AN INEQUALITY FOR THE POLAR DERIVATIVE OF A POLYNOMIAL

NISAR A. RATHER* AND MUSHTAQ A. SHAH
Department of Mathematics, University of Kashmir, Srinagar 190006, India

Abstract

In this paper, an inequality for the polar derivative of a polynomial with restricted zeros is obtained, which refines and generalizes some well known polynomial inequalities.

Keywords: polynomials, polar derivative, inequalities in the complex domain.
2000 AMS Subject Classification: 30A06, 30A64, 30C10.

1. Introduction

Let $P(z)=\sum_{j=1}^{n} a_{j} z^{j}$ be a polynomial of degree n having all its zeros in $|z| \leq 1$, then

$$
\begin{equation*}
\underset{|z|=1}{\operatorname{Max}}\left|P^{\prime}(z)\right| \geq \frac{n}{2} \operatorname{Max}_{|z|=1}|P(z)| . \tag{1}
\end{equation*}
$$

Inequality (1) is due to P.Turan [10].
As a generalization of (1), Malik [8] considered the class of polynomials $P(z)$ of degree n having all the zeros in $|z| \leq k$ where $k \leq 1$ and proved that

$$
\begin{equation*}
\left.\underset{|z|=1}{\operatorname{Max}}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k} \underset{|z|=1}{\operatorname{Max}} \right\rvert\, P(z) \tag{2}
\end{equation*}
$$

The result is sharp and equality holds for the polynomial $P(z)=(z+k)^{n}$.
*Corresponding author
Received April 16, 2012

The case $k \geq 1$ was considered by Govil [7] who showed that if $P(z)$ is a polynomial of degree n having all the zeros in $|z| \leq k$ where $k \geq 1$ then

$$
\begin{equation*}
\left.\underset{|z|=1}{\operatorname{Max}}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k^{n}} \underset{|z|=1}{\operatorname{Max}} \right\rvert\, P(z) \tag{3}
\end{equation*}
$$

Equality in (3) holds for the polynomial $P(z)=z^{n}+k^{n}$.
The polar derivative $D_{\alpha} P(z)$ of a polynomial $P(z)$ of degree n with respect to a point $\alpha \in \mathrm{C}$ is defined as

$$
D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z) .
$$

(for reference see [9])
The polynomial $D_{\alpha} P(z)$ is of degree at most $n-1$, and it generalizes the ordinary derivative in the sense that

$$
\lim _{n \rightarrow \infty} \frac{D_{\alpha} P(z)}{\alpha}=P^{\prime}(z)
$$

uniformly for $|z| \leq R, R>0$.
Aziz and Rather obtained several sharp results concerning the maximum modulus of $D_{\alpha} P(z)$ on $|z|=1$. Among other things, they [3] established the following extension of inequality (3) to the polar derivative of a polynomial.

Theorem A. If $P(z)$ is a polynomial of degree n having all the zeros in $|z| \leq k$ where $k \geq 1$, then for every real or complex number α with $|\alpha| \geq k$,

$$
\begin{equation*}
\underset{|z|=1}{\operatorname{Max}}\left|D_{\alpha} P(z)\right| \geq \frac{n(|\alpha|-k)}{1+k^{n}} \underset{|z|=1}{\operatorname{Max}}|P(z)| . \tag{4}
\end{equation*}
$$

In this paper, we present the following result, which is a refinement as well as generalization of the Theorem A.

2. Preliminaries

For the proof of the Theorem, we need the following Lemmas.

