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Abstract. In this article, inequalities involving circular, inverse circular, hyperbolic, inverse hyperbolic and expo-

nential functions are established. Obtained results provide new lower and upper bounds for the functions x/tanx,

x/arcsinx, arctanx/x, tanhx/x and arcsinhx/x.

Keywords: Jordan’s inequality; circular-inverse circular; hyperbolic-inverse hyperbolic; exponential; lower-upper
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1. Introduction

In recent years, many researchers have tried to obtain different bounds for functions of the

type f (x)
x or x

f (x) where f (x) is circular, inverse circular, hyperbolic or inverse hyperbolic func-

tion. The origin of this research is well-known Jordan’s inequality [4, 12] which is stated as
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follows

2
π
<

sinx
x

< 1 ; x ∈ (0,1). (1.1)

The following inequalities(
sinh−1x

x

)2

6
tan−1x

x
6

(
sinh−1x

x
√

1+ x2

)1/2

; x ∈ R. (1.2)

(
tanh−1u

u

)2

6
sin−1x

x
6

(
tanh−1u
u(1−u2)

)1/2
(1.3)

where |x|< 1, u =
√

1
2(1−

√
1− x2) and

(
tan−1v

v

)2

6
sinh−1x

x
6

(
tan−1v

v(1+ v2)

)1/2

; x ∈ R, v =

√
1
2
(
√

1+ x2−1) (1.4)

are due to Edward Neuman [6].

M. Becker and E. L. Stark [11] proved the inequality

π2−4x2

π2 <
x

tanx
<

π2−4x2

8
; 0 < x <

π

2
. (1.5)

Many inequalities of these type and their refinements have been proved in [1-16] and the ref-

erences therein. Motivated by these studies we aim to give natural exponential bounds for the

functions mentioned above and to improve the bounds of (1.5). This paper is the continuation

of author’s earlier work [14].

2. Main Results

All the main results will be obtained by using l’Hôpital’s Rule of Monotonicity [8] which is

stated as follows

Lemma 1. ( The monotone form of l’Hôpital’s rule [8] ) : Let f ,g : [a,b]→ R be two con-

tinuous functions which are differentiable on (a,b) and g′ 6= 0 in (a,b). If f ′/g′ is increasing

( or decreasing ) on (a,b), then the functions f (x)− f (a)
g(x)−g(a) and f (x)− f (b)

g(x)−g(b) are also increasing ( or

decreasing ) on (a,b). If f ′/g′ is strictly monotone, then the monotonicity in the conclusion is

also strict.

Now we state the Main results and their proofs.
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Theorem 1. If x ∈ (0,1) then

e−ax2
<

x
sin−1x

< e−x2/6 (2.1)

with the best possible constants a≈ 0.451583 and 1/6.

Proof. Let e−ax2
< x

sin−1x < e−bx2
,which implies that, b < log(sin−1x/x)

x2 < a.

Then

f (x) =
sin−1x

x
=

f1(x)
f2(x)

,

where f1(x) = sin−1x and f2(x) = x, with f1(0) = f2(0) = 0. Differentiation gives

f ′1(x)
f ′2(x)

=
1√

1− x2
,

which is strictly increasing in (0,1). By lemma 1, f (x) is strictly increasing in (0,1). Thus for

x1 < x2 in (0,1) we have
sin−1x1

x1
< sin−1x2

x2
. Moreover, x < sin−1x in (0,1), giving us 1 < sin−1x1

x1
< sin−1x2

x2
< π

2 , which

implies that

0 < log
(

sin−1x1

x1

)
< log

(
sin−1x2

x2

)
< log(π/2)≈ 0.451583.

Now, log(sin−1x1/x1)
log(sin−1x2/x2)

< 1 and x2
1 < x2

2.

We claim that, log(sin−1x1/x1)

x2
1

< log(sin−1x2/x2)

x2
2

.

For if , log(sin−1x1/x1)

x2
1

> log(sin−1x2/x2)

x2
2

then

x2
1 6

log(sin−1x1/x1)
log(sin−1x2/x2)

.x2
2, which is absurd.

Therefore , log(sin−1x1/x1)

x2
1

< log(sin−1x2/x2)

x2
2

for x1 < x2 in (0,1). Hence log(sin−1x/x)
x2 is strictly in-

creasing in (0,1).

Let, g(x) = log(sin−1x/x)
x2 .

