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Abstract. In the paper, we find the best possible parameters α,β ∈ (0,1) and λ ,µ ∈ (1/2,1) such that the double

inequalities

√
αE2(a,b)+(1−α)A2(a,b)< NS(a,b)<

√
βE2(a,b)+(1−β )A2(a,b),

E[λa+(1−λ )b,λb+(1−λ )a]< NS(a,b)< E[µa+(1−µ)b,µb+(1−µ)a]

holds for all a,b > 0 with a 6= b, here NS(a,b) = (a−b)/[2sinh−1 ((a−b)/(a+b))], A(a,b) = (a+b)/2 and

E(a,b) = 2(a2 +ab+b2)/[3(a+b)] are Neuman-Sándor, arithmetic and centroidal means of two positive real

numbers a and b, respectively.
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Let a,b > 0 with a 6= b. Then Neuman-Sándor mean NS(a,b) [1, 2],arithmetic mean A(a,b)

and centroidal E(a,b) are respectively defined by

NS(a,b) =
a−b

2sinh−1[(a−b)/(a+b)]
, (1.1)

A(a,b) =
a+b

2
,E(a,b) =

2(a2 +ab+b2)

3(a+b)
. (1.2)

Recently, Neuman-Sándor mean have been the subject of intensive research. In particular,

many remarkable inequalities and properties for these means can be found in the literature

[7–17].

Let T (a,b) = (a−b)/[2tan−1((a−b)/(a+b))], Q(a,b) =
√

(a2 +b2)/2 and

C(a,b) = (a2 +b2)/(a+b) be the second Seiffert, quadratic and contra-harmonic means of two

positive real numbers a and b, respectively. Then it is well known that the inequalities

A(a,b)< NS(a,b)< T (a,b)< E(a,b)< Q(a,b)<C(a,b)

hold for all a,b > 0 with a 6= b.

Neuman and Sándor [1, 2] proved that the inequalities

A(a,b)< NS (a,b)<
A(a,b)

log
(

1+
√

2
) , π

4
T (a,b)< NS (a,b)< T (a,b) ,

A(a,b)T (a,b)< NS2 (a,b)<
1
2
[
A2 (a,b)+T 2 (a,b)

]
hold for all a,b > 0 with a 6= b.

Neuman [3] proved that the double inequalities

αQ(a,b)+(1−α)A(a,b)< NS(a,b)< βQ(a,b)+(1−β )A(a,b)

λC(a,b)+(1−λ )A(a,b)< NS(a,b)< µC(a,b)+(1−µ)A(a,b)

hold for all a,b > 0 with a 6= b if and only if α ≤ 1− log(1+
√

2)/[(
√

2−1) log(1+
√

2)],

β ≥ 1/3,λ ≤ 1− log(1+
√

2)/ log(1+
√

2) and µ ≥ 1/6.
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Qian and Chu [4] found the greatest value α,λ and the least value β ,µ such that the double

inequalities

Eα(a,b)A1−α(a,b)< NS(a,b)< Eβ (a,b)A1−β (a,b),

λE(a,b)+(1−λ )A(a,b)< NS(a,b)< µE(a,b)+(1−µ)A(a,b)

for all a,b > 0 with a 6= b.

For α,β ,λ ,µ ∈ (1/2,1), Jiang and Qi [5, 6] proved that the double inequalities

Q(αa+(1−α)b,αb+(1−α)a)< NS(a,b)< Q(βa+(1−β )b,βb+(1−β )a),

C(λa+(1−λ )b,λb+(1−λ )a)< NS(a,b)<C(µa+(1−µ)b,µb+(1−µ)a),

hold for all a,b > 0 with a 6= b if and only if α ≤ 1/2+
√

1/[log(1+
√

2)]2−1/2, β ≥ 1/2+
√

3/6, λ ≤ 1/2+
√

1/ log(1+
√

2)−1/2,µ ≥ 1/2+
√

6/12.

Let x ∈ [1/2,1] and

J (x) = E [xa+(1− x)b,xb+(1− x)a] . (1.3)

It is not difficult to directly verify that J (x) is continuous and strictly increasing on [1/2,1]

and to notice that

J (1/2) = A(a,b)< NS (a,b)< E (a,b) = J (1) (1.4)

for all a,b > 0 with a 6= b.

