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Abstract. Consider a two point boundary value problem for fractional difference equation.


−∆µ x(t) = f (t +µ−1,x(t +µ−1)),

x(µ−2) = 0,

x(µ +b+1) = g(x),

where t ∈ [0,b]N0:={0,1,...,b}, f : [µ − 1, . . .µ + b + 1]Nµ−2 ×R→ R is continuous function, g ∈ C
(
[µ − 2,µ +

b + 1]Nµ−2 ,R
)

is a functional and 1 < µ < 2. For example, g(x) has the form g(x) = ∑
n
i=1 cix(ti), where ti ∈

[µ−2,µ +b+1]Nµ−2 and each ci ∈R. Existence and uniqueness of the solutions of (1.1) are established using the

contraction mapping theorem and krasnosel’skii theorem. Examples are provided to illustrate the result.
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In recent years, fractional difference equations have been of great interest. The researchers

started doing research in the field of fractional difference equations motivated by the concepts

of fractional differential equations. Fractional difference equations have various applications in

the field of science and engneering. They are used in physics, chemistry, mechanics, control

theory, signals and electrical circuits.

In particular, fractional differential equations, fractional calculus and fractional difference

equations appear in the field of oncology, references there in [1,2,3].

In [4], Goodrich studied the following FBVP with non-local conditions,

−∆νy(t) = f (t +ν−1,y(t +ν−1)),

y(ν−2) = g(x), y(ν +b) = 0.

In [5], Atici and Eloe solved the two-point boundary value problem for a finite fractional

difference equations (FBVP) of the form,

−∆νy(t) = f (t +ν−1,y(t +ν−1)),

y(ν−2) = 0, y(ν +b+1) = 0,

where 1 < ν ≤ 2.

In [6], Goodrich also derived first Green’s function for the three point nonlinear discrete

FBVP

−∆νy(t) = f (t +ν−1,y(t +ν−1)),

y(ν−2) = 0, αy(ν + k) = y(ν +b),

where ν ∈ (1,2], α ∈ [0,1] k ∈ [−1,b−1]Z.

Motivated by these papers and by refering the papers [7-12], the two-point boundary value

problem of fractional difference equations (FBVP) has been presented, which has the form,


−∆µx(t) = f (t +µ−1,x(t +µ−1)),

x(µ−2) = 0,

x(µ +b+1) = g(x),

(1.2)
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where t ∈ [0,b]N0:={0,1,...,b}, f : [µ−2, . . .µ +b+1]Nµ−2×R→ R is continuous function, g ∈

C
(
[µ − 2,µ + b+ 1]Nµ−2,R

)
is a functional and 1 < µ < 2. For example, g(x) has the form

g(x) = ∑
n
i=1 cix(ti), where ti ∈ [µ−2,µ +b+1]Nµ−2 and each ci ∈ R.

Section 2 provids the basic definitions and Lemmas of fractional difference equations which

are useful in the following sequel.

Section 3 obtains the sufficient conditions for the uniqueness solutions of two-point boundary

value problem (1.1) using contraction mapping theorem.

Section 4 presents the sufficient conditions for the existence of positive solutions of (1.1)

using krasnosel’skii theorem.

Section 5 obtains the sufficient conditions for nonexistence of positive solutions of problem

(1.1).

In section 6, examples are given to illustrate the results of FBVP (1.1).

2. Preliminaries

Definition 1.1. [13] Define tµ := Γ(t+1)
Γ(t+1−µ) for any t and µ, for which the right-hand side is

defined. If t +1−µ is a pole of the gamma function and t +1 is not a pole, then tµ = 0.

Definition 1.2. [7] The µ th fractional sum of a function f , for µ > 0, is defined by

∆
−µ f (t;a) :=

1
Γ(µ)

t−µ

∑
s=a

(t− s−1)µ−1 f (s)

for t ∈ {a+ µ,a+ µ + 1, . . .} := Na+µ . Also define the µ th fractional difference for µ > 0 by

∆µ f (t) := ∆N∆µ−N f (t), where t ∈ Na+µ and µ ∈ N is chosen so that o≤ N−1 < µ ≤ N.

Lemma 1.3. [7] Let t and µ be any numbers for which tµ and tµ−1 are defined. Then ∆tµ =

µtµ−1.

Lemma 1.4. [13] Let 0 ≤ N− 1 < µ ≤ N. Then ∆−µ∆µx(t) = x(t)+ c1tµ−1 + c2tµ−2 + . . .+

cNtµ−N , for some ci ∈ R, with 1≤ i≤ N.

Lemma 1.5. [4] For t and s, for which both (t− s−1)µ and (t− s−2)µ are defined, find that

∆s[(t− s−1)µ ] =−µ(t− s−1)µ−1.