Lemma 1. If $P(z)=\sum_{j=1}^{n} a_{j} z^{j}$ is a polynomial of degree n, then

$$
\begin{aligned}
& \operatorname{Max}_{|z|=R>1}|P(z)| \leq R^{n} \operatorname{Max}_{|z|=1}|P(z)|-\left|a_{1}\right|\left[\left\{\frac{\left(c_{n}+1\right)\left(R^{n}-1\right)}{n}\right\}-\left\{\frac{R^{n-2}-1}{n-2}\right\}\right], n>2 \\
& \leq R^{2} \operatorname{Max}_{|z|=1}|P(z)|-\left|a_{1}\right|\left\{\frac{(R-1)(R+1-\sqrt{2})}{\sqrt{2}}\right\} \quad \text { for } \\
& n=2 .
\end{aligned}
$$

where $c_{2}=\sqrt{2}-1, c_{3}=\frac{1}{\sqrt{2}}$ and for $n \geq 4, c_{n}$ is the unique positive root of the equation

$$
16 n-8(3 n+2) x^{2}-16 x^{3}+(n+4) x^{4}=0
$$

lying in (0,1).
The above lemma is due to Bhat [4].
Frapper [6] showed that the coefficient c_{n} appearing in the above Lemma is given by

$$
c_{n}=\frac{2 n}{n-4} \sqrt{\frac{2(n+2)}{n}}-1 \text { for } n \geq 4 .
$$

Lemma 2. If $P(z)=\sum_{j=1}^{n} a_{j} z^{j}$, is a polynomial of degree n having no zero in $|z| \leq 1$ and $m=\underset{k|k|=1}{\operatorname{Min}} \mid P z) \mid$, then for $R \geq 1$,

$$
\begin{aligned}
\underset{|z|=R}{\operatorname{Max}}|P(z)| \leq & \left.\frac{\left(R^{n}+1\right)}{2} \operatorname{Max}_{|z|=1}|P(z)|-\frac{\left(R^{n}-1\right)}{2} m-\frac{2\left|a_{1}\right|}{n+1} \right\rvert\,\left[\frac{\left(R^{n}-1\right)}{n}-(R-1)\right] \\
& -2\left|a_{2}\right|\left[\left\{\frac{\left(R^{n}-1\right)-n(R-1)}{n(n-1)}\right\}-\left\{\frac{\left(R^{n-2}-1\right)-(n-2)(R-1)}{(n-2)(n-3)}\right\}\right] \text { for } n>3 .
\end{aligned}
$$

and

$$
\begin{gathered}
\left.\underset{|z|=R}{\operatorname{Max} \mid} P(z)\left|\leq \frac{\left(R^{n}+1\right)}{2} \underset{|z|=\mid}{\operatorname{Max} \mid}\right| P(z) \right\rvert\,-\frac{\left(R^{n}-1\right)}{2} m-\frac{2\left|a_{1}\right|}{n+1}\left[\frac{\left(R^{n}-1\right)}{n}-(R-1)\right] \\
-\frac{2\left|a_{2}\right|}{n(n-1)}(R-1)^{n} \quad \text { for } n=3 .
\end{gathered}
$$

The above result is a special case of a result due to Dewan, Singh and Mir [5] with $K=1$.

Lemma 3. If $P(z)=\sum_{j=1}^{n} a_{j} z^{j}, a_{n} \neq 0$, is a polynomial of degree n having all its zeros in $|z| \leq 1$, then

$$
\underset{|k|=1}{\operatorname{Max}}\left|P^{\prime}(z)\right| \geq \frac{n}{2}\left\{\operatorname{Max}_{|z|=1}|P(z)|+\underset{|z|=1}{\operatorname{Min}}|P(z)|\right\} .
$$

This Lemma is due to A.Aziz and Dawood [1].

3. Main results

Theorem 1.1. Let $P(z)=\sum_{j=1}^{n} a_{j} z^{j}, a_{n} a_{0} \neq 0$ be a polynomial of degree $n \geq 3$, having all its zeros in $|z| \leq k, k \geq 1$, then for every real or complex number α with $|\alpha| \geq k$,
(5) $\operatorname{Max}_{k \mid=1}\left|D_{\alpha} P(z)\right| \geq \frac{n(|\alpha|-k)}{1+k^{n}}\left\{\underset{k \mid=1}{\left.\operatorname{Max}|P(z)|+\underset{|z|=k}{\operatorname{Min}}|P(z)|+2 \frac{\left|a_{n-1}\right|}{(n+1)}\left[\frac{k^{n}-1}{n}-(k-1)\right], ~\right], ~}\right.$

