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1. Introduction 

Let 



n

j

j

j zazP
1

)( be a polynomial of degree n having all its zeros in 1|| z , then 

(1)                                             |)(|
2

|)(|
1||

/

1||
zPMax

n
zPMax

zz 
 . 

Inequality (1) is due to P.Turan [10]. 

 As a generalization of (1), Malik [8] considered the class of polynomials )(zP of 

degree n having all the zeros in kz || where 1k  and proved that  
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The result is sharp and equality holds for the polynomial nkzzP )()(  . 
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 The case 1k was considered by Govil [7] who showed that if )(zP is a polynomial 

of degree n having all the zeros in kz || where 1k   then 
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Equality in (3) holds for the polynomial nn kzzP )( . 

 The polar derivative )(zPD  of a polynomial )(zP of degree n with respect to a 

point α ∈ C is defined as 

)()()()( zPzznPzPD   . 

(for reference see [9]) 

The polynomial )(zPD  is of degree at most 1n , and it generalizes the ordinary 

derivative in the sense that 
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uniformly for 0,||  RRz . 

 Aziz and Rather obtained several sharp results concerning the maximum modulus of 

)(zPD on 1|| z . Among other things, they [3] established the following extension of 

inequality (3) to the polar derivative of a polynomial.  

Theorem A. If )(zP is a polynomial of degree n having all the zeros 

in kz || where 1k  , then for every real or complex number α with k|| , 
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In this paper, we present the following result, which is a refinement as well as 

generalization of the Theorem A. 

 

2. Preliminaries 

For the proof of the Theorem, we need the following Lemmas.  
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 Lemma 1. If 
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where
2

1
,12 32  cc  and for 4n , nc is the unique positive root of the equation 

    041623816 432  xnxxnn  

lying in (0, 1). 

The above lemma is due to Bhat [4]. 

  Frapper [6] showed that the coefficient nc appearing in the above Lemma is given by 
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Lemma 2. If 
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 for n = 3. 

The above result is a special case of a result due to Dewan, Singh and Mir [5] with 1K . 
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 Lemma 3. If 0,)(
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This Lemma is due to A.Aziz and Dawood [1]. 

 

3. Main results 

Theorem  1.1.  Let 0,)( 0
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zeros in 1,||  kkz , then for every real or complex number α with k|| , 

(5) 
 























 


)1(

1

)1(

||
2|)(||)(|

1

||
|)(| 1

||1||1||
k

n

k

n

a
zPMinzPMax

k

kn
zPDMax

n
n

kzznz




 

                              











































)3)(2(

)1)(2()1(

)1(

)1()1(
||2

2

2
nn

knk

nn

knk
a

nn

n
 

                             
  











































 3

1

1

11|2)1(| 31

1

1

21

n

k

n

kc

k

aan nn

n

n


   for n > 3. 

and 

(6)
 























 






)1(

1

)1(

||
2|)(||)(|

1

||
|)(| 1

||1||

3

1||
k

n

k

n

a
zPMinzPMaxk

k

kn
zPDMax

n
n

kzz

n

nz




         

 
 

 
  



















 























 

2

211
21

1

1

1||21
212

2

2

kk
aan

knn

ka

k

n

n  for n = 3. 

where
2

1
,12 32  cc  and 1

)2(2

4

2







n

n

n

n
cn , for 4n . 

Proof.  

By hypothesis, all the zeros of )(zP  lie in ,|| kz   therefore the polynomial )()( kzPzF   

has all its zeros in 1|| z . Applying Lemma 3 to the polynomial )(zF , we get 
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Let  zFzzG n /1)(  , then all the zeros of )(zG lie 1|| z . Moreover, it can be easily 

verified that for 1|| z , 

(8)                     )()()( zFzznFzG       and     )()()( zGzznGzF  . 

Since )(zG  does not vanish in 1|| z , it follows by a simple argument (see [2, inequality 

(9)]) that 

          
)()()( zGzzGnzG            for    1|| z . 

This gives with the help of (8), 
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Now for every real or complex number α with k|| , we have 
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Using (9), we get 
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This further gives 
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Together (7) and (10) yield, 
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Replacing )(zF  by )(kzP , we get 
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This can be written as 



38                                            NISAR A. RATHER* AND MUSHTAQ A. SHAH 

  )()(
2

||
)()(

1||1||1||
kzPMinkzPMax

k

kn
kzPkz

k
kznPMax

zzz 















. 

or equivalently, 
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Using the fact that )()( zQzP  for |z|=1, it follows that 
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which implies, 
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Combining (11), (12) and (13), we get 
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Since )(zPD  is a polynomial of degree 1n and 1k , applying Lemma 1, we 

obtain
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where
 

nc is defined as in the Theorem. This completes the proof of Theorem 1. 

Remark 1. Since 1k  and n ≥ 3, it follows that
3

1

1

1 31








 

n

k

n

k nn

 

and 1
1




k
n

k n

. Therefore the above Theorem 1 is a refinement of Theorem A. 

 If we divide the both sides of (5) and (6) by ||  and let || , we get the 

following result, which is a refinement of the inequality (3). 
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all its zeros in 1,||  kkz , then for every real or complex number α with k|| , 
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