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1. Introduction

Complex valued metric spaces were introduced by Azam et.al.[1] in which they obtained

fixed point theorems for mappings satisfying various contractive conditions. Many researchers

Bhatt et al. [3], Sintunavarat and Kumam [10] and Mohanta et al. [11] have proved results in

these spaces including those for rational expressions which are meaningless in the context of
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cone metric spaces. The notion of b-metric spaces which are more general than metric spaces

was introduced by Czerwik [4] in 1998.

In 2013, Rao et al. [9] combined these concepts and introduced generalizations of these

spaces called Complex-valued b-metric spaces. They proved a theorem for four weakly com-

patible maps in a complete complex valued b-metric space. Later A.A.Mukeimar [2] obtained

the results of Azam et al. [1], S.Bhatt et al. [3] in the setting of the complex valued b-metric

space. Also Singh et al. [6], Dubey et al. [7], have obtained fixed point theorems for mapping

satisfying contractive conditions in complex valued b-metric spaces.

In this paper, we prove common fixed point theorems for four weakly compatible mappings

which satisfy a rational contractive condition in the complex valued b-metric space. Also we

obtain these results using the (E.A) property and the Common limit range (CLR) property in

complex valued b-metric spaces.

2. Preliminaries

Let us denote the set of complex numbers by C. Letz1,z2 ∈ C. We define a partial order -

on C as follows:

z1 - z2, iff Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2). Thus we can say that z1 - z2 if one of the

following holds:

(i) Re(z1) = Re(z2) and Im(z1) = Im(z2);

(ii) Re(z1)< Re(z2) and Im(z1) = Im(z2);

(iii) Re(z1) = Re(z2) and Im(z1)< Im(z2);

(iv) Re(z1)< Re(z2) and Im(z1)< Im(z2).

In particular we write z1 � z2 if z1 6= z2 and one of (ii), (iii), (iv) holds. Also we write z1 ≺ z2 if

only (iv) is satisfied.

Note that the following statements hold:

(i) 0- z1 � z2 implies that |z1|< |z2|;

(ii) z1 - z2 and z2 ≺ z3 implies that z1 ≺ z3;

(iii) 0- z1 - z2 implies that |z1| ≤ |z2|;
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(iv) a,b ∈ R and a≤ b implies that az- bz, for all z ∈ C.

Definition 2.1. [1] Let X be a nonempty set. If the mapping d : X × X → C satisfies the

conditions:

(i) 0- d(x,y), for all x,y ∈ X and d(x,y) = 0 if and only if x = y;

(ii) d(x,y) = d(y,x), for all x,y ∈ X ;

(iii) d(x,y)- d(x,z)+d(z,y), for all x,y,z ∈ X .

Then d is called a complex valued metric on X and (X ,d) is called a complex valued metric

space.

Definition 2.2. [9] Let X be a nonempty set and s ≥ 1, a given real number. A function

d : X×X → C satisfies the following conditions:

(i) 0- d(x,y), for all x,y ∈ X and d(x,y) = 0 if and only if x = y;

(ii) d(x,y) = d(y,x), for all x,y ∈ X ;

(iii) d(x,y)- s[d(x,z)+d(z,y)], for all x,y,z ∈ X .

Then d is called a complex valued b-metric on X and (X ,d) is called a complex valued b-metric

space.

Example 2.3. [9] Let X = [0,1], define the mapping d : X×X →C by d(x,y) = |x−y|2+ i|x−

y|2 for all x,y ∈ X . Then (X ,d) is a complex valued b-metric space with s = 2.

Definition 2.4.[9] Let (X ,d) be a complex valued b-metric space.

(i) A point x ∈ A is called a interior point of a set A ⊆ X , whenever there exists 0 ≺ r ∈ C

such that B(x,r) = {y ∈ X : d(x,y)≺ r} ⊆ A.

(ii) A point x ∈ X is called a limit point of a set A ⊆ X whenever for every 0 ≺ r ∈ C such

that B(x,r)∩ (X−A) 6= φ .

(iii) A subset B⊆ X is called open whenever each limit point of B is an interior point of B.

(iv) A subset B⊆ X is called closed whenever each limit point of B belongs to B.

(v) The family F = {B(x,r) : x∈ X and 0≺ r} is a subbasis for a topology on X . We denote

this complex topology by τc. Indeed, the topology τc is Hausdroff.

Definition 2.5. [9] Let (X ,d) be a complex valued b-metric space and let {xn} be a sequence in

X and x ∈ X .
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(i) If for every c ∈C,with 0 ≺ c, there exists n0 ∈ N, such that d(xn,x) ≺ c for all n > n0,

then {xn} is said to converge to x and x is a limit point of of {xn}. We denote this by

xn→ x as n→ ∞ or limx→∞ xn = x.

(ii) If for every c∈C, with 0≺ c, there exists n0 ∈N such that for all n> n0,d(xn,xn+m)≺ c,

where m ∈ N, then {xn} is said to be Cauchy sequence.

