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1. Main results

We start from the famous formula

ex = lim
n→∞

(
1+

x
n

)n
= lim

r→0
(1+ rx)1/r .

In this article, we consider the inverse function of r-exponential function expr(x)≡ (1+ rx)1/r,

namely r-logarithmic function defined by lnr x≡ xr−1
r for x≥ 0 and a real number r 6= 0.

Lemma 1.1. lnr x is a monotone increasing function in r.

E-mail address: furuichi@chs.nihon-u.ac.jp

Received March 02, 2017
1



2 SHIGERU FURUICHI

Proof. In the inequality log t ≤ t−1 for t > 0, we set t = x−r, we obtain the following

∂ lnr x
∂ r

=
xr (logxr−1+ x−r)

r2 ≥ 0.

�

Lemma 1.1. implies the following lemma.

Lemma 1.2. Let r,v, t be real numbers with r 6= 0 and t > 0.

(i) For 0 < r < v− 1
2 or v− 1

2 < 0 < r, we have

(1)
(

v− 1
2

)
tr−1

r
≤ tv− 1

2 −1.

(ii) For 0 < r < v or v < 0 < r, we have

(2) v
tr−1

r
≤ tv−1.

Applying (i) and (ii) of Lemma , we can derive respectively [1, Theorem 1] and [1, Theorem

3] without using the supplemental Young’s inequality given in [1, Lemma 5] which used to

prove [1, Theorem 1] and [1, Theorem 3].

Theorem 1.1. ([1, Theorem 1]) Let v, t be real numbers with t > 0, and n ∈ N with n≥ 2.

(i) For v /∈
[

1
2 ,

2n−1+1
2n

]
, we have

(3) (1− v)+ vt ≤ tv +(1− v)
(
1−
√

t
)2

+(2v−1)
√

t
n

∑
k=2

2k−2
(

2k√
t−1

)2

(ii) For v /∈
[

2n−1−1
2n , 1

2

]
, we have

(4) (1− v)t + v≤ t1−v + v
(√

t−1
)2

+(1−2v)
√

t
n

∑
k=2

2k−2
(

2k√
t−1

)2

Proof.

(i) Direct calculations imply

(1− v)+ vt− (1− v)
(
1−
√

t
)2− (2v−1)

√
t

n

∑
k=2

2k−2
(

2k√
t−1

)2

=
√

t +
√

t
(

v− 1
2

)
2n
(

2n√
t−1

)
.(5)

Thus the inequality (3) is equivalent to the inequality

(6)
(

v− 1
2

)
2n
(

2n√
t−1

)
≤ tv− 1

2 −1.
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This inequality is true by (i) of Lemma 1.2. with r = 1
2n , since the conditions 0 < r <

v− 1
2 or v− 1

2 < 0 < r are satisfied in the case of v /∈
[

1
2 ,

2n−1+1
2n

]
in (i) of Lemma 1.2.

(ii) Exchanging 1− v with v in (i) of Lemma 1.2., we have

(7)
(

1
2
− v
)

tr−1
r
≤ t

1
2−v−1

for v < 1
2 − r or 1

2 < v. Exchanging 1− v with v in the inequality (6), we have

(8)
(

1
2
− v
)

2n
(

2n√
t−1

)
≤ t

1
2−v−1.

This inequality is true by the inequality (7) with r = 1
2n , since the conditions v < 1

2 − r

or 1
2 < v are satisfied in the case of v /∈

[
2n−1−1

2n , 1
2

]
in (i) of Lemma 1.2.

�

Theorem 1.2. ([1, Theorem 3]) Let v, t be real numbers with t > 0, and n ∈ N.

(i) For v /∈
[
0, 1

2n

]
, we have

(9) (1− v)+ vt ≤ tv + v
n

∑
k=1

2k−1
(

1− 2k√
t
)2

(ii) For v /∈
[

2n−1
2n ,1

]
, we have

(10) (1− v)t + v≤ t1−v +(1− v)
n

∑
k=1

2k−1
(

1− 2k√
t
)2

Proof.