Lemma 1.6. [14] If t ≤ r, then tα ≤ rα for any α > 0.
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Theorem 1.7. Let h : [µ−1, . . .µ +b+1]Nµ−1 →R and g : Rb+3→R be given. A function x is

a solution of the discrete FBVP 
−∆µx(t) = h(t +µ−1),

x(µ−2) = 0,

x(µ +b+1) = g(x),

(2.1)

where t ∈ [0,b]N0, if and only if x(t), t ∈ [µ−2,µ +b+1]Nµ−2 has the form,

x(t) =
b

∑
s=0

G(t,s)h(s+µ−1)+
g(x)tµ−1

(µ +b+1)µ−1 ,

where G(t,s) = 1
Γµ


tµ−1(µ+b−s)µ−1

(µ+b+1)µ−1 − (t− s−1)µ−2 0≤ s≤ t−µ +2≤ b,

tµ−1(µ+b−s)µ−1

(µ+b+1)µ−1 0≤ t−µ +2≤ s≤ b.

Proof. Consider a function that is the general solution of (1.1),

x(t) =−∆
−µh(t +µ−1)+ c1tµ−1 + c2tµ−2,

where t ∈ [µ−2,µ +b+1]Nµ−2 . Now applying boundary condition x(µ−2) = 0 implies that

x(µ−2) =−∆
−µh(t)t=µ−2 + c1(µ−2)µ−1 + c2(µ−2)µ−2

x(µ−2) = c2

c2 = 0.

On the other hand, by applying boundary condition x(µ +b+1) = g(x), one finds that

x(µ +b+1) = [−∆
−µh(t)]t=µ+b−s + c1(µ +b+1)µ−1 + c2(µ +b+1)µ−2

=− 1
Γµ

b

∑
s=0

(µ +b− s)h(s+µ−1)+ c1(µ +b+1)µ−1

c1(µ +b+1)µ−1 =
1

Γµ

b

∑
s=0

(µ +b− s)µ−1h(s+µ−1)+g(x)

c1 =
1

(µ +b+1)µ−1Γµ

b

∑
0
(µ +b− s)µ−1h(s+µ−1)+

g(x)
(µ +b+1)µ−1

Then we get, x(t) as follows

x(t)=− 1
Γµ

t−µ

∑
s=0

(t−s−1)µ−1h(s+µ−1)+
tµ−1

(µ +b+1)µ−1

b

∑
s=0

(µ+b−s)µ−1h(s+µ−1)+
g(x)tµ−1

(µ +b+1)µ−1 .
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Consequently, deduce that x(t) has the form

x(t) =
b

∑
s=0

G(t,s)h(s+µ−1)+
g(x)tµ−1

(µ +b+1)µ−1 .

Lemma 1.8. [8] The Green’s function G(t,s) satisfies the following conditions:

(i) G(t,s)> 0 f or (t,s) ∈ [µ−2,µ +b+1]Nµ−2× [0,b].

(ii) maxt∈[µ−2,µ+b+1]Nµ−2
G(t,s) = G(s+µ−1,s) f or s ∈ [0,b].

(iii) min
t∈[ µ+b

4 ,
3(µ+b)

4 ]
G(t,s)≥ 1

4 maxt∈[µ−3,µ+b]Nµ−1
G(t,s)= 1

4G(s+µ−1,s) f or s∈ [0,b].

3. Existence and uniqueness of solutions

Let us consider, x is a solution of (1.1), if and only if x is a fixed point of the operator

T : Rb+3→ Rb+3, where

(T x)(t) =− 1
Γµ

t−µ

∑
0
(t− s−1)µ−1h(s+µ−1)+

tµ−1

Γµ(µ +b+1)µ−1

t−µ

∑
s=0

(µ +b+1)µ−1h(s+µ−1)+
g(x)

(µ +b+1)µ−1

for t ∈ [µ−2,µ +b+1]Nµ−2.

Theorem 3.1. Assume that f (t,x) and g(x) are Lipschitz in x. If the condition

α

b

∏
j=1

(
µ + j

j

)[
µ +2b+2
(b+1)

]
+β < 1

hold then (1.1) has a unique solution.

Proof. Since f (t,x) and g(x) are Lipschitz in x. That is, there exists α,β > 0 such that

| f (t,x1)− f (t,x2)| ≤ α ‖x1− x2‖ whenever x1,x2 ∈R, and |g(x1)−g(x2)| ≤ β ‖x1− x2‖ when-

ever x1,x2 ∈ C
(
[µ−2,µ +b+1]Nµ−2,R

)
.
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First we show that T is contraction mapping. Let us define ‖x‖= maxt∈[µ−2,µ+b+1] |x(t)|

‖T x1−T x2‖ ≤ α ‖x1− x2‖ max
t∈[µ−2,µ+b+1]µ−2

[ 1
Γµ

b−µ

∑
s=0

(t− s−1)µ−1
]
+α ‖x1− x2‖

max
t∈[µ−2,µ+b+1]Nµ−2

[ tµ−1

Γµ(µ +b+1)µ−1

t−µ

∑
s=0

(µ +b− s)µ−1
]
+

β ‖x1− x2‖ max
t∈[µ−2,µ+b+1]Nµ−2

[ tµ−1

(µ +b+1)µ−1

]
.