(iii) If every Cauchy sequence is convergent in (X ,d), then (X ,d) is called a complete com-

plex valued b-metric space.

Lemma 2.6. [9] Let (X ,d) be a complex valued b-metric space and let {xn} be a sequence in

X . Then {xn} converges to x if and only if |d(xn,x)| → 0 as n→ ∞.

Lemma 2.7. [9] Let (X ,d) be a complex valued b-metric space and let {xn} be a sequence in

X . Then {xn} is a Cauchy sequence if and only if |d(xn,xn+m)| → 0 as n→ ∞ where m ∈ N.

Definition 2.8. Let S and f be two self maps of a nonempty set X . If Sx = f x = y for some

x ∈ X , then x is called the coincidence point of S and f and y is called the point of coincidence

of S and f .

Definition 2.9. Two self mappings S and f are said to be weakly compatible if they commute

at their coincidence points, i.e. Sx = f x implies that S f x = f Sx.

3. A common fixed point theorem

In this section we prove common fixed point theorems for four weakly compatible maps in

complex valued b-metric spaces.

Theorem 3.1. Let S,T, f and g be four self mappings of a complete complex valued b-metric

space (X ,d) which satisfy the following,

d(Sx,Ty)- Ad( f x,gy)+B
d( f x,Sx)d(Ty,gy)

1+d( f x,gy)
+C

d( f x,Ty)d(Sx,gy)
1+d( f x,gy)

+D
d( f x,Sx)d( f x,Ty)+d(gy,Ty)d(gy,Sx)

1+d( f x,Ty)+d(gy,Sx)
(1)

for all x,y∈X where A,B,C and D are nonnegative real numbers such that s(A+C+D)+B< 1.

Here if,

(i) S(X)⊆ g(X) and T (X)⊆ f (X),
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(ii) the pairs (S, f ) and (T,g) are weakly compatible,

(iii) the subspace f (X) or g(X) is closed,

then S,T, f and g have a unique common fixed point.

Proof: We construct a sequence {yk} in X such that,

y2k = Sx2k = gx2k+1 and y2k+1 = T x2k+1 = f x2k+2,k ≥ 0,

where {x2k} is another sequence in X .

We show that {yk} is a Cauchy sequence in X .

Consider,

d(y2k,y2k+1) = d(Sx2k,T x2k+1)

- Ad( f x2k,gx2k+1)+B
d( f x2k,Sx2k)d(T x2k+1,gx2k+1)

1+d( f x2k,gx2k+1)

+C
d( f x2k,T x2k+1)d(Sx2k,gx2k+1)

1+d( f x2k,gx2k+1)

+D
d( f x2k,Sx2k)d( f x2k,T x2k+1)+d(gx2k+1,T x2k+1)d(gx2k+1,Sx2k)

1+d( f x2k,T x2k+1)+d(gx2k+1,Sx2k)
.

Therefore,

d(y2k,y2k+1)- Ad(y2k−1,y2k)+B
d(y2k−1,y2k)d(y2k+1,y2k)

1+d(y2k−1,y2k)
+C

d(y2k−1,y2k+1)d(y2k,y2k)

1+d(y2k−1,y2k)

+D
d(y2k−1,y2k)d(y2k−1,y2k+1)+d(y2k,y2k+1)d(y2k,y2k)

1+d(y2k−1,y2k+1)+d(y2k,y2k)
,

and,

|d(y2k,y2k+1)| ≤A|d(y2k−1,y2k)|+B|d(y2k+1,y2k)|
∣∣∣ d(y2k−1,y2k)

1+d(y2k−1,y2k)

∣∣∣+D|d(y2k−1,y2k)|
∣∣∣ d(y2k−1,y2k+1)

1+d(y2k−1,y2k+1)

∣∣∣ .
Since

∣∣∣ d(y2k−1,y2k)
1+d(y2k−1,y2k)

∣∣∣< 1,
∣∣∣ d(y2k−1,y2k+1)

1+d(y2k−1,y2k+1)

∣∣∣< 1,

|d(y2k,y2k+1)| ≤ A|d(y2k−1,y2k)|+B|d(y2k+1,y2k)|+D|d(y2k−1,y2k)|.

Hence,

|d(y2k,y2k+1)| ≤ A+D
1−B |d(y2k−1,y2k)|.

Let λ = A+D
1−B , then since s(A+C+D)+B < 1 and s≥ 1, we have λ < 1.

Therefore,

|d(y2k,y2k+1)| ≤ λ |d(y2k−1,y2k)|



6 SUNANDA R. PATIL AND J.N. SALUNKE

Similarly we obtain,

|d(y2k−1,y2k)| ≤ λ |d(y2k−2,y2k−1)|.

Consequently we conclude that,

|d(y2k,y2k+1)| ≤ λ |d(y2k−1,y2k)| ≤ λ 2|d(y2k−2,y2k−1)| ≤ λ 3|d(y2k−3,y2k−2)| ≤ ...≤ λ 2k|d(y0,y1)|.

