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Abstract. In the article, the authors prove that the double inequalities L0(a,b)< SAQ(a,b)< L1/6(a,b), L0(a,b)<

SQA(a,b) < L1/3(a,b) holds for all a,b > 0 with a 6= b, where Lp(a,b) =
(
ap+1 +bp+1

)
/(ap +bp) is the pth

Lehmer mean, and SAQ(a,b), SQA(a,b) are the Sándor-Yang means, respectively.
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1. Introduction

For p ∈R and a,b > 0,the Sándor-Yang means SAQ(a,b) and SQA(a,b)[2] ,and Lehmer mean

Lp(a,b)[1] are defined by
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SAQ(a,b) = Q(a,b)e
A(a,b)
T (a,b)−1

, (1.1)

SQA(a,b) = A(a,b)e
Q(a,b)
M(a,b)−1 (1.2)

and

Lp(a,b) =
ap+1 +bp+1

ap +bp (1.3)

where Q(a,b) =
√

(a2 +b2)/2, A(a,b) = (a+ b)/2, T (a,b) = (a− b)/[2arctan((a− b)/(a+

b))] and M(a,b) = (a− b)/[2arcsinh((a− b)/(a+ b))] are respectively the quadratic, arith-

metic, second Seiffert and Neuman-Sándor means of a and b.

Recently, the inequalities and sharp bounds for the bivariate means have attracted the atten-

tion of many researchers. In particular, many remarkable inequalities for the Sándor-Yang mean

and the Lehmer mean can be found in the literature [2, 3, 4, 5, 7, 10, 11].

Xu[6] find the best possible parameters α1 ≤ 2/3, β1 ≥ (1 +
√

2)[(1 +
√

2)
√

2 − e]/e =

0.6747 · · · , α2 ≤ 1/3,β2 ≥ (
√

2e
π

4−1 − 1)/(
√

2 − 1) = 0.3405 · · · , α3 ≤ (1+
√

2)
√

2/e− 1 =

0.2794 · · · ,β3≥ 1/3, α4≤
√

2e
π

4−1−1= 0.1410 · · · ,β4≥ 1/6 such that the double inequalities

α1Q(a,b)+(1−α1)A(a,b)< SQA(a,b)< β1Q(a,b)+(1−β1)A(a,b),

α2Q(a,b)+(1−α2)A(a,b)< SAQ(a,b)< β2Q(a,b)+(1−β2)A(a,b),

α3C(a,b)+(1−α3)A(a,b)< SQA(a,b)< β3C(a,b)+(1−β3)A(a,b),

α4C(a,b)+(1−α4)A(a,b)< SAQ(a,b)< β4C(a,b)+(1−β4)A(a,b)

holds for all a,b > 0 with a 6= b.

In [8, 9], the authors proved that the double inequalities

L0(a,b)< M(a,b)< L1/6 (a,b) ,

L0(a,b)< T (a,b)< L1/3 (a,b) ,

holds for all a,b > 0 with a 6= b.
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The main purpose of this paper is to present the best possible parameters λ1,λ2,µ1 and µ2

such that the double inequalities

Lλ1(a,b)< SAQ(a,b)< Lµ1(a,b),Lλ2(a,b)< SQA(a,b)< Lµ2(a,b)

holds for all a,b > 0 with a 6= b.

2. Main results

Theorem 2.1. The double inequality

Lλ1(a,b)< SAQ(a,b)< Lµ1(a,b)

holds for all a,b > 0 with a 6= b if and only if λ1 ≤ 0 and µ1 ≥ 1/6.

Proof Since Lp(a,b) and SAQ(a,b) are symmetric and homogenous of degree one, without

loss of generality, we assume that a = x > 1 and b = 1. Let p ∈ R, then (1.1) and (1.3) lead to

log [SAQ(a,b)]− log [Lp(a,b)]

=
1
2

log
(

x2 +1
2

)
+

x+1
x−1

arctan
(

x−1
x+1

)
− log

(
xp+1 +1
xp +1

)
−1. (2.1)

Let

F(x) =
1
2

log
(

x2 +1
2

)
+

x+1
x−1

arctan
(

x−1
x+1

)
− log

(
xp+1 +1
xp +1

)
−1. (2.2)

Then simple computations lead to

F
(
1+
)
= 0, (2.3)