Consequently , b= g(0+)= 1/6 by l’Hôpital’s rule and a= g(1−)= log(sin−11)= log(π/2)≈

0.451583. �

Theorem 2. If x ∈ (0,1) then

e−x2/3 <
tan−1x

x
< e−bx2

(2.2)

with the best possible constants 1/3 and b≈ 0.241564.

Proof. Let e−ax2
< tan−1x

x < e−bx2
,which implies that , b < log(x/tan−1x)

x2 < a.
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Then, f (x) = x
tan−1x =

f1(x)
f2(x)

where f1(x) = x and f2(x) = tan−1x, with f1(0) = f2(0) = 0. By differentiation we get

f ′1(x)
f ′2(x)

= 1+ x2, which is strictly increasing in (0,1).

By Lemma 1, f (x) is also strictly increasing in (0,1). Therefore, for x1 < x2 in (0,1) we have

x1
tan−1x1

< x2
tan−1x2

. Again tan−1x < x in (0,1),

giving us 1 < x1
tan−1x1

< x2
tan−1x2

< 1
tan−1(1) ≈ 1.273240 , which implies that

0 < log(x1/tan−1x1)< log(x2/tan−1x2)< 0.241565.

Now, log(x1/tan−1x1)
log(x2/tan−1x2)

< 1 and x2
1 < x2

2.

We claim that, log(x1/tan−1x1)

x2
1

> log(x2/tan−1x2)

x2
2

.

For if, log(x1/tan−1x1)

x2
1

6 log(x2/tan−1x2)

x2
2

then

1
x2

1
6 log(x2/tan−1x2)

log(x1/tan−1x1)
. 1

x2
2

which is nonsense. Therefore, log(x1/tan−1x1)

x2
1

> log(x2/tan−1x2)

x2
2

for x1 < x2

in (0,1). Thus, log(x/tan−1x)
x2 is strictly decreasing in (0,1).

Let, g(x) = log(x/tan−1x)
x2 .

Consequently, a= g(0+)= 1/3 by l’Hôpital’s rule and b= g(1−)= log(1/tan−11)= log(4/π)≈

0.241564. �

Remark 1. Actually, we can see that f (x) = x
tan−1x is strictly decreasing in (−∞,0) and

strictly increasing in (0,∞). Hence g(x) = log(x/tan−1x)
x2 is strictly increasing in (−∞,0) and

strictly decreasing in (0,∞). Consequently, a = g(0−) = 1/3,b = g(−∞+) = 0, by l’Hôpital’s

rule in (−∞,0) and a = g(0+) = 1/3,b = g(∞−) = 0 by l’Hôpital’s rule in (0,∞). Thus, for

x ∈ (−∞,∞)

e−x2/3 < tan−1x
x < 1.

We now improve the bounds of (1.5) using natural exponential function.

Theorem 3. If x ∈ (0,1) then

e−ax2
<

x
tanx

< e−x2/3 (2.3)

with the best possible constants a≈ 0.443023 and 1/3.

Proof. Let e−ax2
< x

tanx < e−bx2
, which implies that, b < log(tanx/x)

x2 < a.
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Then f (x) = log(tanx/x)
x2 = f1(x)

f2(x)

where f1(x) = log(tanx/x) and f2(x) = x2, with f1(0+) = log1 = 0 = f2(0). Differentiation

gives

f ′1(x)
f ′2(x)

= x.sec2x−tanx
2x2.tanx = f3(x)

f4(x)

where f3(x) = x.sec2x− tanx and f4(x) = 2x2.tanx, with f3(0) = f4(0) = 0. Again by differen-

tiation we have

f ′3(x)
f ′4(x)

= sec2x.tanx
2tanx+x.sec2x =

1
2cos2x+x/tanx .

Clearly, cos2x is strictly decreasing in (0,1). And x/tanx is also strictly decreasing in (0,1).

For if, x1
tanx1

6 x2
tanx2

; x1 < x2 ∈ (0,1) then x1 6
tanx1
tanx2

.x2 which is absurd , as 0 < tanx1
tanx2

< 1.

Therefore, f ′3(x)
f ′4(x)

= 1
2cos2x+x/tanx is strictly increasing in (0,1). By Lemma 1, f (x) is strictly

increasing in (0,1). Consequently, a = f (1−) = log(tan1) ≈ 0.443023 and b = f (0+) = 1/3

by l’Hôpital’s rule. �

Note. There is no strict comparison between lower bounds π2−4x2

π2 and e−ax2
, where a ≈

0.443023 of x
tanx .