(3.1)

Now taken the right hand side terms, and from lemma 1.3,

α ‖x1− x2‖
[ 1

Γµ

t−µ

∑
s=0

(t− s−1)µ−1
]
=

α ‖x1− x2‖
Γµ

[
− 1

µ
(t− s)µ

]t−µ+1

s=0

= α ‖x1− x2‖
[

Γ(t +1)
Γ(t−µ +1) Γ(µ +1)

]
≤ α ‖x1− x2‖

[
Γ(µ +b+1)

Γ(b+1) Γ(µ +1)

]
= α

b

∏
j=1

(
µ + j

j

)
‖x1− x2‖

(3.2)

Again using the lemma, we get

α ‖x1− x2‖
[ tµ−1

Γµ(µ +b+1)µ−1

b

∑
s=0

(µ +b− s)µ−1
]
≤ α
‖x1− x2‖

Γµ

b

∑
s=0

(µ +b− s)µ−1

=
α ‖x1− x2‖

Γµ

[
− 1

µ
(µ +b− s+1)

]b+1

s=0

= α ‖x1− x2‖ .
b+1

∏
j=1

(
µ + j

j

)
.

Now, taking the third term in (3.1) and applying the lemma, we get

β ‖x1− x2‖
[ tµ−1

(µ +b+1)µ−1

]
≤ β ‖x1− x2‖ . (3.3)
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Substitute the equations (3.2), (3.3) in (3.1), we get

‖T x1−T x2‖ ≤
{

α

b

∏
j=1

(
µ + j

j

)
+α

b+1

∏
j=1

(
µ + j

j

)
+β

}
‖x1− x2‖

=

{
α

b

∏
j=1

(
µ + j

j

)[
1+

µ +(b+1)
b+1

]
+β

}
‖x1− x2‖

=

{
α

b

∏
j=1

(
µ + j

j

)[
µ +2b+2

b+1

]
+β

}
‖x1− x2‖.

Hence equation (1.1) has a unique solution. This completes the proof.

Theorem 3.2. Suppose that there exists a constant K > 0 such that f (t,x) satisfies the inequality

max
(t,x)∈[µ−2,µ+b+2]Nµ−3×[−K,K]

| f (t,x)| ≤ K
Γµ+b+1+Γµ+b

µΓb+1 +1
(3.4)

and g(x) satisfies the inequality

max
x∈[µ−2,µ+b+1]Nµ−3×[−K,K]

|g(x)| ≤ K
Γµ+b+1+Γµ+b

µΓb+1 +1
. (3.5)

Then (1.1) has at least one solution x0 satisfying |x0| ≤ k for all t ∈ [µ−2,µ +b+1]Nµ−2.

Proof Consider the Banach space

B := {x ∈ Rb+3 : ‖x‖ ≤ K}.

Obviously, T is a continuous opeartor, which is defined in (2.1). To prove T : B→ B, it is

enough to prove that ‖T x‖ ≤K. Assume that inequalities (3.4) & (3.5) hold for given f &g. For

convenience, let

Φ =
K

Γ(µ+b+1)+Γ(µ+b)
µΓ(b+1) +1

(3.6)

‖T x‖ ≤ max
t∈[µ−2,µ+b+1]Nµ−2

1
Γ(µ)

t−µ

∑
s=0

(t− s−1)µ−1 | f (s+µ−1,x(s+µ−1))|+

max
t∈[µ−2,µ+b+1]Nµ−2

tµ−1

Γµ(µ +b+1)µ−1

b

∑
s=0

(µ +b− s)µ−1( f (s+µ−1,x(s+µ−1)))+

max
t∈[µ−2,µ+b+1]Nµ−2

tµ−1 |g(x)|
(µ +b+1)µ−1

(3.7)
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≤Φ max
t∈[µ−2,µ+b+1]Nµ−2

[
1

Γµ

t−µ

∑
s=0

(t− s−1)µ−1 +
tµ−1

Γµ(µ +b+1)µ−1

b

∑
s=0

(µ +b− s)µ−1
]

+Φ
tµ−1

(µ +b+1)µ−1 (3.8)

Now simplify the terms on the right-hand side in inequality (3.1) as follows,

1
Γµ

t−µ

∑
s=0

(t− s−1)µ−1 +
tµ−1

Γµ(µ +b+1)µ−1

b

∑
s=0

(µ +b− s)µ−1

≤ 1
Γµ

t−µ

∑
s=0

(t− s−1)µ−1 +
1
Γ

µ

b

∑
s=0

(µ +b− s)µ−1

≤ 1
Γµ

b

∑
s=0

(µ +b− s−1)µ−1 +
1

Γµ

b

∑
s=0

(µ +b− s)µ−1. (3.9)