F ′(x) =
1

(x−1)2 F1(x), (2.4)

where

F1(x) =
(x−1)

[
x2p− pxp+1 +2(p+1)xp− pxp−1 +1

]
(xp +1)(xp+1 +1)

−2arctan
(

x−1
x+1

)
,

F1 (1) = 0, (2.5)

F ′1(x) =−
x−1

x2 (x+1)2 (xp +1)2 (xp+1 +1)2 f (x), (2.6)
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where

f (x) = x4p+3 + x4p+2− p(p−1)x3p+5 +2p(p+1)x3p+4−2p(p+1)x3p+3

+2
(

p2 + p+2
)

x3p+2− p(p+3)x3p+1 + px2p+5 +5px2p+4−4(p+1)x2p+3

+4(p+1)x2p+2−5px2p+1− px2p + p(p+3)xp+4−2
(

p2 + p+2
)

xp+3

+2p(p+1)xp+2−2p(p+1)xp+1 + p(p−1)xp− x3− x2. (2.7)

We divide the proof into four cases.

Case 1 p = 0. Then (2.7) becomes

f (x) = 8x2 (1− x)< 0 (2.8)

for x > 1.

Therefore,

SAQ(a,b)> L0(a,b)

follows easily from (2.1)–(2.6) and (2.8).

Case 2 p > 0. Then (1.1) and (1.3) lead to

lim
x→+∞

Lp (x,1)
SAQ (x,1)

= lim
x→+∞

√
2
(
xp+1 +1

)
√

x2 +1(xp +1)e
(x+1)arctan( x−1

x+1)
x−1 −1

=

√
2

e
π

4−1
> 1. (2.9)

Inequality (2.9) implies that there exists large enough X1 = X1 (p) > 1 such that SAQ(x,1) <

Lp(x,1) for all x ∈ (X1,+∞).

Case 3 p = 1/6. Then (2.7) lead to

f (x) =
1
36

x(x1/3−1)3(x1/6 +1)2(5x4−4x23/6 +18x11/3−14x7/2 +40x10/3−30x19/6 +84x3

−48x17/6 +148x8/3−68x5/2 +234x7/3−58x13/6 +262x2−58x11/6 +234x5/3

−68x3/2 +148x4/3−48x7/6 +84x−30x5/6 +40x2/3−14x1/2 +18x1/3−4x1/6 +5)

≥ 1
36

x(x1/3−1)3(x1/6 +1)2(x4 +4x11/3 +10x10/3 +36x3 +80x8/3 +176x7/3 +204x2

+166x5/3 +100x4/3 +54x+26x2/3 +14x1/3 +5)> 0 (2.10)

for x > 1.

From (2.4)–(2.6) and (2.10) we clearly see that F(x) is strictly decreasing on (1,+∞).
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Therefore,

SAQ(a,b)< L1/6(a,b)

follows from (2.1)–(2.3) and the monotonicity of F(x).

Case 4 p < 1/6. Let x > 0 and x→ 0, then making use of (1.1) and (1.3) together with the

Taylor expansion we get

SAQ(1,1+ x)−Lp(1,1+ x)

=

√
1+(1+ x)2

2
e
(2+x)arctan( x

2+x)
x −1− 1+(1+ x)p+1

1+(1+ x)p

=
1−6p

24
x2 +o

(
x2) . (2.11)

Equation (2.11) implies that there exists small enough δ1 = δ1 (p)> 0 such that SAQ(1,1+x)>

Lp(1,1+ x) for all x ∈ (0,δ1).

Theorem 2.2. The double inequality

Lλ2(a,b)< SQA(a,b)< Lµ2(a,b)

holds for all a,b > 0 with a 6= b if and only if λ2 ≤ 0 and µ2 ≥ 1/3.