(i) Direct calculations imply

(11) (1− v)+ vt− v
n

∑
k=1

2k−1
(

1− 2k√
t
)2

= v2n
(

2n√
t−1

)
+1

so that the inequality (9) is equivalent to the inequality

(12) v2n
(

2n√
t−1

)
≤ tv−1

This inequality is true by (ii) of Lemma 1.2. with r = 1
2n , since the conditions 0 < r < v

or v < 0 < r are satisfied in the case of v /∈
[
0, 1

2n

]
in (ii) of Lemma 1.2.
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(ii) Exchanging 1− v with v in (ii) of Lemma 1.2., we have

(13) (1− v)
tr−1

r
≤ t1−v−1

for 0 < r < 1− v or 1− v < 0 < r. Exchanging 1− v with v in the inequality (12), we

also have

(14) (1− v)2n
(

2n√
t−1

)
≤ t1−v−1

This inequality is true by the inequality (13) with r = 1
2n , since the conditions 0 < r <

1− v or 1− v < 0 < r are satisfied in the case of v /∈
[

2n−1
2n ,1

]
in (ii) of Lemma 1.2.

�

By theory of Kubo-Ando [2], we have the following corollary from Lemma 1.2.

Corollary 1.3. Let r,v, t be real numbers with r 6= 0 and t > 0. For α ∈ R, a positive definite

matrix A and a positive semidefinite matrix B, we define A\αB ≡ A1/2
(

A−1/2BA−1/2
)α

A1/2.

Then we have the following matrix inequalities.

(i) For 0 < r < v− 1
2 or v− 1

2 < 0 < r, we have

(15)
(

v− 1
2

)
A\rB−A

r
≤ A\v− 1

2
B−A.

(ii) For 0 < r < v or v < 0 < r, we have

(16) v
A\rB−A

r
≤ A\vB−A.

2. Additional results

The methods in previous section are applicable to obtain the inequalities in the following

propositions.

Proposition 2.1. Let v, t be real numbers with t > 0, and n ∈ N.

(i) For v ∈
[
0, 1

2n

]
, we have

(17) (1− v)+ vt ≥ tv + v
n

∑
k=1

2k−1
(

1− 2k√
t
)2

If α ∈ [0,1], A]α B≡ A1/2
(
A−1/2BA−1/2

)α
A1/2 is called α-weighted geometric mean.
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(ii) For v ∈
[

2n−1
2n ,1

]
, we have

(18) (1− v)t + v≥ t1−v +(1− v)
n

∑
k=1

2k−1
(

1− 2k√
t
)2

Proof.

(i) By Lemma 1.1., we have

v
tr−1

r
≥ tr−1, (0≤ v≤ r)

which implies

(19) v2n
(

t
1

2n −1
)
≥ tv−1, for v ∈

[
0,

1
2n

]
by putting r = 1

2n . Since we have the identity (11), the inequality (17) is equivalent to

the inequality (19).

(ii) Exchanging 1− v with v, the inequality (19) becomes

(20) (1− v)2n
(

t
1

2n −1
)
≥ t1−v−1, for v ∈

[
2n−1

2n ,1
]
.

Then the inequality (17) is also changed to the inequality (18), which is true by the

inequality (20).

�

Proposition 2.2. Let v, t be real numbers with t > 0, and n ∈ N with n≥ 2.

(i) For v ∈
[

1
2 ,

2n−1+1
2n

]
, we have

(21) (1− v)+ vt ≥ tv +(1− v)
(
1−
√

t
)2

+(2v−1)
√

t
n

∑
k=2

2k−2
(

2k√
t−1

)2

(ii) For v ∈
[

2n−1−1
2n , 1

2

]
, we have

(22) (1− v)t + v≥ t1−v + v
(√

t−1
)2

+(1−2v)
√

t
n

∑
k=2

2k−2
(

2k√
t−1

)2

Proof.

(i) By Lemma 1.1., we have(
v− 1

2

)
tr−1

r
≥ tv− 1

2 −1,
(

0≤ v− 1
2
≤ r
)
,
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which implies

(23)
(

v− 1
2

)
2n
(

t
1

2n −1
)
≥ tv− 1

2 −1, for v ∈
[

1
2
,
2n−1 +1

2n

]
by putting r = 1

2n . Since we have the identity (5), the inequality (21) is equivalent to the

inequality (23).

(ii) Exchanging 1− v with v, the inequality (23) becomes

(24)
(

1
2
− v
)

2n
(

t
1

2n −1
)
≥ t

1
2−v−1, for v ∈

[
2n−1−1

2n ,
1
2

]
.

Then the inequality (21) is also changed to the inequality (22), which is true by the

inequality (24).

�
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