Available online at http://scik.org Advances in Inequalities and Applications, 2 (2013), No. 1, 92-104 ISSN 2050-7461

A NOTE ON $|A|_k$ SUMMABILITY FACTORS OF INFINITE SERIES

W. T. SULAIMAN

Department of Computer Engineering, College of Engineering, University of Mosul, Iraq

Abstract. In this note we give an improvement to recent result obtained by Savas and Rhoade cocerning

 $|A|_k$ summability of infinite series .

Keywords: Absolute summability, summability factor

2000 Mathematics Subject Classification: 26D15

1. Introduction

Let T be a lower triangular matrix, (s_n) a sequence, and

$$T_n \coloneqq \sum_{\nu=0}^n t_{n\nu} s_{\nu}. \tag{1.1}$$

A series $\sum a_n$ is said to be summable $|T|_k$, $k \ge 1$, if (see [1])

$$\sum_{n=1}^{\infty} n^{k-1} \left| \Delta T_{n-1} \right|^k < \infty.$$
(1.2)

Given any lower triangular matrix T one can associate the matrices \overline{T} and \hat{T} , with entries defined by

Received March 26, 2012

$$\bar{t}_{nv} = \sum_{i=v}^{n} t_{ni}, \quad n, i = 0, 1, 2..., \qquad \hat{t}_{nv} = \bar{t}_{nv} - \bar{t}_{n-1,v}$$

respectively. With $s_n = \sum_{i=0}^n a_i \lambda_i$,

$$t_n = \sum_{\nu=0}^n t_{n\nu} s_{\nu} = \sum_{\nu=0}^n t_{n\nu} \sum_{i=0}^\nu a_i \lambda_i = \sum_{i=0}^n a_i \lambda_i \sum_{\nu=i}^n t_{n\nu} = \sum_{i=0}^n \bar{t}_{ni} a_i \lambda_i.$$
(1.3)

$$Y_{n} := t_{n} - t_{n-1} = \sum_{i=0}^{n} \bar{t}_{ni} a_{i} \lambda_{i} - \sum_{i=0}^{n-1} \bar{t}_{n-1,i} a_{i} \lambda_{i} = \sum_{i=0}^{n} \hat{t}_{ni} a_{i} \lambda_{i}, \quad \text{as } \bar{t}_{n-1,n} = 0.$$
(1.4)

$$X_{n} := u_{n} - u_{n-1} = \sum_{i=0}^{n} \hat{u}_{ni} a_{i} \mu_{i} .$$
(1.5)

We call T a triangle if T is lower triangular and $t_{nn} \neq 0$ for all n. We assume that (p_n) is a sequence of positive real numbers such that

$$P_n = p_0 + p_1 + \dots + p_n \rightarrow \infty \text{ as } n \rightarrow \infty.$$

In the special case when $t_{nv} = p_v / P_n$, summability $|T|_k$ reduces to $|\overline{N}, p_n|_k$ summability.

Generalizing the result of [2], Rhoads and Savas [3] proved the following result

Theorem 1.1. Let A be a triangle with nonnegative entries satisfying

(i)
$$\bar{a}_{n0} = 1, n = 0, 1, ...,$$

(ii)
$$a_{n-1,v} \ge a_{nv}$$
 for $n \ge v+1$,

(iii)
$$na_{nn} = O(1), 1 = O(na_{nn}),$$

(iv)
$$\Delta(1/a_{nn}) = O(1),$$

(v)
$$\sum_{\nu=0}^{n} a_{\nu\nu} |a_{n,\nu+1}| = O(a_{nn}).$$

If (X_n) is a positive nondecreasing sequence and the sequences (λ_n) and (β_n) satisfy

(vi)
$$|\Delta\lambda_n| \leq \beta_n$$
,

(vii) $\lim \beta_n = 0$,

(viii)
$$\left|\lambda_{n}\right| X_{n} = O(1),$$

(ix)
$$\sum_{n=1}^{\infty} n \left| \Delta \beta_n \right| X_n < \infty,$$

(x)
$$T_n := \sum_{\nu=1}^n \left(\left| s_\nu \right|^k / \nu \right) = O(X_n),$$

then the series $\sum (a_n \lambda_n) / na_{nn}$ is summable $|A|_k, k \ge 1$.