Finally, we have,

|d(yk,yk+1)| ≤ λ
k|d(y0,y1)| (2)

For all m > n,m,n ∈ N, since s(A+C+D)+B < 1, we have, sλ = s (A+D)
1−B < 1, thus using the

triangular inequality,

|d(yn,ym)| ≤ s|d(yn,yn+1)|+ s|d(yn+1,ym)|

≤ s|d(yn,yn+1)|+ s2|d(yn+1,yn+2)|+ s2|d(yn+2,ym)|

≤ s|d(yn,yn+1)|+ s2|d(yn+1,yn+2)|+ s3|d(yn+2,yn+3)|+ s3|d(yn+3,ym)|

...

≤ s|d(yn,yn+1)|+ s2|d(yn+1,yn+2)|+ s3|d(yn+2,yn+3)|+ ...+

sm−n−1|d(ym−2,ym−1)|+ sm−n|d(ym−1,ym)|.

By using (2), we have,

|d(yn,ym)| ≤ sλ
n|d(y0,y1|+ s2

λ
n+1|d(y0,y1)|+ s3

λ
n+2|d(y0,y1)|+ ...+

sm−n−1
λ

m−2|d(y0,y1)|+ sm−n
λ

m−1|d(y0,y1)|

Hence,

|d(yn,ym)| ≤ (sλ
n + s2

λ
n+1 + s3

λ
n+2 + ...+ sm−n−1

λ
m−2 + sm−n

λ
m−1)|d(y0,y1)|

=
m−n

∑
i=1

si
λ

i+n−1|d(y0,y1)|.
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Therefore,

|d(yn,ym)| ≤
m−n

∑
i=1

si+n−1
λ

i+n−1|d(y0,y1)|

=
m−1

∑
t=n

st
λ

t |d(y0,y1)|

≤
∞

∑
t=n

(sλ )t |d(y0,y1)|

≤ (sλ )n

1− sλ
|d(y0,y1)|

Since sλ < 1,|d(yn,ym)| ≤ (sλ )n

1−sλ
|d(y0,y1)| → 0 as n→ ∞, for any m ∈ N.

Thus {yn} is a Cauchy sequence in X . Since X is complete, there exists a point z ∈ X such that,

lim
k→∞

Sx2k = lim
k→∞

gx2k+1 = lim
k→∞

T x2k+1 = lim
k→∞

f x2k+2 = z.

Assuming f (X) is a closed subspace of X , z ∈ f (X) and z = f u for some u ∈ X . Now we show

that Su = f u.

We have, using the triangular inequality,

d(Su,z)- s[d(Su,T x2k+1)+d(T x2k+1,z)].

Hence, by (1),

1
s

d(Su,z)- Ad( f u,gx2k+1)+B
d( f u,Su)d(T x2k+1,gx2k+1)

1+d( f u,gx2k+1)
+C

d( f u,T x2k+1)d(Su,gx2k+1)

1+d( f u,gx2k+1)

+D
d( f u,Su)d( f u,T x2k+1)+d(gx2k+1,T x2k+1)d(gx2k+1, f u)

1+d( f u,T x2k+1)+d(gx2k+1,Su)
+ sd(T x2k+1,z).

Thus,

1
s

d(Su,z)- Ad(z,gx2k+1)+B
d(z,Su)d(T x2k+1,gx2k+1)

1+d(z,gx2k+1)
+C

d(z,T x2k+1)d(Su,gx2k+1)

1+d(z,gx2k+1)

+D
d(z,Su)d(z,T x2k+1)+d(gx2k+1,T x2k+1)d(gx2k+1,Su)

1+d(z,T x2k+1)+d(gx2k+1,Su)
+ sd(T x2k+1,z).

Therefore, as k→ ∞, we have,

1
s

d(Su,z)- 0

which implies that |d(Su,z)|= 0 and that Su = z. Thus Su = f u = z and u is a coincidence point

of f and S.
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Since S(X) ⊆ g(X) and z ∈ g(X), there exists point v ∈ X , such that Su = gv. Thus Su = f u =

gv = z.

Consider, by the triangular inequality,

d(z,T v)- s[d(z,Sx2k)+d(Sx2k,T v)]

i.e.

1
s

d(z,T v)- d(z,Sx2k)+d(Sx2k,T v).

Using (1), we have,

1
s

d(z,T v)- d(z,Sx2k)+Ad( f x2k,gv)+B
d( f x2k,Sx2k)d(T v,gv)

1+d( f x2k,gv)
+C

d( f x2k,T v)d(Sx2k,gv)
1+d( f x2k,gv)

+D
d( f x2k,Sx2k)d( f x2k,T v)+d(gv,T v)d(gv,Sx2k)

1+d( f x2k,T v)+d(gv,Sx2k)
.

Thus,

1
s

d(z,T v)- d(z,Sx2k)+Ad( f x2k,z)+B
d( f x2k,Sx2k)d(T v,z)

1+d( f x2k,z)
+C

d( f x2k,T v)d(Sx2k,z)
1+d( f x2k,z)

+D
d( f x2k,Sx2k)d( f x2k,T v)+d(z,T v)d(z,Sx2k)

1+d( f x2k,T v)+d(z,Sx2k)
.