Motivated by (1.3) and (1.4), it is natural to ask a question: what are the best possible param-

eters α,β ∈ (0,1) and λ ,µ ∈ (1/2,1) such that the double inequalities√
αE2(a,b)+(1−α)A2(a,b)< NS(a,b)<

√
βE2(a,b)+(1−β )A2(a,b),

E[λa+(1−λ )b,λb+(1−λ )a]< NS(a,b)< E[µa+(1−µ)b,µb+(1−µ)a]

holds for all a,b > 0 with a 6= b ? The main purpose of this paper is to answer there questions.

2. Lemmas
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In order to prove our main results we need two Lemmas, which we present in this section.

Lemma 2.1. Let p ∈ (0,1), l0 = log
(

1+
√

2
)
= 0.8813 · · · and

f (x) = p3x10− p2 (18−13p)x8 +2p2 (23p+90)x6−2p
(
5p2 +27p−486

)
x4

+p(25p+9)(27−7p)x2 +125p3−720p2 +1701p−1458 (2.1)

Then the following statements are true:

(1) If p = 1/2, then f (x)> 0 for all x ∈
(

1,
√

2
)

;

(2) If p= 9
(
1− l02)/(7l02)= 0.3693 · · · , then there exists θ0 ∈

(
1,
√

2
)

such that f (x)< 0

for x ∈ (1,θ0) and f (x)> 0 for x ∈
(

θ0,
√

2
)

.

Proof For part (1), if p = 1/2, then (2.1) lead to

f (x) =
1
8
(
x2−1

)(
x8−22x6 +384x4 +4154x2 +6175

)
>

1
8
(
x2−1

)(
x8 +340x4 +4154x2 +6175

)
> 0 (2.2)

x ∈
(

1,
√

2
)

. Therefore, part (1) follows easily from (2.2).

For part (2), if p = 9
(
1− l02)/(7l02)= 0.3693 · · · . Then numerical computations lead to

5p2 +27p−486 =−475.3443 · · ·< 0, (2.3)

f (1) = 2916p−1458 =−380.8693 · · ·< 0, (2.4)

f
(√

2
)
= 243p3 +1440p2 +6075p−1458 = 999.7924 · · ·> 0 (2.5)

It follows from (2.3) that

f ′ (x) = 2px
[
5p2x8−4p(18−13p)x6 +6p(23p+90)x4

−4
(
5p2 +27p−486

)
x2 +(25p+9)(27p−7p)

]
> 2px

[
5p2x8 +6p(11p+18)x4 −4

(
5p2 +27p−486

)
x2

+(25p+9)(27p−7p)]> 0 (2.6)

for x ∈ (0,1).

Therefore, part (2) follows easily from (2.4),(2.5) and (2.6).
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Lemma 2.2. Let p ∈ [1/2,1], and

g(x) = (1−2p)4x3 +4
(
4p4−8p3 +9p2−5p+1

)
x2

+4
(
−4p4 +8p3 +3p2−7p+2

)
x−4

(
2p2−2p−1

)2
(2.7)

Then the following statements are true:

(1) If p = 1/2+
√

2/4, then f (x)> 0 for all x ∈ (1,
√

2);

(2) If p = 1/2+
√

3
[
1/ log

(
1+
√

2
)
−1
]
/2 = 0.8177 · · · , then there exists ξ0 ∈

(
1,
√

2
)

such that g(x)< 0 for x ∈ (1,ξ0) and g(x)> 0 for x ∈
(

ξ0,
√

2
)

.

Proof For part (1), if p = 1/2+
√

2/4, then (2.7) becomes

g(x) =
1
4
(x−1)

(
x2 +8x+25

)
(2.8)

Therefore, part (1) follows easily from (2.8).

For part (2), if p = 1/2+
√

3
[
1/ log

(
1+
√

2
)
−1
]
/2 = 0.8177 · · · . Then numerical com-

putations lead to

4p4−8p3 +9p2−5p+1 = 0.3425 · · ·> 0, (2.9)

−4p4 +8p3 +3p2−7p+2 = 0.8677 · · ·> 0, (2.10)

8p2−8p+1 =−0.1924 · · ·< 0, (2.11)

8p4−16p3 +6
(

4+
√

2
)

p2−2
(

8+3
√

2
)

p+8−3
√

2 = 0.2854 · · ·> 0, (2.12)

g(1) = 9
(
8p2−8p+1

)
, (2.13)

g
(√

2
)
= 2

(
1+
√

2
)[

8p4−16p3 +6
(

4+
√

2
)

p2−2
(

8+3
√

2
)

p+8−3
√

2
]
, (2.14)

g′ (x) = 3(1−2p)4x2 +8
(
4p4−8p3 +9p2−5p+1

)
x

+4
(
−4p4 +8p3 +3p2−7p+2

)
. (2.15)

It follows from (2.8)-(2.15) that

g(1)< 0,g
(√

2
)
> 0, (2.16)

and

g′ (x)> 0 (2.17)
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for x ∈
(

1,
√

2
)

.