The object of this paper is to give two improvements to theorem 1.1 as follows

- 1. Replacing the four conditions (vi)-(ix) by two conditions,
- 2. By weakening the condition (x),

and adding a simple condition. In fact we prove the theorem without any loss of

powers through estimation. In [3], through the proof, there is a loss of some powers through estimation. For example $|\lambda_n|^k$ is replaced by the factor $|\lambda_n|$ as $|\lambda_n| = O(1)$, and in such case we are losing the power $|\lambda_n|^{k-1}$ without any advantage.

In what follows we prove the following

Theorem 1.2. Let A be a triangle with nonnegative entries satisfying

- (i) $\bar{a}_{n0} = 1, n = 0, 1, ...,$
- (ii) $a_{n-1,v} \ge a_{nv}$ for $n \ge v+1$,
- (iii) $na_{nn} = O(1), 1 = O(na_{nn}),$
- (iv) $\Delta(1/a_{nn}) = O(1)$,

(v)
$$\sum_{\nu=1}^{n} a_{\nu\nu} |\hat{a}_{n,\nu+1}| = O(a_{nn})$$

(vi)
$$\sum_{n=\nu+1}^{\infty} n^{k-1} \left| \hat{a}_{n,\nu+1} \right|^k = O(1).$$

If (X_n) is a positive nondecreasing sequence and the sequence (λ_n) satisfy

(vii) $\lambda_n \to 0$, as $n \to \infty$

(viii)
$$\sum_{n=1}^{\infty} n \left| \Delta^2 \lambda_n \right| X_n < \infty,$$

and

(ix)
$$T_n := \sum_{\nu=1}^n \left(\left| s_\nu \right|^k / \nu X_\nu^{k-1} \right) = O(X_n),$$

then the series $\sum (a_n \lambda_n) / na_{nn}$ is summable $|A|_k, k \ge 1$.

We have to mention that whenever $X_n \to \infty$, condition (vii) of theorem 1.2 is weaker than condition (viii) of theorem 1.1. For if (viii) is satisfied, then $X_n \to \infty$ implies that $\lambda_n \to 0$, while if (vii) is satisfied, that is $\lambda_n \to 0$, then by choosing

$$\lambda_n = n^{-1/2}, X_n = n^{\in +(1/2)}, \in > 0,$$

we obtain $|\lambda_n| X_n = O(n^{\epsilon}) \neq O(1).$

Lemma 1.2. Condition (ix) of theorem 1.2 is weaker than condition (x) of theorem 1.1.

Proof. If (x) holds, then we have

$$\sum_{n=1}^{m} \frac{|s_n|^k}{nX_n^{k-1}} = O\left(\frac{1}{X_1^{k-1}}\right) \sum_{n=1}^{m} \frac{1}{n} |s_n|^k = O(X_m),$$

while if (ix) is satisfied then,

$$\begin{split} \sum_{n=1}^{m} \frac{1}{n} |s_n|^k &= \sum_{n=1}^{m} \frac{1}{nX_n^{k-1}} |s_n|^k X_n^{k-1} \\ &= \sum_{n=1}^{m-1} \left(\sum_{\nu=1}^{n} \frac{|s_\nu|^k}{\nu X_\nu^{k-1}} \right) \Delta X_n^{k-1} + \left(\sum_{n=1}^{m} \frac{|s_n|^k}{n X_n^{k-1}} \right) X_m^{k-1} \\ &= O(1) \sum_{n=1}^{m-1} X_n |\Delta X_n^{k-1}| + O(X_m) X_m^{k-1} \\ &= O(X_{m-1}) \sum_{n=1}^{m-1} (X_{n+1}^{k-1} - X_n^{k-1}) + O(X_m^k) \\ &= O(X_{m-1}) (X_m^{k-1} - X_1^{k-1}) + O(X_m^k) \\ &= O(X_m^k). \end{split}$$