$$
\begin{aligned}
& \left.+2\left|a_{n-2}\right|\left[\left\{\frac{\left(k^{n}-1\right)-n(k-1)}{n(n-1)}\right\}-\left\{\frac{\left(k^{n-2}-1\right)-(n-2)(k-1)}{(n-2)(n-3)}\right\}\right]\right\} \\
& +\frac{\left|(n-1) a_{1}+2 \alpha a_{2}\right|}{k^{n-1}}\left[\left\{\frac{\left(c_{n-1}+1\right)\left(k^{n-1}-1\right)}{n-1}\right\}-\left\{\frac{k^{n-3}-1}{n-3}\right\}\right] \text { for } n>3 .
\end{aligned}
$$

and
(6) $\quad \underset{|z|=1}{\operatorname{Max}}\left|D_{\alpha} P(z)\right| \geq \frac{n(|\alpha|-k)}{1+k^{n}} k^{n-3}\left\{\underset{|z|=1}{\operatorname{Max} \mid}|P(z)|+\underset{|z|=k}{\operatorname{Min}}|P(z)|+2 \frac{\left|a_{n-1}\right|}{(n+1)}\left[\frac{k^{n}-1}{n}-(k-1)\right]\right.$
$\left.+\frac{1}{k^{2}}\left[\frac{2\left|a_{n-2}\right|(k-1)^{n}}{n(n-1)}\right]\right\}+\frac{1}{k^{2}}\left[\left|(n-1) a_{1}+2 \alpha a_{2}\right|\left\{\frac{(k-1)(k+1-\sqrt{2})}{\sqrt{2}}\right\}\right]$ for $n=3$.
where $c_{2}=\sqrt{2}-1, c_{3}=\frac{1}{\sqrt{2}}$ and $c_{n}=\frac{2 n}{n-4} \sqrt{\frac{2(n+2)}{n}}-1$, for $n \geq 4$.

Proof.

By hypothesis, all the zeros of $P(z)$ lie in $|z| \leq k$, therefore the polynomial $F(z)=P(k z)$ has all its zeros in $|z| \leq 1$. Applying Lemma 3 to the polynomial $F(z)$, we get

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|F^{\prime}(z)\right| \geq \frac{n}{2}\left\{\operatorname{Max}_{|z|=1}|F(z)|+\underset{|z|=1}{\operatorname{Min}}|F(z)|\right\} . \tag{7}
\end{equation*}
$$

Let $G(z)=z^{n} \overline{F(1 / \bar{z})}$, then all the zeros of $G(z)$ lie $|z| \geq 1$. Moreover, it can be easily verified that for $|z|=1$,

$$
\begin{equation*}
\left|G^{\prime}(z)\right|=\left|n F(z)-z F^{\prime}(z)\right| \quad \text { and } \quad\left|F^{\prime}(z)\right|=\left|n G(z)-z G^{\prime}(z)\right| . \tag{8}
\end{equation*}
$$

Since $G(z)$ does not vanish in $|z|<1$, it follows by a simple argument (see [2, inequality (9)]) that

$$
\left|G^{\prime}(z)\right| \leq\left|n G(z)-z G^{\prime}(z)\right| \quad \text { for } \quad|z|=1 .
$$

This gives with the help of (8),

$$
\begin{equation*}
\left|n F(z)-z F^{\prime}(z)\right| \leq\left|F^{\prime}(z)\right| \quad \text { for } \quad|z|=1 . \tag{9}
\end{equation*}
$$

Now for every real or complex number α with $|\alpha| \geq k$, we have

$$
\begin{aligned}
\left|D_{\frac{\alpha}{k}} F(z)\right| & =\left|n F(z)-z F^{\prime}(z)+\frac{\alpha}{k} F^{\prime}(z)\right| \\
& \geq\left|\frac{\alpha}{k}\right| F^{\prime}(z)\left|-\left|n F(z)-z F^{\prime}(z)\right| .\right.
\end{aligned}
$$

