d s\right), \quad t \geq 0
$$

[^0]In analysing the dynamics of a physical system governed by certain differential and integral equations, one often needs some new kinds of inequalities[1-10].Green[6] proved the following interesting inequality, which can be used in the analysis of various problems in the theory of certain systems of simultaneous differential and integral equations.
Let k_{1}, k_{2} and μ be nonnegative constants and let f, g and $h_{i},(1,2,3,4)$ be nonnegative continuous functions defined for $t \in R_{+}$with h_{i} bounded such that

$$
\begin{aligned}
& f(t) \leq k_{1}+\int_{0}^{t} h_{1}(s) f(s) d s+\int_{0}^{t} e^{\mu s} h_{2}(s) g(s) d s \\
& g(t) \leq k_{2}+\int_{0}^{t} e^{-\mu s} h_{3}(s) f(s) d s+\int_{0}^{t} h_{4}(s) g(s) d s
\end{aligned}
$$

For all $t \in R_{+}$. Then there exists constants c_{1}, c_{2} and M_{1}, M_{2} such that

$$
f(t) \leq M_{1} e^{c_{1} t}, \quad g(t) \leq M_{2} e^{c_{2} t}
$$

For all $t \in R_{+}$.

2. Main Results:

Theorem 2.1: Let f, g, a, b, p and $h_{i},(1,2,3,4)$ be nonnegative continuous functions defined for $t \in R_{+}$with h_{i} bounded such that

$$
\begin{align*}
& f(t) \leq a(t)+p(t)\left[\int_{0}^{t} h_{1}(s) f(s) d s+\int_{0}^{t} e^{p \mu s} h_{2}(s) g(s) d s\right] \tag{1}\\
& g(t) \leq b(t)+p(t)\left[\int_{0}^{t} e^{-p \mu s} h_{3}(s) f(s) d s+\int_{0}^{t} h_{4}(s) g(s) d s\right] \tag{2}
\end{align*}
$$

For all $t \in R_{+}$.where μ be nonnegative constant and $p \geq 1$. Then

$$
\begin{gather*}
f(t) \leq e^{p \mu t} Q(t), \quad g(t) \leq Q(t) \\
Q(t)=m(t)+p(t) \int_{0}^{t} h(s) m(s) \exp \left[\int_{s}^{t} h(\partial) p(\partial) d \partial\right] d s \tag{3}
\end{gather*}
$$

Where

In which $m(t)=a(t)+b(t)$ and $h(t)=\max \left\{\left[h_{1}(t)+h_{3}(t)\right],\left[h_{2}(t)+h_{4}(t)\right]\right\}$ for all $t \in R_{+}$.
Proof: Multiplying both sides of (1) by $e^{-p \mu t}$, we get
$e^{-p \mu t} f(t) \leq a(t) e^{-p \mu t}+p(t)\left[\int_{0}^{t} e^{-p \mu s} h_{1}(s) f(s) d s+\int_{0}^{t} h_{2}(s) g(s) d s\right]$
Since t and μ are positive, we observe that $e^{-p \mu t}<1$. For $0 \leq s \leq t, 0 \geq-p \mu s \geq-p \mu t$ So $e^{-p \mu s} \geq e^{-p \mu t}$.Therefore (4) can be rewritten as
$e^{-p \mu t} f(t) \leq a(t)+p(t)\left[\int_{0}^{t} e^{-p \mu s} h_{1}(s) f(s) d s+\int_{0}^{t} h_{2}(s) g(s) d s\right]$
Now define
$V(t)=e^{-p \mu t} f(t)+g(t)$
By substituting from (2) and (5) in (6), we have
$V(t) \leq m(t)+p(t) \int_{0}^{t} h(s) V(s) d s$
Where $m(t)=a(t)+b(t)$ and $h(t)=\max \left\{\left[h_{1}(t)+h_{3}(t)\right],\left[h_{2}(t)+h_{4}(t)\right]\right\}$.
Now an application of Lemma1 in (7) with suitable modifications, yields
$Z(t) \leq \int_{0}^{t} h(s) m(s) \exp \left[\int_{s}^{t} h(\partial) p(\partial) d \partial\right] d s$

Since $V(t) \leq Z(t)$, therefore from (7) and (8), we get
$V(t) \leq m(t)+p(t) \int_{0}^{t} h(s) m(s) \exp \left[\int_{s}^{t} h(\partial) p(\partial) d \partial\right] d s$
Substituting the value of $V(t)$ in the right side of (9), takes the form
$e^{-p \mu t} f(t)+g(t) \leq m(t)+p(t) \int_{0}^{t} h(s) m(s) \exp \left[\int_{s}^{t} h(\partial) p(\partial) d \partial\right] d s$

By comparing both sides of (10), we have

$$
f(t) \leq e^{p \mu t} Q(t) \quad \text { and } \quad g(t) \leq Q(t)
$$

Where $Q(t)$ is defined as in (3).