Lemma 1.3. Conditions (vii)-(viii) of theorem 1.2 imply that

$$nX_n \left| \Delta \lambda_n \right| = \mathcal{O}(1), \tag{1.6}$$

$$\sum_{n=1}^{\infty} X_n \left| \Delta \lambda_n \right| < \infty, \tag{1.7}$$

and (1.7) implies

$$\left|\lambda_{n}\right|X_{n} = \mathcal{O}(1). \tag{1.8}$$

Proof. Since $\lambda_n \to 0$, then $\Delta \lambda_n \to 0$, and hence

$$\begin{split} nX_{n} |\Delta\lambda_{n}| &= nX_{n} \sum_{\nu=n}^{\infty} \Delta |\Delta\lambda_{\nu}| = \mathrm{O}(1) nX_{n} \sum_{\nu=n}^{\infty} |\Delta^{2}\lambda_{\nu}| = \mathrm{O}(1) \sum_{\nu=n}^{\infty} \nu X_{\nu} |\Delta^{2}\lambda_{\nu}| = \mathrm{O}(1). \\ \\ \sum_{n=1}^{m} X_{n} |\Delta\lambda_{n}| &= \sum_{n=1}^{m-1} \left(\sum_{\nu=1}^{n} X_{\nu} \right) \Delta |\Delta\lambda_{n}| + \left(\sum_{n=1}^{m} X_{n} \right) |\Delta\lambda_{m}| \\ \\ &= \mathrm{O}(1) \sum_{n=1}^{m-1} nX_{n} |\Delta^{2}\lambda_{n}| + \mathrm{O}(1) mX_{m} |\Delta\lambda_{m}| = \mathrm{O}(1) \\ \\ \lambda_{n} \to 0, \\ \\ &|\lambda_{n}| X_{n} = X_{n} \sum_{\nu=n}^{\infty} \Delta |\lambda_{n}| = \mathrm{O}(1) \sum_{\nu=n}^{\infty} X_{\nu} |\Delta\lambda_{n}| = \mathrm{O}(1). \end{split}$$

Lemma 1.4. Under the conditions of theorem 1.2,

$$\sum_{\nu=1}^{n-1} |\Delta_{\nu} \hat{a}_{n\nu}| = \mathcal{O}(a_{nn}), \tag{1.9}$$

$$\sum_{n=\nu+1}^{m+1} \left| \Delta_{\nu} \hat{a}_{n\nu} \right| = \mathcal{O}(a_{\nu\nu}), \qquad (1.10)$$

$$\sum_{n=\nu+1}^{m+1} \left| \hat{a}_{n,\nu+1} \right| = \mathcal{O}(1).$$
(1.11)

For the proof, see [3].

As

2. Proof of Theorem 1.2.

Let T_n denote the nth term of A-transform of the series $\sum (a_n \lambda_n) / na_{nn}$, then

$$\begin{split} T_n - T_{n-1} &= \sum_{\nu=1}^n a_\nu \frac{\hat{a}_{n\nu} \lambda_\nu}{\nu a_{\nu\nu}} \\ &= \sum_{\nu=1}^{n-1} s_\nu \Delta_\nu \left(\frac{\hat{a}_{n\nu} \lambda_\nu}{\nu a_{\nu\nu}} \right) + \frac{s_n \lambda_n}{n} \\ &= \sum_{\nu=1}^{n-1} \left(\frac{\Delta_\nu \hat{a}_{n\nu} \lambda_\nu s_\nu}{\nu a_{\nu\nu}} + \frac{\hat{a}_{n,\nu+1} \lambda_\nu s_\nu}{\nu (\nu+1) a_{\nu\nu}} + \frac{\hat{a}_{n,\nu+1}}{\nu+1} \Delta \left(\frac{1}{a_{\nu\nu}} \right) \lambda_\nu s_\nu + \frac{\hat{a}_{n,\nu+1} \Delta \lambda_\nu s_\nu}{(\nu+1) a_{\nu+1,\nu+1}} \right) \\ &+ \frac{\lambda_n s_n}{n} \\ &= T_{n1} + T_{n2} + T_{n3} + T_{n4} + T_{n5} \,. \end{split}$$

In order to prove the theorem, by Minkowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} n^{k-1} |T_{nv}|^k < \infty, \ v = 1, 2, 3, 4, 5.$$

Applying Holder's inequality, (ii), (iii), Lemma 1.3, and (ix),

$$\sum_{n=1}^{m+1} n^{k-1} |T_{n1}|^{k} = \sum_{n=1}^{m+1} n^{k-1} \left| \sum_{\nu=1}^{n-1} \frac{\Delta_{\nu} \hat{a}_{n\nu} \lambda_{\nu} s_{\nu}}{\nu a_{\nu\nu}} \right|^{k}$$
$$= O(1) \sum_{n=1}^{m+1} n^{k-1} \left(\sum_{\nu=1}^{n-1} |\Delta_{\nu} \hat{a}_{n\nu}| |\lambda_{\nu}| |s_{\nu}| \right)^{k}$$

$$= O(1) \sum_{n=1}^{m+1} n^{k-1} \sum_{\nu=1}^{n-1} |\Delta_{\nu} \hat{a}_{n\nu}| |\lambda_{\nu}|^{k} |s_{\nu}|^{k} \left(\sum_{\nu=1}^{n-1} |\Delta_{\nu} \hat{a}_{n\nu}|\right)^{k-1}$$