Using (9), we get

$$
\left|D_{\frac{\alpha}{k}} F(z)\right| \geq\left|\frac{\alpha}{k}\right|\left|F^{\prime}(z)\right|-\left|F^{\prime}(z)\right|=\frac{|\alpha|-k}{k}\left|F^{\prime}(z)\right| \quad \text { for } \quad|z|=1
$$

This further gives

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|D_{\frac{\alpha}{k}} F(z)\right| \geq \frac{|\alpha|-k}{k} \operatorname{Max}_{|z|=1}\left|F^{\prime}(z)\right| . \tag{10}
\end{equation*}
$$

Together (7) and (10) yield,

$$
\underset{|z|=1}{\operatorname{Max}}\left|D_{\frac{\alpha}{k}} F(z)\right| \geq \frac{n}{2} \frac{(|\alpha|-k)}{k}\left\{\operatorname{Max}_{|z|=1}\left|F^{\prime}(z)\right|+\operatorname{Min}_{|z|=1}\left|F^{\prime}(z)\right|\right\} .
$$

Replacing $F(z)$ by $P(k z)$, we get

$$
\operatorname{Max}_{|k|=1}\left|D_{\frac{\alpha}{k}} P(k z)\right| \geq \frac{(|\alpha|-k)}{k} \frac{n}{2}\left\{\operatorname{Max}_{|z|=1}|P(k z)|+\underset{|k|=1}{\operatorname{Min}|P(k z)|\} .}\right.
$$

This can be written as

$$
\underset{|z|=1}{\operatorname{Max}}\left|n P(k z)+\left(\frac{\alpha}{k}-z\right) k P^{\prime}(k z)\right| \geq \frac{n(|\alpha|-k)}{2 k}\{\underset{|z|=1}{\operatorname{ax} \mid}|P(k z)|+\underset{|z|=1}{\operatorname{Min} \mid}|P(k z)|\} .
$$

or equivalently,

$$
\begin{equation*}
\operatorname{Max}_{|z|=k}\left|D_{\alpha} P(z)\right| \geq \frac{n(|\alpha|-k)}{2 k}\left\{\operatorname{Max}_{|z|=k}|P(z)|+\operatorname{Min}_{|z|=k}|P(z)|\right\} . \tag{11}
\end{equation*}
$$

Let $Q(z)=z^{n} \overline{P(1 / \bar{z})}$. Since all the zeros of the polynomial $P(z)$ lie in $|z| \leq k, k \geq 1$, all the zeros of $Q(z)$ lie in $|z| \geq \frac{1}{k}, k \geq 1$ and therefore the polynomial $Q\left(\frac{z}{k}\right)$ have all its zeros in $|z| \geq 1$. Applying Lemma 2 to the polynomial $Q\left(\frac{z}{k}\right)$, with $R=k \geq 1$, we get

$$
\begin{aligned}
\operatorname{Max}_{|z|=k}\left|Q\left(\frac{z}{k}\right)\right| & \leq \frac{\left(k^{n}+1\right)}{2} \underset{|z|=1}{\operatorname{Max}}\left|Q\left(\frac{z}{k}\right)\right|-\frac{\left(k^{n}-1\right)}{2} \underset{|k|=1}{\operatorname{Min}}\left|Q\left(\frac{z}{k}\right)\right|-\frac{2 \mid a_{n-1}}{(n+1)}\left[\frac{\left(k^{n}-1\right)}{n}-(k-1)\right] \\
& -2\left|a_{n-2}\right|\left[\left\{\frac{\left(k^{n}-1\right)-n(k-1)}{n(n-1)}\right\}-\left\{\frac{\left(k^{n-2}-1\right)-(n-2)(k-1)}{(n-2)(n-3)}\right\}\right], \text { for } \mathrm{n}>3
\end{aligned}
$$

