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1. Introduction   

   Let  T   be a lower triangular matrix,   ns  a sequence,  and 
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A series   na is said to be summable  ,1, kT
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  if (see [1]) 
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Given any lower triangular matrix  T   one can associate the matrices  T   and   ,T̂  with  

entries defined by 
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We call  T  a triangle  if T  is lower triangular and  0nnt  for all n.  

We assume that   np  is a sequence of positive real numbers such that 
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In the special case  when  ,/ nvnv Ppt    summability  
k

T  reduces to  
knpN , summability. 

     

  Generalizing the result of [2], Rhoads and Savas [3]  proved the following result  

 

   Theorem 1.1.  Let  A  be a triangle  with nonnegative entries satisfying  
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94                                                                   W. T. SULAIMAN                                                                                                          
 

 

(iii)    ,)(1),1( nnnn nana   

 

(iv)      ),1(/1  nna  

 

(v)     .)(
0 1, nn

n

v vnvv aaa      

 

If   nX  is a positive nondecreasing sequence and the sequences    nn and   satisfy 
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then the series    nnnn naa /   is summable   .1, kA
k

 

    

  

   The object of this paper  is to give two improvements to  theorem 1.1 as follows 

1. Replacing the four conditions  (vi)-(ix) by two conditions , 

2. By  weakening the condition (x), 

and adding a simple condition. In fact we prove the theorem without any loss of 
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powers through estimation.  In [3],  through the proof,  there is a loss of some powers 

through estimation. For example  
k

n  is replaced by the factor n  as ),1(n  and in 

such case we are losing the power 
1k

n  without any advantage. 

 

 

In what follows we prove the following  

 

       Theorem 1.2.  Let  A  be a triangle  with nonnegative entries satisfying  
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If   nX  is a positive nondecreasing sequence and the sequence  n  satisfy 
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then the series    nnnn naa /   is summable   .1, kA
k

 

    

 

We have  to mention that  whenever  ,nX  condition  (vii) of theorem 1.2 is weaker than 

condition  (viii)  of theorem 1.1.  For if  (viii) is satisfied, then nX  implies that  

,0n   while  if  (vii) is satisfied,  that is ,0n  then by choosing             

 

,0,, )2/1(2/1   nXn nn  

 

we obtain   .)1()(  nX nn   

   

 

    Lemma 1.2.  Condition  (ix) of theorem 1.2  is weaker than condition (x) of theorem 1.1.  

 

Proof.  If  (x) holds, then  we have 
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  while if  (ix) is satisfied then, 



 97                            NOTE ON 
k

A  SUMMABILITY FACTORS OF INFINITE SERIES 

                            

                
1

1
1

1

11 






  k

n

m

n

k

nk

n

m

n

k

n Xs
nX

s
n

 

                             

                                  
1

1
1

1

1

1

1
1













 




























   k

m

m

n
k

n

k

n
m

n

k

n

n

v
k

v

k

v
X

nX

s
X

vX

s
 

                                

                                    11
1

1

1 




  k

mm

k

n

m

n

n XXXX  

                           

                                     k

m

m

n

k

n

k

nm XXXX  








1

1

11

11  

                             

                                  k

m

kk

mm XXXX  



1

1

1

1  

                                  

                                    .k

mX  

  

 

   Lemma 1.3.  Conditions  (vii)-(viii) of theorem 1.2  imply that   
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Proof.  Since  ,0n   then  ,0 n  and hence 
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   Lemma 1.4.  Under the conditions of theorem 1.2,  

                                      

                                               ,ˆ
1

1

nn

n

v

nvv aa 




                                                   (1.9) 

                                        

                                           ,)(ˆ
1

1







m

vn

vvnvv aa                                                  (1.10) 

                                       

                                             .)1(ˆ
1

1

1, 






m

vn

vna                                                     (1.11) 

 

For the proof, see [3]. 
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2. Proof of Theorem 1.2. 

Let  nT   denote the nth term of A-transform of the series    nnnn naa / , then 

            

             
vv

vnv
n

v

vnn
va

a
aTT

ˆ

1

1 


   

                         

                           
n

s

va

a
s nn

vv

vnv
v

n

v

v





















ˆ1

1

 

                     

                           


 










































1

1 1,1

1,1,1,

)1(

ˆ1

1

ˆ

)1(

ˆˆn

v vv

vvvn

vv

vv

vn

vv

vvvn

vv

vvnvv

av

sa
s

av

a

avv

sa

va

sa 



 

                                                                                                                         
n

snn      

                        .54321 nnnnn TTTTT    

 

 

In order to prove the theorem , by Minkowski's inequality, it is sufficient to show that 
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Applying Holder's inequality,  (ii),  (iii), Lemma 1.3,  and (ix),              
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by using (1.9), Lemma 1.3, (1.10), (ix),  and Holder's inequality.   
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as in the case of  .1nT  
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using  Holder's inequality, Lemma 1.3, (vi),  (ix),  and (viii).                    
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as in the case of .1nT   The proof is complete.    

   

3. Corollary   
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