As k→ ∞, we get,

1
s

d(z,T v)- 0.

Hence it implies that |d(z,T v)|= 0 and T v = z. Thus Su = f u = gv = T v = z.

Since S and f are weakly compatible, S f u = f Su and Sz = f z.

We prove that z is a fixed point of S i.e. Sz = z, suppose not, Sz 6= z, then again by the triangular

inequality,

d(Sz,z)- s[d(Sz,T x2k+1)+d(T x2k+1,z)].

By (1) we get,

1
s

d(Sz,z)- Ad( f z,gx2k+1)+B
d( f z,Sz)d(T x2k+1,gx2k+1)

1+d( f z,gx2k+1)
+C

d( f z,T x2k+1)d(Sz,gx2k+1)

1+d( f z,gx2k+1)

+D
d( f z,Sz)d( f z,T x2k+1)+d(gx2k+1,T x2k+1)d(gx2k+1,Sz)

1+d( f z,T x2k+1)+d(gx2k+1,Sz)
+d(T x2k+1,z).
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As k→ ∞,

1
s

d(Sz,z)- Ad(Sz,z)+B
d(Sz,Sz)d(z,z)

1+d(Sz,z)
+C

d(Sz,z)d(Sz,z)
1+d(Sz,z)

+D
d(Sz,Sz)d(Sz,z)+d(z,z)d(z,Sz)

1+d(Sz,z)+d(z,Sz)
+d(z,z).

Hence,

1
s
|d(Sz,z)| ≤ A|d(Sz,z)|+C|d(Sz,z)|.

Thus,

|d(Sz,z)| ≤ s(A+C)|d(Sz,z)|.

Since s(A+C)< 1, it implies that |d(Sz,z)|= 0 and Sz = z. Hence f z = Sz = z.

Since T and g are weakly compatible, T gv = gT v i.e. T z = gz. We can prove in a similar way

that T z = z. Hence Sz = f z = T z = gz = z and z is a common fixed point of S,T, f and g.

Similar argument holds if we assume that g(X) is a closed subspace of X .

To prove uniqueness of the common fixed point, suppose there is another point z1 ∈ X such that,

Sz1 = T z1 = f z1 = gz1 = z1.

Again, using (1),

d(z,z1) = d(Sz,T z1)- Ad( f z,gz1)+B
d( f z,Sz)d(T z1,gz1)

1+d( f z,gz1)
+C

d( f z,T z1)d(Sz,gz1)

1+d( f z,gz1)

+D
d( f z,Sz)d( f z,T z1)+d(gz1,T z1)d(gz1,Sz)

1+d( f z,T z1)+d(gz1,Sz)
.

Hence,

d(z,z1)- Ad(z,z1)+B
d(z,z)d(z,z1)

1+d(z,z1)
+C

d(z,z1)d(z,z1)

1+d(z,z1)

+D
d(z,z)d(z,z1)+d(z1,z1)d(z1,z)

1+d(z,z1)+d(z,z1)
.

Thus,

|d(z,z1)| ≤ A|d(z,z1)|+C|d(z,z1)|
∣∣∣∣ d(z,z1)

1+d(z,z1)

∣∣∣∣ ,
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which implies that,

|d(z,z1)| ≤ (A+C)|d(z,z1)|.

As s(A+C+D)+B < 1 and s≥ 1, A+C < 1 and |d(z,z1)|= 0, which implies that z = z1 and

S,T, f and g have a unique common fixed point in X . �

Corollary 3.2. Let S and f be two self mappings of a complete complex valued b-metric space

(X ,d) which satisfy the following,

d(Sx,Sy)- Ad( f x, f y)+B
d( f x,Sx)d(Sy, f y)

1+d( f x, f y)
+C

d( f x,Sy)d(Sx, f y)
1+d( f x, f y)

+D
d( f x,Sx)d( f x,Sy)+d( f y,Sy)d( f y,Sx)

1+d( f x,Sy)+d( f y,Sx)

for all x,y∈X where A,B,C and D are nonnegative real numbers such that s(A+C+D)+B< 1.

Here if,

(i) S(X)⊆ f (X),

(ii) the pair (S, f ) is weakly compatible,

(iii) the subspace f (X) is closed,

then S and f have a unique common fixed point.

Proof: Taking T = S and g = f in Theorem 3.1, we get the proof. �

Corollary 3.3. Let S,T, f and g be four self mappings of a complete complex valued b-metric

space (X ,d) which satisfy the following

d(Sx,Ty)- Ad( f x,gy)+B
d( f x,Sx)d(Ty,gy)

1+d( f x,gy)
+C

d( f x,Ty)d(Sx,gy)
1+d( f x,gy)

for all x,y ∈ X where A,B and C are nonnegative real numbers such that s(A+C)+B < 1. Here

if,

(i) S(X)⊆ g(X) and T (X)⊆ f (X),

(ii) the pairs (S, f ) and (T,g) are weakly compatible,

(iii) the subspace f (X) or g(X) is closed,

then S,T, f and g have a unique common fixed point.