On the other hand, we know tµ−1 is increasing in t. Thus

b

∑
n=0

(µ +b− s+1)µ−1 =
[
− 1

Γµ
(µ +b− s−1)µ

]b+1

s=0
=

Γ(µ +b+1)
µΓ(b+1)

. (3.10)

On the other hand, we have

b

∑
s=0

(µ +b− s)µ−1 =
[
− 1

µ
(µ +b− s−1)µ

]b+1

s=0
=

Γ(µ +b)
µΓ(b+1)

. (3.11)

Substituting (3.9)-(3.11) into (3.8), we get

‖T x‖ ≤Φ

[
Γ(µ +b+1)
µ +Γ(b+1)

+
Γ(µ +b)
µΓ(b+1)

]
+Φ

= Φ

[
Γ(µ +b+1)+Γ(µ +b)

(µΓ(b+1))
+1
]
.

(3.12)

By inserting (3.6) into (3.12), we obtain

‖T x‖ ≤Φ

[
Γ(µ +b+1)+Γ(µ +b)

µΓ(b+1)
+1
]

=
K

Γ(µ+b+1)+Γ(µ+b)
µΓ(b+1) +1

[
Γ(µ +b+1)+Γ(µ +b)

µΓ(b+1)
+1
]
= K.

(3.13)

By Browder theorem, T x0 = x0 with x0 ∈ B. Therefore, the function x0 is a solution of (1.1)

and x0 satisfies |x0(t)| ≤ K for each t ∈ [µ−2,µ +b+1]Bµ−2. This completes the proof of the

theorem.
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Lemma 3.3. If f : [µ,µ − 1, . . .µ + b+ 1]Nµ−1 ×R→ R is a continuous function. Then the

solution x of the FBVP (1.1) satisfy

min
b+µ

4 ≤t≤ 3(b+µ)
4

x(t)≥ 1
4

max
(µ−1,b+µ+1)Nµ−1

|x(t)| .

4. Existence of positive solutions

In this section, the existence theorems are solved using Krasnosel’skii theorem and the suffi-

cient conditions for positive solutions are established.

Lemma 4.1 [15] Let B be a banach space and let K ≤ B be a cone. Assume that Ω1 & Ω2

are bounded open sets contained in B such that 0 ∈ Ω1 & Ω1 ≤ Ω2. Further, assume that

T : K∩ (Ω2\Ω1)→ K is a completely continuous operator. If either

(i)‖T x‖ ≤ ‖x‖ f or x ∈ K∩∂Ω1 & ‖T x‖ ≥ ‖x‖ f or x ∈ K∩∂Ω2;

or

(ii)‖T x‖ ≥ ‖x‖ f or x ∈ K∩∂Ω1 & ‖T x‖ ≤ ‖x‖ f or x ∈ K∩∂Ω2.

Then the operator T has atleast one fixed point in K ∈ (Ω2\Ω1).

Let

f0 = liminf
x→0

min
t∈[µ−1,µ+b+1]Nµ−1

f (t,x)

f 0 = limsup
x→0

max
t∈[µ−1,µ+b+1]Nµ−1

f (t,x)

f∞ = liminf
x→∞

min
t∈[µ−1,µ+b+1]Nµ−1

f (t,x)

f ∞ = limsup
x→∞

max
t∈[µ−1,µ+b+1]Nµ−1

f (t,x)

1
A
=

b+1

∑
s=0

G(b+µ +1,s),
1
B
=

1
4

[
3(b+µ+1)

4 ]−µ+2

∑
s=[ b+µ+1

4 −µ+2]

G
(
[
b−µ−1

2
]+ (µ +1),s

)
The following conditions are required to prove the existence theorems of positive solutions.

(H) f : [µ,µ−1, . . .µ +b+1]Nµ
×R→R is continuous, and g ∈C

(
[µ−1,µ +b+1]Nµ−2,R

)
is a function.

(H1) There is a number p > 0, such that g(x)< p for 0≤ x < p.
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(H2) There is a number p > 0, such that f (t,x)< Ap for 0≤ x≤ p & µ−1≤ t ≤ b+µ +1.

(H3) There is a number p > 0, such that f (t,x) > Bp for 1
4 p ≤ x ≤ p & b+µ+1

4 ≤ t ≤
3(b+µ+1)

4 .

(H4) There is a number s > 0 such that g(x)
2µ−1 > s for o < s≤ x < p.

(H5) f 0 < Ax, f ∞ < Ax

(H6) f0 > Bx, f∞ > Bx

(H7) f ∞ < Ax, f0 > Bx

(H8) f0 > Bx, f ∞ < Ax

(H∗5 ) f 0 = 0, f ∞ = 0

(H∗6 ) f0 = ∞, f∞ = ∞

(H∗7 ) f ∞ = 0, f0 = ∞

(H∗8 ) f0 = ∞, f ∞ = 0.