$$= O(1) \sum_{n=1}^{m+1} (na_{nn})^{k-1} \sum_{\nu=1}^{n-1} |\Delta_{\nu} \hat{a}_{n\nu}| |\lambda_{\nu}|^{k} |s_{\nu}|^{k}$$

$$= O(1) \sum_{\nu=1}^{m} |\lambda_{\nu}|^{k} |s_{\nu}|^{k} \sum_{n=\nu+1}^{m+1} |\Delta_{\nu} \hat{a}_{n\nu}|$$

$$= O(1) \sum_{\nu=1}^{m} a_{\nu\nu} |\lambda_{\nu}|^{k} |s_{\nu}|^{k}$$

$$= O(1) \sum_{\nu=1}^{m} \frac{|\lambda_{\nu}| |s_{\nu}|^{k}}{\nu X_{\nu}^{k-1}} (|\lambda_{\nu}| X_{\nu})^{k-1}$$

$$= O(1) \sum_{\nu=1}^{m} \frac{|\lambda_{\nu}| |s_{\nu}|^{k}}{\nu X_{\nu}^{k-1}}$$

$$= O(1) \sum_{\nu=1}^{m-1} |\Delta_{\nu}| |s_{\nu}|^{k} \sum_{\nu=1}^{n-1} |\Delta_{\nu}|^{k} |s_{\nu}|^{k}$$

$$= O(1) \sum_{\nu=1}^{m-1} |\Delta_{\nu}| |s_{\nu}|^{k}$$

$$= O(1) \sum_{\nu=1}^{m-1} |\Delta_{\nu}| |s_{\nu}|^{k} \sum_{\nu=1}^{n-1} |\Delta_{\nu}|^{k} |s_{\nu}|^{k}$$

by using (1.9), Lemma 1.3, (1.10), (ix), and Holder's inequality.

$$\begin{split} \sum_{n=1}^{m+1} n^{k-1} |T_{n2}|^k &= \sum_{n=1}^{m+1} n^{k-1} \left| \sum_{\nu=0}^{n-1} \frac{\hat{a}_{n,\nu+1} \lambda_{\nu} s_{\nu}}{\nu(\nu+1) a_{\nu\nu}} \right|^k \\ &= O(1) \sum_{n=1}^{m+1} n^{k-1} \left(\sum_{\nu=1}^{n-1} a_{\nu\nu} |\hat{a}_{n,\nu+1}| |\lambda_{\nu}|^k |s_{\nu}|^k \left(\sum_{\nu=1}^{n-1} a_{\nu\nu} |\hat{a}_{n,\nu+1}| \right) \right)^{k-1} \\ &= O(1) \sum_{n=1}^{m+1} n^{k-1} \sum_{\nu=1}^{n-1} a_{\nu\nu} |\hat{a}_{n,\nu+1}| |\lambda_{\nu}|^k |s_{\nu}|^k \left(\sum_{\nu=1}^{n-1} a_{\nu\nu} |\hat{a}_{n,\nu+1}| \right) \right)^{k-1} \\ &= O(1) \sum_{n=1}^{m+1} (na_{nn})^{k-1} \sum_{\nu=1}^{n-1} a_{\nu\nu} |\hat{a}_{n,\nu+1}| |\lambda_{\nu}|^k |s_{\nu}|^k \\ &= O(1) \sum_{\nu=1}^{m} a_{\nu\nu} |\lambda_{\nu}|^k |s_{\nu}|^k \sum_{n=\nu+1}^{m+1} |\hat{a}_{n,\nu+1}| \\ &= O(1) \sum_{\nu=1}^{m} a_{\nu\nu} |\lambda_{\nu}|^k |s_{\nu}|^k, \quad \text{by using (v), (1.11), and Holder's inequality, } \\ &= O(1), \end{split}$$

as in the case of T_{n1} .

$$\sum_{n=1}^{m+1} n^{k-1} |T_{n3}|^k = \sum_{n=1}^{m+1} n^{k-1} \left| \sum_{\nu=1}^{n-1} \frac{\hat{a}_{n,\nu+1}}{\nu+1} \Delta \left(\frac{1}{a_{\nu\nu}} \right) \lambda_{\nu} s_{\nu} \right|^k$$
$$= O(1) \sum_{n=1}^{m+1} n^{k-1} \left(\sum_{\nu=1}^{n-1} a_{\nu\nu} |\hat{a}_{n,\nu+1}| |\lambda_{\nu}| |s_{\nu}| \right)^k, \text{ by using (iv),}$$
$$= O(1),$$

as in the case of T_{n2} .