Remark 2. As a corollary , Theorem 2 and Theorem 3 give us

x
tan−1x

<
tanx

x
; x ∈ (0,1). (2.4)

which has already been proved in [9] and [13].

Theorem 4. If x ∈ (0,1) then

e−x2/6 <
sinh−1x

x
< e−bx2

(2.5)

with the best possible constants 1/6 and b≈ 0.126274.

Proof. Let e−ax2
< sinh−1x

x < e−bx2
, which implies that, b < log(x/sinh−1x)

x2 < a.

Then f (x) = x
sinh−1x =

f1(x)
f2(x)

where f1(x) = x and f2(x) = sinh−1x, with f1(0) = f2(0) = 0. By differentiation we get
f ′1(x)
f ′2(x)

= 1
(1/
√

1+x2)
=
√

1+ x2, which is clearly strictly increasing in (0,1). By Lemma 1, f (x)

is also strictly increasing in (0,1). Therefore for x1 < x2 in (0,1) we have x1
sinh−1x1

< x2
sinh−1x2

.
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Moreover, sinh−1x < x in (0,1), giving us 1 < x1
sinh−1x1

< x2
sinh−1x2

< 1
sinh−11 ≈ 1.134593, which

implies that

0 < log(x1/sinh−1x1)< log(x2/sinh−1x2)< 0.126274.

Now, log(x2/sinh−1x2)
log(x1/sinh−1x1)

> 1 and 1
x2

2
< 1

x2
1
. We claim that, log(x1/sinh−1x1)

x2
1

> log(x2/sinh−1x2)

x2
2

.

For if, log(x1/sinh−1x1)

x2
1

6 log(x2/sinh−1x2)

x2
2

then 1
x2

1
6 log(x2/sinh−1x2)

log(x1/sinh−1x1)
. 1

x2
2

which is nonsense. Therefore,
log(x/sinh−1x)

x2 is strictly decreasing in (0,1).

Let g(x) = log(x/sinh−1x)
x2 .

Consequently, a= g(0+)= 1/6 by l’Hôpital’s rule and b= g(1−)= log(1/sinh−11)≈ 0.126274.

�

Theorem 5. If x ∈ (0,1) then

e−x2/3 <
tanhx

x
< e−bx2

(2.6)

with the best possible constants 1/3 and b≈ 0.272342.

Proof. Let e−ax2
< tanhx

x < e−bx2
, which implies that, b < log(x/tanhx)

x2 < a.

Then f (x) = x
tanhx =

f1(x)
f2(x)

where f1(x) = x and f2(x) = tanhx, with f1(0) = f2(0) = 0. Differentiation gives
f ′1(x)
f ′2(x)

= 1
sech2x = cosh2x, which is strictly increasing in (0,1). By Lemma 1, f (x) is strictly

increasing in (0,1).

Now, g(x) = log(x/tanhx)
x2 = g1(x)

g2(x)
, where g1(x) = log(x/tanhx) and g2(x) = x2, with g1(0+) =

g2(0) = 0. By differentiation we get

g′1(x)
g′2(x)

= tanhx−x.sech2x
2x2.tanhx = g3(x)

g4(x)

where, g3(x) = tanhx− x.sech2x and g4(x) = 2x2.tanhx, with g3(0) = g4(0) = 0. Again differ-

entiating
g′3(x)
g′4(x)

= sech2x.tanhx
x.sech2x+2tanhx = 1

x/tanhx+4cosh2x , which is decreasing as x/tanhx and cosh2x are both

increasing. By Lemma 1, g(x) is decreasing in (0,1). Consequently, a = g(0+) = 1/3 and

b = g(1−) = log(1/tanh1)≈ 0.272342. �
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Remark 3. Actually, f (x) = x
tanhx is strictly decreasing in (−∞,0) and strictly increasing in

(0,∞). Hence, g(x) = log(x/tanhx)
x2 is strictly increasing in (−∞,0) and strictly decreasing in

(0,∞). Consequently

e−x2/3 < tanhx
x < 1; x ∈ (−∞,∞).

Corollary 1. If x ∈ (0,1) then

x
tanx

<
tanhx

x
. (2.7)

Proof. The corollary is an immediate consequence of Theorem 3 and Theorem 5. �
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