Proof Since Lp(a,b) and SQA(a,b) are symmetric and homogenous of degree one, without

loss of generality, we assume that a = x > 1 and b = 1. Let p ∈ R, then (1.2) and (1.3) lead to

log [SQA(a,b)]− log [Lp(a,b)]

= log
(

x+1
2

)
+

√
2(x2 +1)arcsinh

(
x−1
x+1

)
x−1

− log
(

xp+1 +1
xp +1

)
−1. (2.12)

Let

G(x) = log
(

x+1
2

)
+

√
2(x2 +1)arcsinh

(
x−1
x+1

)
x−1

− log
(

xp+1 +1
xp +1

)
−1. (2.13)

Then elaborated computations lead to

G(1+) = 0, (2.14)

G′(x) =
x+1√

x2 +1(x−1)2 G1(x), (2.15)
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where

G1(x) =

√
x2 +1(x−1)

[
x2p− pxp+1 +2(p+1)xp− pxp−1 +1

]
(x+1)(xp +1)(xp+1 +1)

−
√

2arcsinh
(

x−1
x+1

)
.

G1 (1) = 0, (2.16)

G′1(x) =−
x−1

x2
√

x2 +1(x+1)2 (xp +1)2 (xp+1 +1)2 g(x), (2.17)

where

g(x) = 3x4p+3 + x4p+2− p(p−1)x3p+6 + p(p+4)x3p+5−3(p+1)x3p+4 +3(p+2)x3p+3

+
(

p2−2p+5
)

x3p+2− p(p+3)x3p+1 + px2p+6 +7px2p+5− (p+7)x2p+4

+(p+7)x2p+2−7px2p+1− px2p + p(p+3)xp+5−
(

p2−2p+5
)

xp+4

−3(p+2)xp+3 +3(p+1)xp+2− p(p+4)xp+1 + p(p−1)xp− x4−3x3. (2.18)

We divide the proof into four cases.

Case 1 p = 0. Then (2.18) becomes

g(x) = 16x2 (1− x2)< 0 (2.19)

for x > 1.

Therefore,

SQA(a,b)> L0(a,b)

follows easily from (2.12)–(2.17) and (2.19).

Case 2 p > 0. Then (1.2) and (1.3) lead to

lim
x→+∞

Lp (x,1)
SQA (x,1)

= lim
x→+∞

2
(
xp+1 +1

)
(x+1)(xp +1)e

√
2(x2+1)arcsinh( x−1

x+1)
x−1 −1

=
2e(

1+
√

2
)√2

> 1. (2.20)

Inequality (2.20) implies that there exists large enough X2 = X2 (p) > 1 such that SQA(x,1) <

Lp(x,1) for all x ∈ (X2,+∞).
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Case 3 p = 1/3. Then (2.18) lead to

g(x) =
1
9

x1/3(x2/3−1)(x1/3−1)2(2x16/3 +7x5 +14x14/3 +37x13/3 +83x4 +155x11/3

+214x10/3 +233x3 +266x8/3 +233x7/3 +214x2 +155x5/3 +83x4/3 +37x

+14x2/3 +7x1/3 +2) (2.21)

for x > 1.

From (2.15)–(2.17) and (2.21) we clearly see that G(x) is strictly decreasing on (1,+∞).

Therefore,

SQA(a,b)< L1/3(a,b)

follows from (2.12)–(2.14) and the monotonicity of G(x).

Case 4 p < 1/3. Let x > 0 and x→ 0, then making use of (1.2) and (1.3) together with the

Taylor expansion we get

SQA(1,1+ x)−Lp(1,1+ x)

=
(

1+
x
2

)
e

√
2(1+(1+x)2)arcsinh( x

2+x)
x −1− 1+(1+ x)p+1

1+(1+ x)p

=
1−3p

12
x2 +o

(
x2) . (2.22)

Equation (2.22) implies that there exists small enough δ2 = δ2 (p)> 0 such that SQA(1,1+x)>

Lp(1,1+ x) for all x ∈ (0,δ2).

Let x ∈ (0,1),a = 1+x,b = 1−x. Then Theorems 2.1-2.2 lead to Corollary 2.1 immediately.

Corollary 2.1. The double inequality

1− 1
2

log(1+ x2)<
arctan(x)

x
< 1− 1

2
log(1+ x2)

+ log
[

3
√

1− x2( 3
√

1+ x+ 3
√

1− x)− 6
√

1− x2( 3
√
(1+ x)2 + 3

√
(1− x)2)−

√
1− x2 +2

]
,

1√
1+ x2

<
arcsinh(x)

x
<

1√
1+ x2

+
log
[
((1+ x) 3

√
1+ x+(1− x) 3

√
1− x)/( 3

√
1+ x+ 3

√
1− x)

]
√

1+ x2

hold for all x ∈ (0,1).
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