and

$$
\begin{aligned}
\underset{|k|=k}{\operatorname{Max}}\left|Q\left(\frac{z}{k}\right)\right| \leq \frac{\left(k^{n}+1\right)}{2} \operatorname{Max}_{|z|=1}\left|Q\left(\frac{z}{k}\right)\right| & -\frac{\left(k^{n}-1\right)}{2} \underset{|z|=1}{\operatorname{Min} \mid}\left|Q\left(\frac{z}{k}\right)\right|-\frac{2\left|a_{n-1}\right|}{(n+1)}\left[\frac{\left(k^{n}-1\right)}{n}-(k-1)\right] \\
& -\frac{2\left|a_{n-2}\right|}{n(n-1)}(k-1)^{n}, \quad \text { for } \mathrm{n}=3 .
\end{aligned}
$$

Using the fact that $|P(z)|=|Q(z)|$ for $|\mathrm{z}|=1$, it follows that

$$
\begin{aligned}
\operatorname{Max}_{|z|=1}|P(z)| \leq & \frac{\left(k^{n}+1\right)}{2 k^{n}} \underset{|z|=k}{\operatorname{Max}}|P(z)|-\frac{\left(k^{n}-1\right)}{2 k^{n}} \operatorname{Min}_{|k|=k}|P(z)|-\frac{2\left|a_{n-1}\right|}{(n+1)}\left[\frac{\left(k^{n}-1\right)}{n}-(k-1)\right] \\
& -2\left|a_{n-2}\right|\left[\left\{\frac{\left(k^{n}-1\right)-n(k-1)}{n(n-1)}\right\}-\left\{\frac{\left(k^{n-2}-1\right)-(n-2)(k-1)}{(n-2)(n-3)}\right\}\right], \text { for } \mathrm{n}>3
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Max}_{|z|=1}|P(z)| \leq \frac{\left(k^{n}+1\right)}{2 k^{n}} \underset{|z|=k}{\operatorname{Max}}|P(z)| & \left.-\frac{\left(k^{n}-1\right)}{2 k^{n}} \operatorname{Min}_{|z|=k}|P(z)|-\frac{2\left|a_{n-1}\right|\left[\left(\frac{\left(k^{n}-1\right)}{(n+1)}\right.\right.}{n}-(k-1)\right] \\
& -\frac{2\left|a_{n-2}\right|}{n(n-1)}(k-1)^{n}, \quad \text { for } \mathrm{n}=3,
\end{aligned}
$$

which implies,
(12) $\underset{|k|=k}{\operatorname{Max}}|P(z)| \geq \frac{2 k^{n}}{\left(k^{n}+1\right)} \underset{\operatorname{Max} \mid=1}{\operatorname{ax}}|P(z)|+\frac{\left(k^{n}-1\right)}{\left(k^{n}+1\right)} \operatorname{Min}_{|z|=k}|P(z)|+\frac{4 k^{n}}{\left(k^{n}+1\right)} \frac{\left|a_{n-1}\right|}{(n+1)}\left[\frac{\left(k^{n}-1\right)}{n}-(k-1)\right]$

$$
+\frac{4 k^{n}}{\left(k^{n}+1\right)}\left|a_{n-2}\right|\left[\left\{\frac{\left(k^{n}-1\right)-n(k-1)}{n(n-1)}\right\}-\left\{\frac{\left(k^{n-2}-1\right)-(n-2)(k-1)}{(n-2)(n-3)}\right\}\right] \text {, for } \mathrm{n}>3
$$

and

$$
\begin{align*}
\underset{|k|=k}{\operatorname{Max}|P(z)| \geq} \frac{2 k^{n}}{\left(k^{n}+1\right)} \underset{|z|=1}{\operatorname{Max}}|P(z)| & \left.+\frac{\left(k^{n}-1\right)}{\left(k^{n}+1\right)} \operatorname{Min} \right\rvert\, P(z \mid=k \tag{13}\\
& +\frac{4 k^{n}}{\left(k^{n}+1\right)} \frac{\left|a_{n-2}\right|}{n(n-1)}(k-1)^{n}, \quad \text { for } \mathrm{n}=3 .
\end{align*}
$$