Proof: The result is obtained by putting D = 0 in Theorem 3.1 which is similar to Theorem 3.1

of [6]. �
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Corollary 3.4. Let S,T, f and g be four self mappings of a complete complex valued b-metric

space (X ,d) which satisfy the following

d(Sx,Ty)- Ad( f x,gy)

for all x,y ∈ X where A is nonnegative real number such that sA < 1. Here if,

(i) S(X)⊆ g(X) and T (X)⊆ f (X),

(ii) the pairs (S, f ) and (T,g) are weakly compatible,

(iii) the subspace f (X) or g(X) is closed,

then S,T, f and g have a unique common fixed point.

Proof:Putting B =C = D = 0, in Theorem 3.1 we get the required result. �

Example 3.5. Let (X ,d) be a complex valued b-metric space, where X = [0,1] and d : X×X→

C is defined by d(x,y) = |x− y|2 + i|x− y|2. To show that (X ,d) is a complex valued b-metric

space with s = 2 let us verify the triangular inequality.

d(x,y) = |x− y|2 + i|x− y|2

- |(x− z)+(z− y)|2 + i|(x− z)+(z− y)|2

- [|x− z|2 + |z− y|2 +2|x− z||z− y|]+ i[|x− z|2 + |z− y|2 +2|x− z||z− y|

- [|x− z|2 + |z− y|2 + |x− z|2 + |z− y|2]+ i[|x− z|2 + |z− y|2 + |x− z|2 + |z− y|2]

- [|x− z|2 + i|x− z|2]+ [|z− y|2 + i|z− y|2]

- 2[d(x,z)+d(z,y)].

Here s = 2. We define mappings S,T, f and g as Sx = x
6 ,T x = x2

9 , f x = x
2 and gx = x2

3 .

d(Sx,Ty) = |Sx−Ty|2 + i|Sx−Ty|2

=

∣∣∣∣x6 − y2

9

∣∣∣∣2 + i
∣∣∣∣x6 − y2

9

∣∣∣∣2
=

1
9

[∣∣∣∣x2 − y2

3

∣∣∣∣2 + i
∣∣∣∣x2 − y2

3

∣∣∣∣2
]
.
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d( f x,gy) = | f x−gy|2 + i| f x−gy|2

=

∣∣∣∣x2 − y2

3

∣∣∣∣2 + i
∣∣∣∣x2 − y2

3

∣∣∣∣2 .
Hence,

d(Sx,Ty) =
1
9

d( f x,gy).

d(Sx,Ty)-
1

10
d( f x,gy).

We have all the conditions of Corollary 3.4 with A = 1
10 and sA = 2. 1

10 = 1
5 < 1. Hence 0 ∈ X is

the unique common fixed point of S,T, f and g. �

4. Fixed point results for mappings satisfying the (E.A) and (CLR) proper-
ties

Common fixed point theorems for mappings satisfying the (E.A) property and the (CLR)

property in complex valued metric spaces are proved by S.Chandok and D.Kumar [5], Manoj

Kumar et.al.[8] and S.Shukla and S.Pagey [12]. We aim to extend these concepts in the complex

valued b-metric spaces by proving Theorem 3.1 using the (E.A) and common limit range (CLR)

properties. These properties relax the assumption of completeness of X or completeness of any

of the range subspaces.

Following Verma et.al.[13], the definition of mappings satisfying property (E.A) in context

of complex valued b-metric space is as follows:

Definition 4.1. [13] Let S,T : X → X be two selfmappings of a complex valued b-metric space

(X ,d). The pair is said to satisfy (E.A.) property if there exists a sequence {xn} in X such that

limn→∞ Sxn = limn→∞ T xn = t, for some t ∈ X .

The (E.A.) property and weak compatibility are shown to be independent in [13].

Definition 4.2. [14] The self mappings S,T : X → X are said to satisfy the common limit in the

range of S property (CLRS) property if limn→∞ Sxn = limn→∞ T xn = Sx, for some x ∈ X .

We now prove a theorem in the framework of complex valued b-metric spaces in which the

mappings satisfy the property (E.A).
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Theorem 4.3. Let (X ,d) be a complex valued b-metric space and S,T, f and g be self mappings

of X which satisfy the following:

d(Sx,Ty)- Ad( f x,gy)+B
d( f x,Sx)d(Ty,gy)

1+d( f x,gy)
+C

d( f x,Ty)d(Sx,gy)
1+d( f x,gy)

+D
d( f x,Sx)d( f x,Ty)+d(gy,Ty)d(gy,Sx)

1+d( f x,Ty)+d(gy,Sx)
(3)

for all x,y ∈ X and A,B,C and D are nonnegative numbers such that A+C < 1. Also if,

(i) S(X)⊆ g(X) and T (X)⊆ f (X),

(ii) the pairs (S, f ) and (T,g) are weakly compatible,

(iii) one of the pairs (S, f ) or (T,g) satisfy the property (E.A ),

(iv) the subspace f (X) or g(X) is closed,

then S,T, f and g have a unique common fixed point.