Therefore, part (2) follows easily from (2.16) and (2.17).

3. Main results

Theorem 3.1. For α,β ∈ (0,1),the double inequality

√
αE2(a,b)+(1−α)A2(a,b)< NS(a,b)<

√
βE2(a,b)+(1−β )A2(a,b)

hold for all a,b > 0 with a 6= b if and only if α ≤ 9
(
1− l02)/(7l02)= 0.3693 · · · , β ≥ 1/2.

Proof Since A(a,b), E(a,b) and NS(a,b) are symmetric and homogeneous of degree 1,

without loss of generality, we assume that a> b. Let v= (a−b)/(a+b)∈ (0,1) ,x=
√

1+ v2 ∈(
1,
√

2
)

and p ∈ (0,1). Then from (1.1) and (1.2) lead to

NS (a,b)−
√

pE2 (a,b)+(1− p)A2 (a,b)

= A(a,b)

 v
sinh−1 (v)

−

√
p
(

1
3

v2 +1
)2

+1− p


=

A(a,b)
[

p
(
x2/3+2/3

)2
+1− p

]
sinh−1

(√
x2−1

)[√
x2−1+ sinh−1

(√
x2−1

)√
p(x2/3+2/3)2

+1− p
]F (x) , (3.1)

where

F (x) =
x2−1

p(x2/3+2/3)2
+1− p

−
[
sinh−1

(√
x2−1

)]2
(3.2)

Then simple computations lead to

F (1) = 0, (3.3)

F
(√

2
)
=

9
7p+9

− l02, (3.4)

F ′ (x) =
2√

x2−1
F1 (x) , (3.5)
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where

F1 (x) =
9x
√

x2−1
[
9− p

(
x2−1

)2
]

[
p(x2 +2)2

+9(1− p)
]2 − sinh−1

(√
x2−1

)
,

F1 (1) = 0,F1

(√
2
)
=

9
√

2(9− p)

(7p+9)2 − l0 (3.6)

F ′1 (x) =−
√

x2−1[
p(x2 +2)2

+9(1− p)
]3 f (x) (3.7)

where f (x) is defined Lemma 2.1.

We divide the proof into four cases.

Case 1 p = 1/2. Then it follows from Lemma 2.1(1) and (3.7) that F1 (x) is strictly decreas-

ing on
(

1,
√

2
)

. Therefore,

NS(a,b)<

√
E2 (a,b)+A2 (a,b)

2

for all a,b > 0 with a 6= b follows from (3.1)-(3.3),(3.5),(3.6) and the monotonicity of F (x).

Case 2 0 < p < 1/2. Let x > 0,x→ 0+, then it follows from (1.1) and (1.2) together with

the Taylor expansion we get

NS(1,1+ x)−
√

pE2 (1,1+ x)+(1− p)A2 (1,1+ x)

=
x

2sinh−1
( x

2+x

) −
√

p
[

2(3+3x+ x2)

3(2+ x)

]2

+(1− p)
(

2+ x
2

)2

=
(1−2p)

24
x2 +O

(
x2) . (3.8)

Equations (3.8) implies that there exists 0 < δ0 < 1 such that

NS(1,1+ x)>
√

pE2 (1,1+ x)+(1− p)A2 (1,1+ x)

for all a > b > 0 with (a−b)/(a+b) ∈ (0,δ0).

Case 3 p = 9
(
1− l02)/(7l02) = 0.3693 · · · . Then it follows from Lemma 2.1(2) and (3.7)

that there exists θ0 ∈
(

1,
√

2
)

such that F1 (x) is strictly increasing on (1,θ0] and strictly de-

creasing on
[
θ0,
√

2
)

.
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Equations (3.5) and (3.6) together with the piecewise monotonicity of F1 (x) lead to the con-

clusion that there exists θ0 ∈
(

1,
√

2
)

such that F (x) is strictly increasing on (1,θ0] and strictly

decreasing on
[
θ0,
√

2
)

, and

F
(√

2
)
= 0. (3.9)

Therefore,

NS (a,b)>
√

pE2 (a,b)+(1− p)A2 (a,b)

for all a,b > 0 with a 6= b follows from (3.1)-(3.3) and (3.9) together with the piecewise mono-

tonicity of F (x).

