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1. Introduction 

The Gronwall type integral inequalities provide a necessary tool for the study of the theory of 

differential equations,integral equations and inequalities of the various types (please, see 

Gronwall [7] and Guiliano [8]). 

Closely related to the foregoing first-order ordinary differential operators is the following result 

of Bellman [5]:  

Lemma1: If the functions )(tg and )(tu  are nonnegative for t ≥ 0, and if c ≥ 0, then the inequality 
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In analysing the dynamics of a physical system governed by certain differential and integral 

equations, one often needs some new kinds of inequalities[1-10].Green[6] proved the following 

interesting inequality, which can be used in the analysis of various problems in the theory of 

certain systems of simultaneous differential and integral equations. 

Let 21 , kk and  be nonnegative constants and let gf , and  4,3,2,1,ih be nonnegative continuous 

functions defined for Rt with 
ih bounded such that 
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For all Rt .Then there exists constants 21 ,cc and 21 , MM such that 
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2. Main Results: 

Theorem 2.1:Let pbagf ,,,, and  4,3,2,1,ih be nonnegative continuous functions defined for 

Rt with ih bounded such that 
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For all Rt .where  be nonnegative constant and 1p . Then  
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By substituting from (2) and (5) in (6),we have 
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Where  )()()( tbtatm  and     )()(,)()(max)( 4231 ththththth  .  

Now an application of Lemma1 in (7) with suitable modifications, yields                    
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Substituting the value of )(tV in the right side of (9) ,takes the form 
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By comparing both sides of (10), we have 

                   )()(         and )()(               
 

tQtgtQetf
tp




 



4                                                                         ZAREEN A. KHAN 

Where )(tQ is defined as in (3). 

Theorem 2.2: Let 21 , kk and  be nonnegative constants and let gf , and  4,3,2,1,ih be 

nonnegative continuous functions defined for Rt with 
ih bounded such that                         
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By substituting from (12) and (14) in (15),we have 
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Now an application of Lemma1 in (16) with suitable modifications, yields                    
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Since )()( tZtV  , therefore from(15), (16) and  (17),we get 
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