Proof: Suppose the pair (T,g) satisfies the (E.A) property, then there exists a sequence {xn} in

X such that limn→∞ T xn = limn→∞ gxn = t, for some t ∈ X . Since T (X) ⊆ f (X), there exists a

sequence {yn} in X such that T xn = f yn, hence limn→∞ f yn = t.

We claim that limn→∞ Syn = t.

Suppose that limn→∞ Syn = t∗ 6= t, then from (3) we get,

d(Syn,T xn)- Ad( f yn,gxn)+B
d( f xn,Syn)d(T xn,gxn)

1+d( f yn,gxn)
+C

d( f yn,T xn)d(Syn,gxn)

1+d( f yn,gxn)
+

D
d( f yn,Syn)d( f yn,T xn)+d(gxn,T xn)d(gxn,Syn)

1+d( f yn,T xn)+d(gxn,Syn)
.

As n→ ∞,

d(t∗, t)- Ad(t, t)+B
d(t, t∗)d(t, t)

1+d(t, t)
+C

d(t, t)d(t∗, t)
1+d(t, t)

+D
d(t, t∗)d(t, t)+d(t, t)d(t, t∗)

1+d(t, t)+d(t, t∗)
.

Thus, d(t∗, t)- 0, i.e. |d(t∗, t)|= 0 and t∗ = t.

Hence, limn→∞ Syn = limn→∞ T xn = t. Suppose that f (X) is a closed subspace of X , then t = f u,

for some u ∈ X .

Thus, limn→∞ Syn = limn→∞ T xn = limn→∞ f yn = limn→∞ gxn = t = f u.

Now we claim that Su = f u.
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From (3), we get,

d(Su,T xn)- Ad( f u,gxn)+B
d( f u,Su)d(T xn,gxn)

1+d( f u,gxn)
+C

d( f u,T xn)d(Su,gxn)

1+d( f u,gxn)
+

D
d( f u,Su)d( f u,T xn)+d(gxn,T xn)d(gxn,Su)

1+d( f u,T xn)+d(gxn,Su)
.

As n→ ∞, we have,

d(Su, t)- Ad(t, t)+B
d(t,Su)d(t, t)

1+d(t, t)
+C

d(t, t)d(Su, t)
1+d(t, t)

+D
d(t,Su)d(t, t)+d(t, t)d(t,Su)

1+d(t, t)+d(t,Su)
.

Hence |d(Su, t)|= 0 which implies that Su = t, thus f u = Su = t and u is a coincidence point of

f and S.

Since the pair (S, f ) is weakly compatible, we have S f u = f Su and St = f t. Now since S(X)⊆

g(X), there exists v in X such that Su = gv. Thus Su = f u = gv = t.

We claim that v is a coincidence point of T and g i.e. gv = T v = t.

From (3), we get,

d(Su,T v)- Ad( f u,gv)+B
d( f u,Su)d(T v,gv)

1+d( f u,gv)
+C

d( f u,T v)d(Su,gv)
1+d( f u,gv)

+

D
d( f u,Su)d( f u,T v)+d(gv,T v)d(gv,Su)

1+d( f u,T v)+d(gv,Su)
.

Thus,

d(t,T v)- Ad(t, t)+B
d(t, t)d(T v, t)

1+d(t, t)
+C

d(t,T v)d(t, t)
1+d(t, t)

+D
d(t, t)d(t,T v)+d(t,T v)d(t, t)

1+d(t,T v)+d(t, t)
.

Thus |d(t,T v)|= 0 which implies that T v = t. Hence gv = T v = t and v is a coincidence point

of g and T .

Since T and g are weakly compatible we have, gT v = T gv i.e. gt = Tt.

We claim that Tt = t. From (3) we have,

d(t,Tt) = d(Su,Tt)- Ad( f u,gt)+B
d( f u,Su)d(Tt,gt)

1+d( f u,gt)
+C

d( f u,Tt)d(Su,gt)
1+d( f u,gt)

+

D
d( f u,Su)d(Su,Tt)+d(gt,Tt)d(gt,Su)

1+d( f u,Tt)+d(gt,Su)
.
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i.e.

d(t,Tt)- Ad(t,Tt)+B
d(t, t)d(Tt,Tt)

1+d(t,Tt)
+C

d(t,Tt)d(t,Tt)
1+d(t,Tt)

+D
d(t, t)d(t,Tt)+d(Tt,Tt)d(Tt, t)

1+d(t,Tt)+d(Tt, t)
.

Therefore,

|d(t,Tt)| ≤ A|d(t,Tt)|+C|d(t,Tt)|
∣∣∣∣ d(t,Tt)
1+d(t,Tt)

∣∣∣∣ .
Since

∣∣∣ d(t,Tt)
1+d(t,Tt)

∣∣∣< 1,

we get,

|d(t,Tt)| ≤ (A+C)|d(t,Tt)|.