Let B=
{

x : [µ−2,µ +b+1]Nµ−2 → R,x(µ−2) = 0,x(µ +b+1) = g(x)
}

Then B is a Banach space with respect to the norm

‖x‖= max
t∈[µ−2,µ+b+1]Nµ−2

|x(t)| .

Define a cone in B by

K =
{

x ∈ B : x(t)≥ 0, min
b+µ+1

4 ≤t≤ 3(µ+b+1)
4

x(t)≥ 1
4
‖x‖
}

(T x)(t) =
b+1

∑
s=0

G(t,s)+
g(x)

(µ +b+1)µ−1 tµ−1 (4.1)

From the lemma, we get

min
b+µ+1

4 ≤t≤ 3(b+µ+1)
4

(T x)(t)≥ 1
4

b+1

∑
s=0

G(µ+b+1,s) f (s+µ−1,x(s+µ−1))+g(x)
(b+µ +1)µ−1

(µ +b+1)µ−1 .

min
b+µ+1

4 ≤t≤ 3(b+µ+1)
4

(T x)(t)≥ 1
4

max
t∈[µ−2,µ+b+1]Nµ−2

b+1

∑
s=0

G(t,s) f (s+µ−1,x(s+µ−1))+‖x‖ (4.2)

= 1
4 ‖T x‖ .

hence T K < K. In the sequel, let

Ωλ+ν = {x ∈ K : ‖x‖< λ +ν}
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∂Ωλ+ν = {x ∈ K,‖x‖= λ +ν}.

Theorem 4.2. Assume that there exists three different positive numbers q,r &R such that g satis-

fies conditions (H1) and (H3) at q, condition (H2) at r and conditions (H4) at R. Then FBVP

(1.1) has atleast one positive solution x0 ∈ K satisfying min{q,r,R} ≤ ‖x0‖ ≤max{q,r,R}.

Proof We know that T : K → K & T is completely continuous. Without loss of generali-

ty suppose that q < r < R. Note that for x ∈ ∂Ωr+q. We’ve ‖x‖ = r + q, so that condition

(H1) & (H2) holds for all x ∈ ∂Ωr+q.

Then,

(T x)(t)≤
b+1

∑
s=0

G(b+µ +1,s) f (s+µ−1,x(s+µ−1))+g(x).

≤ Ar
b+1

∑
s=0

G(b+µ +1,s)+q

≤ r+q.

= ‖x‖ .

(ie) ‖T‖ ≤ ‖x‖ for x ∈ ∂Ωr+q

Note that for y ∈ ∂ΩR+q, and ‖x‖ = R+ q, so condition (H3) & (H4) holds for all x ∈

∂ΩR+q, since [b−µ−1
2 ]+ (µ +1) ∈

[
µ+b+1

4 , 3(µ+b+1)
4

]
. (T x)

([b−µ−1
2

]
+(µ +1)

)
=

b+1

∑
s=0

G
(
[
b−µ−1

2
]+ (µ +1),s

)
f
(
s+µ−1,x(s+µ−1)

)
+g(x)

(µ +b−1/2)µ−1

(µ +b−1)µ−1

≥ 1
4

3(b+µ+1)
4 −µ+2

∑
s= b+µ+1

4 −µ+2

G
(
[
b−µ−1

2
]+ (µ +1),s

)
f
(
s+µ−1,x(s+µ−1)

)
+

g(x)
2(µ−1)

≥ BR
4

3(b+µ+1)
4 −µ+2

∑
s= b+µ+1

4 −µ+2

G
(
[
b−µ−1

2
]+ (µ +1),s

)
f (s+µ−1,x(s+µ−1))+q

= R+q.

(ie) ‖T x‖ ≥ ‖x‖ for x ∈ K∩∂ΩR+q
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By lemma 4.1, T has atleast one fixed point say x0 ∈ ΩR+q/Ωr+q. This function x0(t) is a

positive solution of (1.1) and satisfies r+q≤ ‖x0‖ ≤ R+q. This completes the proof.

Theorem 4.3. Suppose that conditions (H),(H1),(H4) & (H5) hold, f > 0 for t ∈ [µ −

2,µ +b+1]µ−2. Then the FBVP (1.1) has atleast two positive solutions x1 &x2 with 0 < ‖x1‖<

p < ‖x2‖ .

Proof. Suppose that (H5) holds. Since f 0 < A, one can find ε > 0(ε < A) & 0 < r0 < p

such that

f (t,x)≤ (A− ε)x, 0≤ x≤ r0, t ∈ [µ−2,µ +b+1]Nµ−2 .

Letting r1 ∈ (0,r0 +q), for x ∈ ∂Ωr1+q, we get

(T x)(t) =
b+1

∑
s=0

G(t,s) f (s+µ−1,x(s+µ−1))+
g(x)tµ−1

(µ +b+1)µ−1

≤
b+1

∑
s=0

G(b+µ +1,s)(A− ε)r1 +g(x)

< Ar1

b+1

∑
s=0

G(b+µ +1,s)+g(x)

= r1 +q,

from that we get ‖T x‖< ‖x‖ for x ∈ ∂Ωr1+q.