Case 4 9
(
1− l02)/(7l02)< p < 1. Then (3.4) lead to

lim
x→
√

2
F (x)< 0 (3.10)

Equations (3.1), (3.2) and the inequality (3.10) imply that there exists 0 < δ1 < 1 such that

NS (a,b)<
√

pE2 (a,b)+(1− p)A2 (a,b)

for all a > b > 0 with (a−b)/(a+b) ∈ (1−δ1,1).

Theorem 3.2. For λ ,µ ∈ (1/2,1), the double inequality

E [λa+(1−λ )b,λb+(1−λ )a]< NS(a,b)< E [µa+(1−µ)b,µb+(1−µ)a]

hold for all a,b> 0 with a 6= b if and only if λ ≤ 1/2+
√

3
[
1/ log

(
1+
√

2
)
−1
]
/2= 0.8177 · · ·

, µ ≥ 1/2+
√

2/4 = 0.8535 · · · .

Proof Since both E(a,b) and NS(a,b) are symmetric and homogeneous of degree 1, without

loss of generality, we assume that a > b. Let v = (a−b)/(a+b) ∈ (0,1), x =
√

1+ v2 ∈(
1,
√

2
)

and p ∈ (1/2,1). Then from (1.1) and (1.2) lead to

E [pa+(1− p)b, pb+(1− p)a]−NS(a,b)

= A(a,b)

[
(1−2p)2v2 +3

3
− v

sinh−1 (v)

]

=
A(a,b)

[
(1−2p)2 (x2−1

)
+3
]

3sinh−1
(√

x2−1
) G(x) , (3.11)
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where

G(x) = sinh−1
(√

x2−1
)
− 3

√
x2−1

(1−2p)2x2 +3− (2p−1)2 . (3.12)

Then simple computations lead to

G(1) = 0, (3.13)

G
(√

2
)
= log

(
1+
√

2
)
− 3

4(p2− p+1)
, (3.14)

G′ (x) =
(x−1)

√
x2−1

[
(1−2p)2x2 +3− (1−2p)2

]2 g(x) (3.15)

where g(x) is defined Lemma 2.2.

We divide the proof into four cases.

Case 1 p = 1/2+
√

2/4. Then from Lemma 2.2(1) and (3.15) lead to the conclusion that

G(x) is strictly increasing on
(

1,
√

2
)

. Therefore,

NS(a,b)< E [pa+(1− p)b, pb+(1− p)a]

for all a,b > 0 with a 6= b follows easily from (3.11) and (3.13) together with the monotonicity

of F (x) .

Case 2 1/2+
√

2/4 < p ≤ 1. let q = (1−2p)2 and v→ 0+,then 1/2 < q ≤ 1 and power

series expansions lead to

(1−2p)2v2 +3
3

− v
sinh−1 (v)

=

(
qv2 +3

)
sinh−1 (v)−3v

3sinh−1 (v)

=
1

3sinh−1 (v)

[(
q− 1

2

)
v3 +o

(
v3)] . (3.16)

Equations (3.11) and (3.16) imply that there exists small enough 0 < γ0 < 1 such that

NS(a,b)> E [pa+(1− p)b, pb+(1− p)a]

for all a > b > 0 with (a−b)/(a+b) ∈ (0,γ0).

Case 3 p = 1/2+
√

3
[
1/ log

(
1+
√

2
)
−1
]
/2. Then (3.14) and (3.15) together with Lem-

ma 2.2(2) lead to the conclusion that there exists ξ0 ∈
(

1,
√

2
)

such that G(x) is strictly de-

creasing on (1,ξ0] and strictly increasing on
[
ξ0,
√

2
)

, and

G
(√

2
)
= 0. (3.17)
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Therefore,

NS(a,b)> E [pa+(1− p)b, pb+(1− p)a]

for all a,b > 0 with a 6= b follows easily from (3.3) and (3.5) together with (3.17) and the

piecewise monotonicity of G(x).

Case 4 1/2≤ p < 1/2+
√

3
[
1/ log

(
1+
√

2
)
−1
]
/2. Then

lim
v→1−

[
(1−2p)2v2 +3

3
− v

sinh−1 (v)

]
=

1
3

[
(1−2p)2 +3

]
− 1

log
(

1+
√

2
) < 0 (3.18)

Equations (3.3) and inequality (3.18) imply that there exists 0 < γ1 < 1 such that

NS(a,b)< E [pa+(1− p)b, pb+(1− p)a]

for all a > b > 0 with (a−b)/(a+b) ∈ (1− γ1,1).
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