$$\begin{split} \sum_{n=1}^{m+1} n^{k-1} |T_{n4}|^k &= \sum_{n=1}^{m+1} n^{k-1} \left| \sum_{\nu=1}^{n-1} \frac{\hat{a}_{n,\nu+1} \Delta \lambda_{\nu} s_{\nu}}{(\nu+1) a_{\nu+1,\nu+1}} \right|^k \\ &= O(1) \sum_{n=1}^{m+1} n^{k-1} \left(\sum_{\nu=1}^{n-1} \frac{|\hat{a}_{n,\nu+1}|^k |\Delta \lambda_{\nu}| |s_{\nu}| X_{\nu}}{X_{\nu}} \right)^k \\ &= O(1) \sum_{n=1}^{m+1} n^{k-1} \sum_{\nu=1}^{n-1} \frac{|\hat{a}_{n,\nu+1}|^k |\Delta \lambda_{\nu}| |s_{\nu}|^k}{X_{\nu}^{k-1}} \left(\sum_{\nu=0}^{n-1} |\Delta \lambda_{\nu}| X_{\nu} \right)^{k-1} \\ &= O(1) \sum_{\nu=1}^{m} \frac{|\Delta \lambda_{\nu}| |s_{\nu}|^k}{X_{\nu}^{k-1}} \sum_{n=\nu+1}^{m+1} n^{k-1} |\hat{a}_{n,\nu+1}|^k \\ &= O(1) \sum_{\nu=1}^{m} \frac{\nu |\Delta \lambda_{\nu}| |s_{\nu}|^k}{\nu X_{\nu}^{k-1}} \sum_{n=\nu+1}^{m+1} n^{k-1} |\hat{a}_{n,\nu+1}|^k \\ &= O(1) \sum_{\nu=1}^{m-1} \Delta (\nu |\Delta \lambda_{\nu}|) \sum_{r=1}^{\nu} \frac{|s_{r}|^k}{r X_{r}^{k-1}} + O(1) m |\Delta \lambda_{m}| X_{m} \\ &= O(1) \sum_{\nu=1}^{m-1} |\Delta \lambda_{\nu}| X_{\nu} + O(1) \sum_{\nu=1}^{m} \nu |\Delta^2 \lambda_{\nu}| X_{\nu} + O(1) m |\Delta \lambda_{m}| X_{m}, \end{split}$$

using Holder's inequality, Lemma 1.3, (vi), (ix), and (viii).

Finally, using Lemma 1.3,

$$\sum_{n=1}^{m+1} n^{k-1} |T_{n5}|^{k} = \sum_{n=1}^{m+1} n^{k-1} \left| \frac{\lambda_{n} s_{n}}{n} \right|^{k}$$
$$= O(1) \sum_{n=1}^{m+1} \frac{|\lambda_{n}| |s_{n}|^{k} (|\lambda_{n}| X_{n})^{k-1}}{n X_{n}^{k-1}}$$
$$= O(1) \sum_{n=1}^{m+1} \frac{|\lambda_{n}| |s_{n}|^{k}}{n X_{n}^{k-1}}, \text{ using Lemma 1.3,}$$
$$= O(1),$$

as in the case of T_{n1} . The proof is complete.

3. Corollary

Corollary 3.1. Let

(i)
$$np_n = O(P_n), P_n = O(np_n),$$

(ii)
$$\Delta(P_n / p_n) = O(1),$$

(iii)
$$\sum_{n=\nu+1}^{\infty} n^{k-1} \left(\frac{p_n}{P_n P_{n-1}} \right)^k = \mathcal{O}\left(1/P_{\nu}^k \right).$$

If (X_n) is a positive nondecreasing sequence and the sequence (λ_n) is satisfy conditions (vii)-(ix) of theorem 1.2, then the series $\sum (a_n P_n \lambda_n) / np_n$ is summable $|\overline{N}, p_n|_k, k \ge 1$.

REFERENCES

- T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proceedings pf London Mathematical Society. Third Series, Vo. 7, pp. 113-141, 1957.
- [2] K. N. Mishra and R. S. L. Srivastava, On $|\overline{N}, p_n|_k$ summability factors of infinite Series, Indian Journal of Pure and Applied mathematics, Vol. 15, pp. 651-656, 1984.
- [3] E. Savas and B. E. Rhoads, A note on $|A|_k$ summability factors of infinite series, Journal of Inequalities and Applications, Volume 2007, Article ID 86095, 8 Pages.