On the other hand, since f ∞ < A, there exists 0 < σA & R0 + q > 0 such that f (t,x) ≤

σx, x≥ R0 +q, t ∈ [µ−2,µ +b+1]Nµ−2. Let M = max(t,x)∈[µ−1,µ+b+1]×[0,R0] f (t,x), then

0≤ f (t,x)≤ σx+M, o < x < ∞. Let R1 +q > max{p, M
A−σ
}, for x ∈ ∂ΩR1+q we have

‖T x‖ ≤
b+1

∑
s=0

G(b+µ,s) f (s+µ−1,x(s+µ−1))+g(x)≤ (σ ‖x‖)
b+1

∑
s=0

G(b+µ,s)+g(x)

= (σR1 +M)
1
A
+q

≤ R1 +q.

Therefore ‖T x‖ ≤ ‖x‖ for x ∈ ∂ΩR1+q.
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Finally, for any x∈ ∂Ωp+q, since 1
4 p≤ x(t)≤ p, for b+µ

4 ≤ t ≤ 3(b+µ)
4 , then we get (T x)

(
[b−µ−1

2 ]+

(µ +1)
)

=
b+1

∑
s=0

G
(
[
b−µ−1

2
]+ (µ +1),s

)
f (s+µ−1,x(s+µ−1))+g(x)

((µ +b+1/2)µ−1

(µ +b+1)µ−1

)
> B.

1
4

p
b+1

∑
s=0

G
(
[
b−µ−1

2
]+ (µ +1),s

)
+q

= p+q = ‖x‖ ,

from that we obtain ‖T x‖> ‖x‖ for x ∈ K∩∂Ωp+q. By the lemma, the proof is complete.

Corollary 4.4. Suppose that conditions (H),(H1), (H4) and (H∗5 ) hold. Then the FBVP (1.1)

has at least two positive solutions.

Theorem 4.5. Suppose that conditions (H), (H1) (H4) and (H6) hold, f > 0 for t ∈ [µ −

2,b+µ]Nµ−2. Then the FBVP (1.1) has at least two positive solutions x1 and x2 with 0 < ‖x1‖<

p < ‖x2‖ .

Proof. Suppose that (H6) holds. Since f0 > B, there exists ε > 0 and 0 < r0 < p such that

f (t,x)≥ (B+ε)x,o≤ x≤ r0, t ∈ [µ−2,µ+b+1]Nµ−2 . Let r2 ∈ (0,r0). Thus for x∈ ∂Ωr2,

then we get

(T x)
([b−µ−1

2
]
+(µ +1)

)
=

b+1

∑
s=0

G
(
[
b−µ−1

2
]+ (µ +1),s

)
(B+ ε)x+g(x)

(µ +b−1/2)µ−1

(µ +b−1)µ−1

≥ (B+ ε)
1
4
‖x‖

3(b+µ+1)
4 −µ+2

∑
s= b+µ+1

4 −µ+2

G
(
[
b−µ−1

2
]+ (µ +1),s

)
+

g(x)
2µ−1

> B
1
4
‖x‖

3(b+µ+1)
4 −µ+2

∑
s= b+µ+1

4 −µ+2

G
(
[
b−µ−1

2
]+ (µ +1),s

)
+q

> r2 +q,

from that we see that ‖T x‖> ‖x‖ for x ∈ K∩∂Ωr2+q.

On the other hand, since f∞ > B, there exists η > 0, and R0 +q > 0 such that f (t,x)≥ (B+

η)x, x≥ R0+q, t ∈ [µ−2,µ +b+1]Nµ−2. Choose R2+q > max{4R2+q, p}. For x ∈ ∂ΩR2+q,
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since x(t)≥ 1
4 ‖x‖> R0 for b+µ

4 ≤ t ≤ 3(b+µ)
4 , then get

(T x)
([b−µ−1

2
]
+(µ +1)

)
=

b+1

∑
s=0

G
(
[
b−µ−1

2
]+ (µ +1),s

)
(B+η)x+g(x)

(µ +b−1/2)µ−1

(µ +b−1)µ−1

≥ (b+η)
1
4
‖x‖

3(b+µ+1)
4 −µ+2

∑
s= b+µ+1

4 −µ+2

G
(
[
b−µ−1

2
]+ (µ +1),s

)
+

g(x)
2µ−1

> B
1
4
‖x‖

3(b+µ+1)
4 −µ+2

∑
s= b+µ+1

4 −µ+2

G
(
[
b−µ−1

2
]+ (µ +1),s

)
+q

> R2 +q.