Combining (11), (12) and (13), we get

$$
\begin{gathered}
\operatorname{Max}_{|z|=k}\left|D_{\alpha} P(z)\right| \geq \frac{n(|\alpha|-k)}{2 k}\left\{\left.\frac{2 k^{n}}{\left(k^{n}+1\right)} \operatorname{Max}_{|z|=1}|P(z)|+\frac{\left(k^{n}-1\right)}{\left(k^{n}+1\right)} \operatorname{Min}|P(z)|+\frac{4 k^{n}}{\left(k^{n}+1\right)} \right\rvert\, \frac{\left|a_{n-1}\right|}{(n+1)}\left[\frac{\left(k^{n}-1\right)}{n}-(k-1)\right]\right. \\
\quad+\frac{4 k^{n}}{\left(k^{n}+1\right)} \left\lvert\, a_{n-2}\left[\left\{\left\{\frac{\left(k^{n}-1\right)-n(k-1)}{n(n-1)}\right\}-\left\{\frac{\left(k^{n-2}-1\right)-(n-2)(k-1)}{(n-2)(n-3)}\right\}\right]+\underset{|z|=k}{\operatorname{Min} \mid}|P(z)|\right\}\right., \text { for } \mathrm{n}>3
\end{gathered}
$$

and

$$
\begin{gathered}
\underset{|z|=k}{\operatorname{Max}}\left|D_{\alpha} P(z)\right| \geq \frac{n(|\alpha|-k)}{2 k}\left\{\left.\frac{2 k^{n}}{\left(k^{n}+1\right)} \underset{|z|=1}{\operatorname{Max}}|P(z)|-\frac{\left(k^{n}-1\right)}{\left(k^{n}+1\right)} \operatorname{Min}| | \right\rvert\,=k\right. \\
\\
\\
+\frac{4 k^{n}}{\left(k^{n}+1\right)} \frac{\left|a_{n-2}\right|}{n(n-1)}(k-1)+\operatorname{Min}_{|z|=k}|P(z)|+\frac{4 k^{n}}{\left(k^{n}+1\right)} \frac{\left|a_{n-1}\right|}{(n+1)}\left[\frac{\left(k^{n}-1\right)}{n}-(k-1)\right] \\
\quad \text { for } \mathrm{n}=3 .
\end{gathered}
$$

This gives
(14) $\operatorname{Max}_{|k|=k}\left|D_{\alpha} P(z)\right| \geq \frac{n(|\alpha|-k) k^{n-1}}{\left(k^{n}+1\right)}\left\{\underset{|k|=1}{\operatorname{Max} \mid}|P(z)|+\underset{|k|=k}{\operatorname{Min} \mid}|P(z)|+\frac{2 \mid a_{n-1}}{(n+1)}\left[\frac{\left(k^{n}-1\right)}{n}-(k-1)\right]\right.$

$$
+2 \left\lvert\, a_{n-2}\left[\left\{\left\{\frac{\left(k^{n}-1\right)-n(k-1)}{n(n-1)}\right\}-\left\{\frac{\left(k^{n-2}-1\right)-(n-2)(k-1)}{(n-2)(n-3)}\right\}\right]\right\}\right., \text { for } \mathrm{n}>3 \text {. }
$$

and
(15) $\operatorname{Max}_{|k|=k}\left|D_{\alpha} P(z)\right| \geq \frac{n(|\alpha|-k) k^{n-1}}{\left(k^{n}+1\right)}\left\{\underset{|z|=1}{\operatorname{Max} \mid}|P(z)|+\underset{|z|=k}{\operatorname{Min}}|P(z)|+\frac{2\left|a_{n-1}\right|}{(n+1)}\left[\frac{\left(k^{n}-1\right)}{n}-(k-1)\right]\right.$

$$
\left.+\frac{2\left|a_{n-2}\right|}{n(n-1)}(k-1)^{n}\right\}, \quad \text { for } \mathrm{n}=3
$$