As A+C < 1, |d(t,Tt)| = 0 and t = Tt i.e. gt = Tt = t. We can show in a similar way that

St = t i.e. f t = St = t.

So St = Tt = f t = gt = t and t is a common fixed point of S,T, f and g.

To prove uniqueness of the fixed point, let us assume that there in another point w such that

Sw = Tw = f w = gw = w.

From (3), we have,

d(w, t) = d(Sw,Tt)- Ad( f w,gt)+B
d( f w,Sw)d(Tt,gt)

1+d( f w,gt)
+C

d( f w,Tt)d(Sw,gt)
1+d( f w,gt)

+D
d( f w,Sw)d(Sw,Tt)+d(gt,Tt)d(gt,Sw)

1+d( f w,Tt)+d(gt,Sw)
.

Hence,

d(w, t)- Ad(w, t)+B
d(w,w)d(t, t)

1+d(w, t)
+C

d(w, t)d(w, t)
1+d(w, t)

+D
d(w,w)d(w, t)+d(t, t)d(t,w)

1+d(w, t)+d(t,w)
.

Thus,

|d(w, t)| ≤ A|d(w, t)|+C|d(w, t)|
∣∣∣∣ d(w, t)
1+d(w, t)

∣∣∣∣ .
Since

∣∣∣ d(w,t)
1+d(w,t)

∣∣∣< 1, we have,

|d(w, t)| ≤ (A+C)|d(w, t)|.
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As A+C < 1 , it implies that |d(w, t)| = 0 i.e. w = t and the mappings S,T, f and g have a

unique common fixed point in X .

The proof is similar assuming that g(X) is a closed subspace of X . Also similar result can be

obtained if the pair (S, f ) satisfies the property (E.A). �

Corollary 4.4. Let (X ,d) be a complex valued b-metric space and S,T, f and g be self mappings

of X which satisfy the following:

d(Sx,Ty)- Ad( f x,gy)

for all x,y ∈ X and A is a nonnegative number such that A < 1. Also if,

(i) S(X)⊆ g(X) and T (X)⊆ f (X),

(ii) the pairs (S, f ) and (T,g) are weakly compatible,

(iii) one of the pairs (S, f ) or (T,g) satisfy the property (E.A),

(iv) the subspace f (X) or g(X) is closed,

then S,T, f and g have a unique common fixed point.

Proof. By taking B =C = D = 0 in Theorem 4.3, we get the result. �

Example 4.5. Let (X ,d) be a complex valued b-metric space, where X = [0,1] and d : X×X→

C is defined by d(x,y) = |x− y|2 + i|x− y|2. In Example 3.5, we have shown that (X ,d) is a

complex valued b-metric space with s = 2.

We define mappings S,T, f and g as Sx = x
6 ,T x = x2

9 , f x = x
2 and gx = x2

3 . Here SX =
[
0, 1

6

]
⊆[

0, 1
3

]
= g(X) and T X =

[
0, 1

9

]
⊆
[
0, 1

2

]
= f (X). Also the pairs (T,g) and (S, f ) are weakly

compatible pairs.

Consider the sequence {xn} = {1
n},n ∈ N.

Clearly limn→∞ Sxn = limn→∞ f xn = 0, and 0 ∈ X . Hence S and f satisfy the property (E.A).

Also limn→∞ T xn = limn→∞ gxn = 0, 0∈X , and the mappings T and g satisfy the property (E.A).

Hence as discussed in Example 3.5, here d(Sx,Ty) = 1
9d( f x,gy)

i.e. d(Sx,Ty)- 1
10d( f x,gy).

Hence all the conditions of Corollary 4.4 are fulfilled for A = 1
10 and 0∈ X is unique common

fixed point of the mappings S,T, f and g. �
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We now prove a theorem in which the selfmappings of X satisfy the common limit range

(CLR) property.

Theorem 4.6. Let (X ,d) be a complex valued b-metric space and S,T, f and g be self mappings

of X which satisfy the following:

d(Sx,Ty)- Ad( f x,gy)+B
d( f x,Sx)d(Ty,gy)

1+d( f x,gy)
+C

d( f x,Ty)d(Sx,gy)
1+d( f x,gy)

+D
d( f x,Sx)d( f x,Ty)+d(gy,Ty)d(gy,Sx)

1+d( f x,Ty)+d(gy,Sx)
(4)

for all x,y ∈ X and A,B,C and D are nonnegative numbers such that A+C < 1. Also if,

(i) S(X)⊆ g(X) and T (X)⊆ f (X),

(ii) the pairs (S, f ) and (T,g) are weakly compatible,

(iii) the pair (S, f ) satisfies the (CLRS) property or (T,g) satisfies the (CLRT ) property,

then S,T, f and g have a unique common fixed point.