Therefore ‖T x‖ > ‖x‖ for x ∈ K ∩ ∂ΩR2+q. For any x ∈ ∂Ωp+q, from (H2), we get f (t,x) <

Ap, t ∈ [µ−1,µ +b+1]Nµ−1, then

(T x)(t) =
b+1

∑
s=0

G(t,s) f
(
s+µ−1,x(s+µ−1)

)
+g(x)

≤
b+1

∑
s=0

G(b+µ,s)Ap+q

= p+q.

Hence ‖T x‖ ≤ ‖x‖ for x ∈ K∩∂Ωp+q. Therefore, by the Lemma the proof is complete.

Corollary 4.6. Assume that (H) (H1) and (H3) hold, (H6) is replaced by (H∗6 ). Then the

FBVP (1.1) has at least two positive solutions.

Theorem 4.7. Suppose that conditions (H) and (H7) hold. Then (1.1) has atleast one positive

solution.

We remark here that the proof of the theorem is analogous to above theorem.

Corollary 4.8. Suppose that conditions (H) and (H∗7 ) hold. Then (1.1) has at least one positive

solution.

Theorem 4.9. Suppose that conditions (H) and (H8) hold. Then the FBVP (1.1) has at least

one positive solution.

We remark here that the proof of the theorem is analogous to above theorem.
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Corollary 4.10. Suppose that conditions (H) and (H∗8 ) hold. Then (1.1) has at least one positive

solution.

5. Non-existence of positive solutions

In this section sufficient conditions for the non-existence of positive solutions are obtained.

(H9) go = lim
‖x‖→0

supg(x) and g∞ = lim
‖x‖→∞

supg(x)

(H10) go = lim
‖x‖→0

infg(x) and g∞ = lim
‖x‖→∞

infg(x).

Theorem 5.1. Assume the conditions (H) and (H9) hold. If go < ∞, g∞ < ∞ and cA−1[(b+

1)+A]< 1 then (1.1) has no positive solutions.

Proof. Assume that (1.1) has positive solutions. Since g0 < ∞ and g∞ < ∞ then there exists a

positive number such that g(y1)≤ c‖x1‖ . Since ‖x1‖= ‖T x1‖ where t ∈ [µ−1,µ +b+1]

‖x1‖= ‖T x1‖=
b

∑
s=0

G(t,s)h(s+µ−1)+
g(x1)tµ−1

(µ +b+1)µ−1

≤
b

∑
s=0

G(t,s)h(s+µ−1)+g(x1)

≤ 1
A

b+1

∑
s=0

g(x0)
(b+1

A
+1
)

≤ c
(b+1

A
+1
)
‖X1‖

≤ ‖x1‖ ,

which is a contradiction. Hence the theorem is complete.

Theorem 5.2. Assume the conditions (H) and (H10) hold. If g0 > 0, g∞ > 0 and lB−1[(µ +

b+1)+2B
]
> 2 then (1.1) has no positive solutions.

proof. Suppose assume x1(t) is a positive solution of (1.1). Since g0 > 0, g∞ > 0. There

exists a positive number such that

g(x1)≥ l ‖x1‖ .
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Since ‖x1‖= ‖T x1‖ where t ∈
[

µ+b+1
4 , 3(µ+b+1)

4

]

‖x1‖= ‖T x1‖ ≥
[

3(µ+b+1)
4 −µ+2]

∑
s=[ µ+b+1

4 ,−µ+2]

G
(
[
b−µ−1

2
]+ (µ +1)+ s)h(s+µ−1)+

g(x1)tµ−1

(µ +b+1)µ−1

≥ 4
B

[
3(µ+b+1)

4 −µ+2
]

∑
s=
[

µ+b+1
4 ,−µ+2

]g
(
x1(s+µ−1)

)
+g(x1)

≥ g(x1)
[µ +b+1

2B
+1
]

≥
[
(µ +b+1)+2B

]‖x1‖
2B

≥ ‖x1‖ ,

which is a contradiction. Hence (1.1) has no positive solution.

Corollary 5.3. Suppose the condition (H) and g0 < ∞, g∞ > 0 hold then (1.1) has no positive

solution.

Corollary 5.4. Assume the conditions (H) and g∞ < ∞, g0 > 0 hold then (1.1) has no positive

solution.

6. Examples

Example 6.1. Suppose that µ = 4
3 , b = 6. Let f (t,x(t)) = |cosecx(t)|

250 + t, and g(x) = ‖secx(t)‖
80 .

Then (1.1) becomes, 
−∆4/3x(t) = cosecx(t+ 1

3 )
250 +(t + 1

3),

x(µ−2) = 0,

x(µ +b+1) = ‖secx(t)‖
80 .

(6.1)

Here α = 1
250 , β = 1

40 ,

b

∏
j=1

(µ + j
j

)
< 12,

b+1

∏
j=1

(µ + j
j

)
< 14.
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Therefore, the inequality in theorem 3.1 is,

α

b

∏
j=1

(µ + j
j

)
+α

b+1

∏
j=1

(µ + j
j

)
+β < 1.