Since $D_{\alpha} P(z)$ is a polynomial of degree $n-1$ and $k \geq 1$, applying Lemma 1 , we obtain
$\underset{|z|=k}{\operatorname{Max}}\left|D_{\alpha} P(z)\right| \leq k^{n-1} \underset{|z|=1}{\operatorname{Max}}\left|D_{\alpha} P(z)\right|-\left|(n-1) a_{1}+2 \alpha a_{2}\right|\left[\left\{\frac{\left(c_{n-1}+1\right)\left(k^{n-1}-1\right)}{n-1}\right\}-\left\{\frac{k^{n-3}-1}{n-3}\right\}\right], n>3$ and

$$
\underset{|z|=k}{\operatorname{Max}}\left|D_{\alpha} P(z)\right| \leq k^{2} \operatorname{Max}_{|z|=1}\left|D_{\alpha} P(z)\right|-\left|(n-1) a_{1}+2 \alpha a_{2}\right|\left[\left\{\frac{(k-1)(k+1-\sqrt{2})}{\sqrt{2}}\right\}\right], n=3 .
$$

where c_{n} is defined as in the Theorem. These in conjunction with (14) and (15) yields,

$$
\begin{aligned}
\underset{|z|=1}{\operatorname{Max}}\left|D_{\alpha} P(z)\right| & \geq \frac{n(|\alpha|-k)}{1+k^{n}}\left\{\underset{|z|=1}{\operatorname{Max}|P(z)|+\operatorname{Min}_{|z|=k}|P(z)|+2 \frac{\left|a_{n-1}\right|}{(n+1)}\left[\frac{k^{n}-1}{n}-(k-1)\right]}\right. \\
& \left.+2\left|a_{n-2}\right|\left[\left\{\frac{\left(k^{n}-1\right)-n(k-1)}{n(n-1)}\right\}-\left\{\frac{\left(k^{n-2}-1\right)-(n-2)(k-1)}{(n-2)(n-3)}\right\}\right]\right\} \\
& +\frac{\left|(n-1) a_{1}+2 \alpha a_{2}\right|}{k^{n-1}}\left[\left\{\frac{\left(c_{n-1}+1\right)\left(k^{n-1}-1\right)}{n-1}\right\}-\left\{\frac{k^{n-3}-1}{n-3}\right\}\right], \text { for } \mathrm{n}>3 .
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{Max}_{|z|=1}\left|D_{\alpha} P(z)\right| \geq \frac{n(|\alpha|-k)}{1+k^{n}}\left\{\underset{|z| \mid=1}{\operatorname{Max}}|P(z)|+\underset{|z|=k}{\operatorname{Min}}|P(z)|+2 \frac{\left|a_{2}\right|}{(n+1)}\left[\frac{k^{n}-1}{n}-(k-1)\right]\right. \\
+ & \left.\frac{1}{k^{2}}\left[\frac{2\left|a_{1}\right|(k-1)^{n}}{n(n-1)}\right]\right\}+\frac{1}{k^{2}}\left[\left\lvert\,(n-1) a_{1}+2 \alpha a_{2}\left\{\left\{\frac{(k-1)(k+1-\sqrt{2})}{\sqrt{2}}\right\}\right]\right. \text { for } \mathrm{n}=3,\right.
\end{aligned}
$$

where c_{n} is defined as in the Theorem. This completes the proof of Theorem 1.
Remark 1. Since $k \geq 1$ and $n \geq 3$, it follows that $\frac{k^{n-1}-1}{n-1} \geq \frac{k^{n-3}-1}{n-3}$ and $\frac{k^{n}-1}{n}>k-1$. Therefore the above Theorem 1 is a refinement of Theorem A.

If we divide the both sides of (5) and (6) by $|\alpha|$ and let $|\alpha| \rightarrow \infty$, we get the following result, which is a refinement of the inequality (3).