Proof. Suppose the pair T and g satisfies the (CLRT ) property, then there exists sequence

{xn} in X such that,

limn→∞ T xn = limn→∞ gxn = T x

for some x ∈ X .

Since T (X)⊆ f (X), we have T x = f u for some u ∈ X .

We claim that Su = f u = t,say.

From (4), we have,

d(Su,T xn)- Ad( f u,gxn)+B
d( f u,Su)d(T xn,gxn)

1+d( f u,gxn)
+C

d( f u,T xn)d(Su,gxn)

1+d( f u,gxn)

+D
d( f u,Su)d( f u,T xn)+d(gxn,T xn)d(gxn,Su)

1+d( f u,T xn)+d(gxn,Su)
.

As n→ ∞, we have,

d(Su,T x)- Ad( f u,T x)+B
d( f u,Su)d(T x,T x)

1+d( f u,T x)
+C

d( f u,T x)d(Su,T x)
1+d( f u,T x)

+D
d( f u,Su)d( f u,T x)+d(T x,T x)d(T x,Su)

1+d( f u,T x)+d(T x,Su)
.
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Since f u = T x,

d(Su,T x)- Ad(T x,T x)+B
d(T x,Su)d(T x,T x)

1+d(T x,T x)
+C

d(T x,T x)d(Su,T x)
1+d(T x,T x)

+D
d(T x,Su)d(T x,T x)+d(T x,T x)d(T x,Su)

1+d(T x,T x)+d(T x,Su)
.

Thus,

d(Su,T x)- 0.

Hence, |d(Su,T x)|= 0 which implies that Su = T x i.e. Su = T x = f u = t.

Since S and f are weakly compatible, S f u = f Su i.e. St = f t.

Also S(X)⊆ g(X), so there exists v in X such that Su = gv. Therefore Su = f u = gv = t.

Further we show that v is a coincidence point of T and g i.e. gv = T v = t.

Now from (4), we get,

d(Su,T v)- Ad( f u,gv)+B
d( f u,Su)d(T v,gv)

1+d( f u,gv)
+C

d( f u,T v)d(Su,gv)
1+d( f u,gv)

+D
d( f u,Su)d( f u,T v)+d(gv,T v)d(gv,Su)

1+d( f u,T v)+d(gv,Su)
.

Hence,

d(t,T v)- Ad(t, t)+B
d(t, t)d(T v, t)

1+d(t, t)
+C

d(t,T v)d(t, t)
1+d(t, t)

+D
d(t, t)d(t,T v)+d(t,T v)d(t, t)

1+d(t,T v)+d(t, t)
.

Therefore |d(t,T v)|= 0 which implies that T v = t i.e. T v = gv = t and v is a coincidence point

of T and g.

Further since (T,g) is a weakly compatible pair, we have gT v = T gv and hence gt = Tt. We

claim that Tt = t. From (4), we get,

d(Su,Tt)- Ad( f u,gt)+B
d( f u,Su)d(Tt,gt)

1+d( f u,gt)
+C

d( f u,gt)d(Su,gt)
1+d( f u,gt)

+D
d( f u,Su)d( f u,Tt)+d(gt,Tt)d(gt,Su)

1+d( f u,Tt)+d(gt,Su)
.
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Hence,

d(t,Tt)- Ad(t,Tt)+B
d(t, t)d(Tt,Tt)

1+d(t,Tt)
+C

d(t,Tt)d(t,Tt)
1+d(t,Tt)

+D
d(t, t)d(t,Tt)+d(Tt,Tt)d(Tt, t)

1+d(t,Tt)+d(Tt, t)
,

which implies that,

|d(t,Tt)| ≤ (A+C)|d(t,Tt)|.

Hence as A+C < 1, |d(t,Tt)|= 0 i.e. Tt = t. Thus Tt = gt = t.

In a similar way we can show that St = t i.e. St = f t = t.

Hence Tt = St = f t = gt = t and t is a common fixed point of S,T, f and g.

To show that the fixed point is unique, let us assume that there exists another point w such that

Sw = Tw = f w = gw = w. Then by (4),

d(t,w) = d(St,Tw)- Ad( f t,gw)+B
d( f t,St)d(Tw,gw)

1+d( f t,gw)
+C

d( f t,gw)d(St,gw)
1+d( f t,gw)

+D
d( f t,St)d( f t,Tw)+d(gw,Tw)d(gw,St)

1+d( f t,Tw)+d(gw,St)
,

i.e.

d(t,w)- Ad(t,w)+B
d(t, t)d(w,w)

1+d(t,w)
+C

d(t,w)d(t,w)
1+d(t,w)

+D
d(t, t)d(t,w)+d(w,w)d(w, t)

1+d(t,w)+d(w, t)
.

Hence,

|d(t,w)| ≤ (A+C)|d(t,w)|.

Since A+C < 1, |d(t,w)|= 0 and t = w which proves the uniqueness of the fixed point.

In a similar manner, we can prove that if the pair (S, f ) satisfies the (CLRS) property, then

the mappings S,T, f and g have a unique common fixed point.
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