Hence, from Theorem 3.1, (6.1) has a unique solution.

Example 6.2. Suppose that µ = 5
4 , b = 5, & K = 100. Also suppose that f (t,x) =

tx2

15 log10 and that g(x) = expx

10 . Thus, Problem (1.1) becomes
−∆5/4x(t) = (t+ 1

4 )(x+
1
4 )

2

35 log10

x(µ−2) = 0

x(µ +b+1) = exp(t+
1
4 )(x+

1
4 )

(6.2)

and the banach space

B=
{

x ∈ R8 : ‖x‖< 100,
}
.

From the conditions (3.4) and (3.5), we get

K
2Γµ+b+1

Γµ+1Γb+1 +1
=

100
2Γ( 5

4+5+1)
Γ

5
4+1Γ5+1

+1
(6.3)

= 52.2794

f (t,x)≤ (6.25)(25)
15

log10

10.416667≤ 52.28

g(x)≤ e(x)

10
≈ 14.8413159≤ 52.28.

Hence, f and g satisfies the required conditions. From Theorm 3.2, Problem (6.2) has at least

one solution. Take µ = 13
7 , b = 14 after computation get the values A ≈ 0.01592088, B ≈

0.138507089. The following examples are derived using these values.
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Example 6.3. Suppose that f (t,x) = exp2x

1200x2 , g(x) = expx

10cosx . Then problem (1.1) becomes

−∆
13
7 x(t) = exp2x(t+ 6

7 )

1200
[

x(t+ 6
7 )
]2 ,

x(−1
7) = 0,

x(118
7 ) = expx

10cosx .

(6.4)

Let p = 3 & s = 9
5 . Then

f (t,x) =
exp2x

1200×9
= 0.0373546 < Ap,

g(x) =
expx

10cosx
= 2.0113107 < p & g(x)> s,

where 0 < s ≤ x < p. Then f 0 = f ∞ = ∞. Hence, by the corollary, problem (6.4) has at least

two solutions x1 &x2 suchthat 0≤ ‖x1‖< 3 < ‖x2‖ .

Example 6.4. Suppose that f (t,x) = 10x3 exp−x

9+sin t , g(x) = x2 cos2x
8 . Then problem (1.1) has the

form, 
−∆

13
7 x(t) =

10
[

x(t+ 6
7 )
]3

exp−x(t+ 6
7 )

9+sin(t+ 6
7 )

,

x(−1
7) = 0,

x(118
7 ) = x2 cos2x

8 .

(6.5)

Let p = 5 & s = 3. Then

f (t,x) =
1250exp−x

9+ sin t
= 0.9082515 > Bp

and f 0 = f ∞ = 0. Then, the functional g(x) = 25cos2x
8 = 3.0775243 < p and g(x) > s. Hence,

all conditions of corollary 4.1 are satisfied. Therefore the FBVP (6.5) has atleast two solutions

x1 & x2 such that 0 < ‖x1‖< 5 < ‖x2‖ .

Example 6.5. Suppose that f (t,x) = 1
500

(
25+ 800

1+x3

)
g(x) = 1+cost

x2 & p = 4, then Problem

(1.1) becomes, 
−∆

13
7 x(t) = 1

500

(
25+ 20[t+ 6

7 ]

1+
[

x(t+ 6
7 )
]),

x(−1
7) = 0,

x(118
7 ) = 1+cos t

x2 .

(6.6)
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We get f ∞ = 0.05 < Ax f0 = 0.6842857 > Bx. Then applying the conditions in theorem 5.1,

the above problem (6.6) has atleast two solutions x1 & x2 such that 0≤ ‖x1‖< 4 < ‖x2‖ .

Example 6.6. Suppose that f (t,x) = expx, g(x) = 50t + 1
1+x2 , µ = 13

7 , b = 14 then prob-

lem (1.1) becomes 
−∆

13
7 x(t) = exp(t+

6
7 ),

x
(−1

7

)
= 0,

x
(118

7

)
= 50t + 1

1+x2 .

(6.7)

g0 = 843.85714 < ∞ g∞ = 842.85714 < ∞

Let c = 1
1000 . Then the condition cA−1[(b+1)+A

]
= 0.9431589 < 1

By the theorem, the problem (6.7) has no positive solution.

Example 6.7. suppose that f (t,x) = logx, g(x) = 4x2 + 70t
25x ,

13
7 and b = 14, then (1.1)

becomes, 
−∆

13
7 x(t) = logx

(
t + 6

7

)
,

x
(
− 1

7

)
= 0,

x
(118

7

)
= 4x2 + 70t

25x .

(6.8)

g0 = g∞ = ∞ > 0. Let l = 1
50 . Then the condition lB−1[(µ +b+1)+2B

]
= 2.5370613 > 2.

By the theorem, the problem (6.8) has no positive solution.
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