Corollary 1. Let $P(z)=\sum_{j=1}^{n} a_{j} z^{j}, a_{n} a_{0} \neq 0$ be a polynomial of degree $n \geq 3$, having all its zeros in $|z| \leq k, k \geq 1$, then for every real or complex number α with $|\alpha| \geq k$,

$$
\begin{align*}
& \underset{|k|=1}{\operatorname{Max}}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k^{n}}\left\{\underset{|k|=1}{\operatorname{Max}}|P(z)|+\underset{|k|=k}{\operatorname{Min}}|P(z)|+2 \frac{\left|a_{n-1}\right|}{(n+1)}\left[\frac{k^{n}-1}{n}-(k-1)\right]\right. \tag{16}\\
& \left.+2\left|a_{n-2}\right|\left[\left\{\frac{\left(k^{n}-1\right)-n(k-1)}{n(n-1)}\right\}-\left\{\frac{\left(k^{n-2}-1\right)-(n-2)(k-1)}{(n-2)(n-3)}\right\}\right]\right\} \\
& +\frac{2\left|a_{2}\right|}{k^{n-1}}\left[\left\{\frac{\left(c_{n-1}+1\right)\left(k^{n-1}-1\right)}{n-1}\right\}-\left\{\frac{k^{n-3}-1}{n-3}\right\}\right] \text { for } n>3 \text {. }
\end{align*}
$$

and

$$
\begin{align*}
\underset{|z|=1}{\operatorname{Max}}\left|P^{\prime}(z)\right| & \geq \frac{n}{1+k^{n}}\left\{\operatorname{Max}_{|z|=1}|P(z)|+\underset{|z|=k}{\operatorname{Min}}|P(z)|+2 \frac{\left|a_{2}\right|}{(n+1)}\left[\frac{k^{n}-1}{n}-(k-1)\right]\right. \tag{17}\\
& \left.+\frac{1}{k^{2}}\left[\frac{2\left|a_{1}\right|(k-1)^{n}}{n(n-1)}\right]\right\}+\frac{2}{k^{2}}\left|a_{2}\right|\left\{\frac{(k-1)(k+1-\sqrt{2})}{\sqrt{2}}\right\} \text { for } n=3,
\end{align*}
$$

where c_{n} is defined as in the Theorem.

REFERENCES

[1]. A.Aziz and Q.M.Dawood, Inequalities for polynomial and its derivative, J.Approx.Theory, Vol. 54 (1988), 306-313.
[2]. A.Aziz and Q.G.Mohammad, Simple proof of a Theorem of Erdös and Lax, proc.Amer.Math.Soc., 80 (1980), 119-122.
[3]. A.Aziz and N.A. Rather, A refinement of a Theorem of Pual Turan concerning polynomials, Journal of Mathematical inequality and Application vol. 1 No. 2 (1998), 231-238.
[4]. A.A. Bhat, Bernstein type of inequalities and on the location of zeros of polynomials, Ph.D Thesis, J.M.I., New delhi, 1995.
[5]. K.K. Dewan, N.Singh and A.Mir, Growth of polynomials not vanishing inside a circle, International Journal of Mathematical Analysis, Vol. 1, No. 11, 2007, 529-538.
[6]. C.Frappier, Inequalities for polynomials with restricted coefficients, J.Analyse Math., Vol 50 (1988), pp. 143-157.
[7]. N.K.Govil, On the Derivative of a polynomial, Proceedings of American Mathematical Society, Vol. 41 (1973), 543-546.
[8]. M.A.Malik, On the derivative of a polynomial, Journal of London Mathematical society, Vol. 2, No.1, 1969, pp. 57-60.
[9]. M.Marden, Geometry of Polynomials, Math. Surveys, No. 3, Amer.Math. Soc. Providence, RI, 1949.
[10]. P.Turan, Über die Ableitung von polynomen, Compositio Mathematica, Vol. 7, 1939, pp. 89-95.