Theorem 2.2: Let k_{1}, k_{2} and μ be nonnegative constants and let f, g and $h_{i},(1,2,3,4)$ be nonnegative continuous functions defined for $t \in R_{+}$with h_{i} bounded such that

$$
\begin{align*}
& f(t) \leq k_{1}+\int_{0}^{t} h_{1}(s) f(s) d s+\int_{0}^{t} e^{p \mu s} h_{2}(s) g^{p}(s) d s \tag{11}\\
& g(t) \leq k_{2}+\int_{0}^{t} e^{-p \mu s} h_{3}(s) f(s) d s+\int_{0}^{t} h_{4}(s) g^{p}(s) d s \tag{12}
\end{align*}
$$

For all $t \in R_{+}$. and $p \geq 1$, then there exists constants a_{1}, a_{2} and N_{1}, N_{2} such that

$$
f(t) \leq N_{1} e^{a_{1} t}, \quad g(t) \leq N_{2} e^{a_{2} t}
$$

where $N_{1}=k_{1}+k_{2}$ and $N_{2}=\left(k_{1}+k_{2}\right)^{\frac{1}{p}}$. Also $a_{1}=p \mu+R, a_{2}=\frac{R}{p}, R=h(s)$.
Proof: Multiplying both sides of (11) by $e^{-p \mu t}$, we get

$$
\begin{equation*}
e^{-p \mu t} f(t) \leq k_{1} e^{-p \mu t}+\int_{0}^{t} e^{-p \mu s} h_{1}(s) f(s) d s+\int_{0}^{t} h_{2}(s) g^{p}(s) \tag{13}
\end{equation*}
$$

Since t and μ are positive, we observe that $e^{-p \mu t}<1$. For $0 \leq s \leq t, 0 \geq-p \mu s \geq-p \mu t$ So $e^{-p \mu s} \geq e^{-p \mu t}$.Therefore (13) can be rewritten as
$e^{-p \mu t} f(t) \leq k_{1}+\int_{0}^{t} e^{-p \mu s} h_{1}(s) f(s) d s+\int_{0}^{t} h_{2}(s) g^{p}(s)$
Now define

$$
\begin{equation*}
V(t)=e^{-p \mu t} f(t)+g^{p}(t) \tag{15}
\end{equation*}
$$

By substituting from (12) and (14) in (15), we have
$V(t) \leq N_{1}+\int_{0}^{t} h(s) V(s) d s$
Where $N_{1}=k_{1}+k_{2}$ and $h(t)=\max \left\{\left[h_{1}(t)+h_{3}(t)\right],\left[h_{2}(t)+h_{4}(t)\right]\right\}$.
Now an application of Lemma1 in (16) with suitable modifications, yields
$Z(t) \leq N_{1} \exp \left[\int_{0}^{t} h(s) d s\right]$

Since $V(t) \leq Z(t)$, therefore from(15), (16) and (17), we get
$e^{-p \mu t} f(t)+g^{p}(t) \leq N_{1} \exp \left[\int_{0}^{t} h(s) d s\right]$

By comparing both sides of (18), we have

$$
f(t) \leq N_{1} e^{a_{1} t}, \quad g(t) \leq N_{2} e^{a_{2} t}
$$

where $N_{1}=k_{1}+k_{2}$ and $N_{2}=\left(k_{1}+k_{2}\right)^{\frac{1}{p}}$. Also $a_{1}=p \mu+R, a_{2}=\frac{R}{p}, R=h(s)$.

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] Agarwal R.P. On finite systems of differential inequalities, J. Math. Phys. Sci. 10 (1976), 277-288.
[2] Bainov D and Simeonov P. Integral Inequalities and Applications, Kluwer Academic Publishers Dordrecht, (1992).
[3] Beckenbach E.F and Bellman.R. Inequalities, Springer-Verlag, New York, (1961).
[4] Beesack P.R. Systems of multidimensional Volterra Integral Equations and Inequalities, Nonlinear Analysis: Theory, Methods, and Applications, 9(2) (1985), 1451-1486.
[5] Bellman R. The stability of solutions of linear differential equations, Duke Math. J, 10 (1943), 643-647.
[6] Greene D.E. An inequality for a class of integral systems, Proc. Amer. Math. Soc, 62 (1977),101-104.
[7] Gronwall T.H. Note on the derivatives with respect to a parameter of solutions of a system of differential equations, Ann. Math, 20(1919), 292-296.
[8] Guiliano L. Generalazzioni di un lemma di Gronwall, Rend. Accad. Lincei, (1956), 1264-1271.
[9] Langenhop C.E. Bounds on the norm of a solution of a general differential equation, Proc. Am. Math. Soc. 11 (1960), 795-799.
[10] Pachpatte B.G. Comparison theorems related to a certain inequality used in the theory of differential equations, Soochow. J. Math. 22 (1996), 383-394.

[^0]: *Corresponding author
 Received September 17, 2014

